Tagungsband zur
VAAM-Jahrestagung 2016
13.–16. März in Jena
Whooping cough is still a fatal disease in children due to missing or incomplete vaccination. Because of similar symptoms to common cold the infection with Bordetella may go undiagnosed in adults for many months, while being highly contagious.

The LightMix® Kit Bordetella pertussis and parapertussis Real-Time-PCR genome detection

... provides quick results in less than an hour

... is based on PCR based methods that allow the diagnosis even after three weeks

... detects B. pertussis and B. parapertussis simultaneously

LightMix® Kit Bordetella

Order no. 40-0575-16

This LightMix® Kit is developed to run on the LightCycler® 1.x / 2.0 / 480 II (96 well and 384 well formats) Instruments with Roche Diagnostics “LightCycler® FastStart DNA Master HybProbe”. The included internal control monitors the amplification reaction. Semiquantitative results are obtained when used with the supplied standard row.

This LightMix® kit is sold under license from Roche Diagnostics, LightCycler® is a trademark from Roche. Homogenous amplification methods with real-time detection are covered by patents owned by Roche Molecular Systems, Inc. and F. Hoffmann-La Roche Ltd. Use of these methods requires a license.
Programme

Annual Conference 2016 of the Association for General and Applied Microbiology (VAAM)

13 – 16 March 2016 in Jena, Germany

Conference Chair
Prof. Dr. Axel A. Brakhage
Friedrich Schiller University Jena
Institute of Microbiology and
Leibniz Institute for Natural Product Research and Infection Biology
Hans Knöll Institute Jena (DE)

Coordination Team
Dr. Michael Ramm
Dr. Christine Vogler
Tina Kunath

Programme Committee
Ian Thomas Baldwin · Christine Beemelmanns · Wilhelm Boland · Sabine Brantl · Gabriele Diekert · Marc Thilo Figge · Jonathan Gershenson · Reinhard Guthke · Christian Hertweck · Falk Hillmann · Dirk Hoffmeister · Uwe Horn · Bernhard Hube · Ilse Jacobsen · Olaf Kniemeyer · Christian Kost · Erika Kothe · Ákos T. Kovács · Oliver Kurzai · Bettina Lößler · Maria Mittag · Markus Nett · Ralf Oelmüller · Mathias Pletz · Georg Pohnert · Martin Roth · Hans Peter Saluz · Severin Sasso · Stefan Schuster · Ekaterina Shelest · Christine Skerka · Hortense Slevogt · Pierre Stallforth · Susan Trumbore · Vito Valiante · Kerstin Voigt · Thomas Wichard · Thomas Winckler · Johannes Wüstemeyer · Peter F. Zipfel

Organizing Society of the Conference
VAAM
Vereinigung für Allgemeine und Angewandte Mikrobiologie
Präsident: Prof. Dr. Oskar Zelder
Geschäftsstelle: Dr. Katrin Muth
Mörfelder Landstraße 125
60598 Frankfurt a. M. (DE)
Homepage: www.vaam.de

Main Programme
3 Content
4 Welcome Notes
7 The Jena Microbiology Cluster
11 JSMC Career Events & InfectControl 2020 Panel discussion
12 General Information
15 Karrieresymposium, Microbe Slam
16 Mitgliederversammlungen, Reisekostenzuschüsse
18 Sponsors and Media Cooperations
19 Exhibitors
20 Floor Plan
23 Social Programme
24 Aus den Fachgruppen der VAAM
31 Conference Programme · Overview
35 Conference Programme
37 Scientific Programme
37 Sunday, 13 March 2016
38 Monday, 14 March 2016
46 Tuesday, 15 March 2016
51 Wednesday, 16 March 2016

Abstracts
56 Abstract Overview (page reference Abstract-ID)
58 Oral Presentations
58 Invited Speakers
61 Short Lectures
113 Special Groups Mini Symposia
126 Poster Presentations
298 Author index
306 Personalia aus der Mikrobiologie 2015
308 Promotionen 2015
314 Autoren · Impressum
Welcome of the President of the Friedrich Schiller University Jena

Jena has developed into a centre for microbiology: on Beutenberg Campus, microbiologists study infectious diseases and new active compounds, physicists work on novel photonic methods for pathogen diagnostics, in Lobeda physicians tackle antimicrobial resistance and in the city center microbiologists and chemists study unusual enzymatic reactions and novel mechanisms of gene regulation in fungi. I am particularly happy that the scientists succeeded in establishing a cooperative and fruitful working environment.

Often small-scale developments can make a big difference. In our case, the parable reads as follows: The Excellence Graduate School Jena School for Microbial Communication acts as a catalyst for communication between scientists – particularly those of the Friedrich Schiller University, non-university institutions and the numerous young companies. Jena is a city characterized by a tight scientific network.

Nine years ago, the Centre for Innovation Competence (ZIK) Septomics was initiated as a connecting unit between the Friedrich Schiller University Jena, the University Hospital Jena and the Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute. At the centre, scientists and physicians are working together on the investigation of sepsis – taking a special interest in the interaction of fungi with the immune system. The CSCC, the Integrated Research and Treatment Center for Sepsis Control and Care, is another initiative that was jointly launched by these partners. At the CSCC scientists are studying sepsis and its treatment, up to the inclusion of individual clinical cases. These centres are supported by basic research on invasive fungal infections within the Collaborative Research Centre/Transregio FungiNet. The Collaborative Research Centre ChemBioSys in contrast uses a variety of natural microbial communities to study chemical mediators that may be our much needed medicines of tomorrow. AquaDiava is another Collaborative Research Centre in Jena which targets microorganisms, in this case from an ecological point of view considering the ecology and biodiversity of the subterranean biogeosphere.

As you can see, the approach to microbiology in Jena is multifaceted and interdisciplinary. We hope that we can thus set a good example of how modern science is practiced and we are eager to hear and discuss the latest research results of our guests from Germany, Europe and the world!

Walter Rosenthal

Welcome of the Conference Chair

A decade has passed since we last had the chance to welcome you to our city for such a meeting. A decade in which we have not been idle: successful participation in the Excellence Initiative of the German Research Foundation with the establishment of the Jena School for Microbial Communication, large collaborative research projects have been initiated, and finally interesting scientific results at Friedrich Schiller University and non-university research institutions were achieved. But what really matters is the community among the microbiologists which enables scientific exchange and uncovers visionary research ideas. Let this year’s Annual Conference of the Association for General and Applied Microbiology thrive in team spirit and fuel our creativity!

There are only selected scenes that make sports history: after a brilliant goal Miroslav Klose performs a no less brilliant somersault, Lionel Messi dribbles seemingly guided by magic towards the goal or Bastian Schweinsteiger acts as spiritus rector in the final match of the Football World Cup 2014. Those however, who pave the way for these stars mostly remain unnamed and unseen – physiotherapists, psychologists, the ball boys and girls and of course the trainer. But a team game can only be won as a team. Germany is fortunate to assemble such a successful team with many outstanding players on the international field of microbiology. Let us meet the challenge of microbial research as a team!

It is a lively and particularly important – cooperative and friendly environment, dear colleagues, that awaits you here in Jena. Our team spirit can be seen in the realisation of projects such as the Collaborative Research Centre/Transregio FungiNet with colleagues from Würzburg, the Collaborative Research Centre ChemBioSys, the Leibniz Science-Campus InfectoOptics, and the national consortium InfectControl 2020. All of these projects take an interdisciplinary approach to microbiological issues, using novel methods. So scoring goals is not only limited to the striker – the goalkeeper can also take over.

Keeping this in mind: Welcome to the home match!

Your

Axel Brakhage
STATE OF THE ART

Scissors - Retractors - Magnifiers - Probes & Hooks - Bone Instruments - Animal Identification
Hemostats - Forceps - Surgical & Laboratory Equipment - Feeding Needles - Spatulae & Spoons
Wound Closure - Surgical Plates - Instrument Care & Sterilization - Rongeurs - Scalpels & Knives
Clamps - Pins & Holders - Needles & Needle Holders - Student Quality Instruments & Much More

FINE SURGICAL INSTRUMENTS FOR RESEARCH™
Visit us at finescience.com or call +49 (0) 6221 905050
Welcome of the President of the VAAM

In 2006 it was the first time that the VAAM conference was held in Jena. I remember it as a very well organized and highly interesting scientific conference. Therefore, I am very much looking forward to visit the second VAAM conference in Jena now in 2016. We expect 1300 participants and we can be sure that the Jena conference will continue the long series of highly attractive and successful annual VAAM meetings. For the plenary sessions the organizers have invited a variety of internationally well distinguished speakers presenting exciting topics including natural products, fungal biology and biotechnology, biodiversity and ecosystems, bio-geo-interactions and biodegradation, infection and systems biology.

It has always been a mission of the VAAM to foster young academics. Therefore, I am very happy that the VAAM annual meeting is particularly attractive for young scientists, who can present their work in short talks and in poster sessions. I am especially curious on the ‘Microbe Slam’, a new presentation format that we try out at the Jena conference for the first time. Furthermore, the VAAM wants to show up development perspectives for young microbiologists in the ‘VAAM-Karrieresymposium’, where professionals from different areas discuss their career pathways. This year it will be complemented by two other events organized for young scientist by the JSMC.

Further highlights will be the award ceremonies for the ‘VAAM-Forschungspreis’ and the ‘VAAM-Promotionspreise’.

Last but not least I am looking forward to the VAAM annual meeting because it is an excellent opportunity to meet old friends, make new friends and to get inspired by many scientific presentations and discussions.

On behalf of the VAAM, I want to thank the conference chair Axel Brakhage and his team in particular Michael Ramm, further our congress-management firm Conventus with Alexandra Vogel as project manager and Katrin Muth from the VAAM for their great efforts and commitment in organizing the annual conference in Jena. Finally I want to thank all scientists for their contributions. I am certain that we will have an exciting conference and stimulating discussions.

Oskar Zelder

Streptomyces

Mikrobe des Jahres 2016

Parfümeur

Lebensretter

Ökoaktivist

Landwirt

www.mikrobe-des-jahres.de
For millennia, mankind has conquered the earth, inhabited the uninhabitable, traversed oceans, and scaled mountains. Yet long before, microbial life on earth flourished, determining the development of flora and fauna, and far outnumbering all other species. So great is their diversity, that only a miniscule fraction of all microorganisms are known today.

Friedrich Schiller University Jena

The scientific community in Jena combines a large number of scientists who study microorganisms. Fungi, bacteria and algae are in focus: How do these microorganisms live? How are they acting in their natural habitats? And in particular: How and with whom do they communicate? The focus on microbiology is significantly shaping the research profile in Jena. The Friedrich Schiller University (FSU) Jena has committed itself to the profile line “LIFE”. In addition, a number of extra university research institutes (Leibniz, Max-Planck, Fraunhofer) as well as local biotech companies and the health care industry make Jena a centre of microbiology.

Excellence graduate school Jena School for Microbial Communication

The JSB graduate school – Jena School for Microbial Communication plays a central role. The graduate school is funded under the federal-state Excellence Initiative and offers a structured qualification and training programme for junior scientists. The JSB addresses questions regarding microbial communication processes which influence all aspects of interactions between microorganisms and their biotic and abiotic environment.

Microbial communication and microbial communities related to natural products, infection biology and geomicrobiology

The scientists in Jena are particularly interested in microbial communities and their intra-, and interspecies interactions, in particular their relationships with humans, plants and insects. The elucidation of microbial interactions takes on many different forms: For example, the director of the Institute for Microbiology, Gabriele Diekert (Chair of Applied and Ecological Microbiology) and her team study organohalide respiration and the interactions between aerobic bacteria and lignin-degrading fungi. The Chair of Microbial Communication, headed by Erika Kothe, focuses on the interactions between basidiomycetes and forest trees, but also the environmental remediation with bacteria and fungi. Meanwhile, Johannes Wöstemeyer (Chair of General Microbiology and Microbial Genetics) is interested in understanding the developmental processes and signal transduction pathways that regulate sexual and parasitic interactions between zygomycete partners. The research group of Axel Brakhage (Chair of Microbiology and Molecular Biology) studies the infection biology of the important fungal pathogen *Aspergillus fumigatus* and also the molecular biotechnology of the production of natural products including the analysis of microbial interactions. The team of Kirsten Küsel (Chair of Aquatic Geomicrobiology) at the Institute of Ecology is interested in formation and degradation of minerals in the aquatic environment by microorganisms.

A large number of colleagues are investigating additional aspects of microbiology in connection with microbial communication, infection biology and natural product research. The research group of Thomas Winckler (Chair of Pharmaceutical Biology) studies retrotransposons in social amoeba. The team of Dirk Hoffmeister (Professor of Pharmaceutical Microbiology) is dedicated to...
elucidating the formation and function of natural products in basidiomycetes. The research group of Georg Pohnert (Chair of Instrumental Analytics/Bioorganic Chemistry) is interested in the chemical ecology of plankton and the defence of algae for example against bacteria by natural products. Colleagues in the Institute of Botany are also working on microorganisms. Maria Mittag (Professor of General Botany) uses the green algae Chlamydomonas reinhardtii to investigate the molecular mechanisms that control biological circadian clocks. The Chair of Plant Physiology, Ralf Oelmüller, studies how biomolecules that are released by fungi in the rhizosphere lead either to beneficial or pathogenic plant/fungus interactions.

Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute

During the previous decades, Jena has turned more and more into a centre of natural product research and infection biology of fungi – a development particularly influenced by the expertise of the Leibniz Institute of Natural Product Research and Infection Biology – Hans Knöll Institute – (HKI). The team of Axel Brakhage (Director HKI, Head of the Department Molecular and Applied Microbiology, and Chair of Microbiology and Molecular Biology at FSU Jena) is investigating the infection biology of the human pathogenic fungus Aspergillus fumigatus and the molecular biotechnology of natural products in fungi. Bernhard Hube (Department of Microbial Pathogenicity Mechanisms and Chair of Microbial Pathogenicity at FSU Jena) is studying pathogenicity using the human pathogenic yeasts Candida albicans and Candida glabrata. Peter F. Zipfel (Department of Infection Biology, Professor for Infection Biology at FSU Jena) and his team address the reactions of the complement system as part of the human immune response to bacterial and fungal infections. How, and which kind of, molecular information is exchanged during host/pathogen interactions is one of the research topics of the Department of Cell and Molecular Biology under Hans Peter Saluz (Professor for Cell and Molecular Biology at FSU Jena). Ilse Jacobsen (Research Group Microbial Immunology and Professor for Microbial Immunology at FSU Jena) develops and studies in vivo and ex vivo infection models in order to understand the reaction of the host to invading pathogen, and to look at the distribution and action of anti-infective compounds. The group of Oliver Kurzai (Professor for Fungal Septomics at FSU Jena) investigates the interaction of human cells with Candida albicans including the analysis of patient samples. Oliver Kurzai also heads the National Reference Centre for Invasive Mycoses.

While these groups focus on the infection biology of fungi, the group of Christian Hertweck (Department of Biomolecular Chemistry, and Chair of Natural Product Chemistry at FSU Jena) is concentrating on the hunt for active compounds with the goal of identifying both pharmacologically relevant substances and microbial toxins, and of understanding the production of these compounds by complex microbial consortia including anaerobic bacteria. A pillar of natural product research at the HKI is the Bio Pilot Plant, headed by Uwe Horn. The Bio Pilot Plant is unique in the academic sector, providing the technical requirements for cultivation and downstream processing of microorganisms in culture volumes of up to 2.5 m³.

The bioinformatics and systems biology groups headed by Marc Thilo Figge (Professor of Applied Systems Biology at FSU), Reinhard Guthke (Professor of Systems Biology and Bioinformatics at FSU) and Rainer König (Professor of Systems Biology of Sepsis at UK), use the large amount of experimental data generated in the wet labs to develop algorithms for the modelling of infection processes and microbial interactions with the human immune system. In close collaboration with the experimental groups they furthermore analyse omics data to identify new biosynthetic activities or regulatory processes involved in microbial life cycle and multi-partner processes. The computer-based models generated by these groups are validated by laboratory experiments in iterative steps. The bioinformatics group of Stefan Schuster (Chair of Bioinformatics at FSU Jena) analyses host/pathogen interactions by evolutionary game theory and metabolic pathway analysis.

Junior Scientists

It is not only the established and experienced scientists who keep alive and advance the microbiological research in Jena. Credit for creating new impulses is due to the many junior scientists and their research groups at the university, and at the non-university research institutions on Beutenberg Campus who represent the future generation of microbiologists. The HKI Junior Research Groups, Chemistry of Microbial Communication of Pierre Stallforth, and Chemical Biology of Microbial-Host Interactions of Christine Beemelmanns, aim to elucidate microbial communication – and use specific model organisms to this end: The team of Dr Beemelmanns studies the network of termites, fungi, and bacteria, whereas Dr Stallforth studies the interactions of bacteria and the “social amoeba” Dictyostelium discoideum. The molecular and chemical interactions between fungi and amoeba are also studied by the group of Falk Hillmann – using the mould A. fumigatus and several social amoeba. Strategies for identifying and characterizing antimicrobial natural products are developed by Markus Nett and his Junior Research Group, Secondary Metabolism of predatory bacteria, at HKI. Vito Valiante starts from known biosynthesis pathways of natural products: His Research Group, Biobricks of Microbial Natural Product Syntheses, is isolating these biosynthetic pathways and transferring them to more amenable microorganisms within the framework of the Leibniz Research Cluster Biotechnology. The Junior Research Group Terrestrial Biofilms at the
Institute of Microbiology, FSU Jena, headed by Ákos T. Kovács, has the goal of gaining a deeper understanding of the different growth strategies in biofilms (competition between growth rate and yield), employing the gram positive model bacterium *Bacillus subtilis*. The identification of novel natural products that can be synthesized by algae is the topic of the group of Severin Sasso (Juniorprofessor for Molecular Botany at FSU).

Max Planck Institute for Chemical Ecology

Together with the Friedrich Schiller University, the Beutenberg Campus with its non-university research institutes, two business incubators, and one renowned biotech company, forms the scientific epicentre of the city on the river Saale. Next to the HKI, the Max Planck Institute for Chemical Ecology is also situated on Beutenberg Campus. Research at the institute focuses on the coevolution between plants and insects, a process that naturally involves microorganisms. Wilhelm Boland (Professor for Bioorganic Chemistry at FSU Jena) and his Department of Bioorganic Chemistry are working on the defence mechanisms of plants and insects, and their interactions on different levels. The biosynthetic potential of insects is influenced and enhanced by symbiotic gut bacteria and endosymbionts. Ian Baldwin (Professor of Ecology at FSU Jena) and his team at the Department of Molecular Ecology study ecological interactions of plants, the herbivores that feed on them and the fungi and bacteria in contact with their roots. Their aim is the identification of traits that are important for an organism’s Darwinian fitness. The Department of Biochemistry, headed by Jonathan Gershenzon (Professor of Plant Ecological Chemistry at FSU Jena) addresses the question how plants protect themselves from pathogens and herbivores by the production of defensive chemical compounds. Christian Kost and his Research Group, Evolutionary Ecology and Evolution, concentrate on the ecological basis of cooperative interactions of microorganisms – working at the interface of molecular microbiology and synthetic biology.

Max Planck Institute for the Science of Human History

At the Max Planck Institute for the Science of Human History archaeologists, linguists and geneticists work closely together to answer key questions of human history by using modern computational and genetic methods. The Department of Archaeogenetics, headed by Johannes Krause, focuses on host-pathogen interactions throughout history providing direct evidence for the origin, causative agents, dissemination and evolution of major human infectious diseases. The results will provide a better understanding of epidemic outbreaks in the past, and comparisons of historic and modern strains will broaden our understanding of co-evolutionary changes between pathogens and their human host. A second major research topic of his group is the reconstruction of population structures of modern humans in Eurasia spanning the last 40,000 years to elucidate the different events of dispersal and population relationships.

University Hospital Jena – Infections diseases and sepsis

Thanks to the increasing understanding of microbial pathogenicity mechanisms, novel opportunities for diagnosing and treating infectious diseases arise. Several institutions of the University Hospital Jena (UKJ) are dedicated to this aspect. Sepsis research, prevention, diagnosis, and successful treatment of sepsis are at the focus of the research. The topic, which was initiated Konrad Reinhart and his colleague Michael Bauer heading the Department of Anesthesiology and Intensive Care Medicine, has developed into a central research area at the UKJ and has served as starting point for several initiatives and research programmes. The Institute of Medical Microbiology at the UKJ, headed by Bettina Löfler (Chair of Medical Microbiology), is dedicated to patient care by diagnostics and prevention of microbial infectious diseases. In addition, the team studies the infection strategies of *Staphylococcus aureus* as well as classical intracellular pathogens such as Chlamydiae and Mycobacteria – the institute is even a designated consultant laboratory for chlamydial infections. Novel diagnostic options for virus infections are tested at the Institute of Virology and Antiviral Therapy at the UKJ (Andreas Sauerbrei), with a focus on herpes, picorna, and influenza viruses.

Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health

Two institutes of the Friedrich-Loeffler-Institut are located in Jena: The Institute for Bacterial Infections and Zoonoses headed by Heinrich Neubauer is interested in the etiology of communicable diseases of animals and on countermeasures against them. Special emphasis is given to bacteria and bacterial toxins which are transmitted from animals to humans resulting in adverse health effects or disease (zoonoses). Christian Menge and his team at the Institute of Molecular Pathogenesis study the interactions between bacterial agents causing animal diseases and zoonoses and their hosts on the molecular level with focus on Chlamydiae and bovine Mycobacteria. Currently both institutes harbour 19 National Reference Laboratories for animal infections.

Ernst Abbe Hochschule Jena – University of Applied Sciences

The research activities of Thomas Munder and his group Gene Technology/Technical Microbiology are focused on novel therapeutic strategies against tuberculosis based on protein-protein interaction studies.

Microbiologists as a team

Each scientist adds his or her specific expertise to the advancement of microbiological knowledge. The speciality in Jena is not the number of lone investigators, but the close collaboration between the individual specialists in many collaborative research projects – microbiology as interdisciplinary teamwork. These joint projects are paying tribute to the concept that progress in the areas of both basic and applied research is easier to
realise through collaboration. Two starting points led to the further development of results from basic research: Novel active compounds from microorganisms for the sake of human health, and the study of infection mechanisms and immune responses to develop novel strategies for diagnosis and therapy.

The DFG-funded Collaborative Research Center/Transregio 124 Pathogenic fungi and their human host: Networks of interaction FungiNet (speaker Axel Brakhage) was established by scientists in Jena and Würzburg. The goal is the elucidation of the complex mechanisms of infection by the yeast Candida albicans and the filamentous fungus Aspergillus fumigatus, and to use a systems biology approach to create a virtual infection model, serving as starting point for the development of efficient prevention and therapeutic strategies.

The aim of the DFG Collaborative Research Center 1127 Chemical Mediators in Complex Biosystems – ChemBioSys (speakers Christian Hertweck, Georg Pohnert) is to investigate the fundamental control mechanisms in complex biosystems, which influence our daily life. The ChemBioSys members study novel complex mediators and their places of action, the development of complex microbial communities and the processes which structure these communities and maintain the biodiversity. The long-term goal lies in the targeted manipulation of complex biosystems by chemical mediators.

Research into the microbial biodiversity is at the heart of both the DFG Collaborative Research Center 1076 AquaDiva (speaker Kirsten Küsel) and the Jena Microbial Resource Collection (JMRC, speaker Kerstin Voigt). AquaDiva is concentrating on the role of water in the soil (for microbial) biodiversity and on the contribution of this biodiversity to structuring the soil as a habitat for microbial communities. The JMRC is a joint facility of the Friedrich Schiller University Jena and the Leibniz Institute for Natural Product Research and Infection Biology (HKI). Its collection of around 50,000 fungi and bacteria and its large library of natural products is not only continuously maintained and expanded on site but also serves as an important resource for research in Jena and worldwide scientific exchange.

The Center for Innovation Competence (ZIK) Septomics headed by Oliver Kurzai (Professor of Fungal Septomics at FSU) and Hortingense Slevoogt (Professor of Host Septomics at UKJ) brings together basic researchers and physicians to improve sepsis diagnosis and sepsis in particular caused by fungi. The aim is to understand the complex network between pathogen and host response leading to sepsis. This aim is shared by the Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) headed by Michael Bauer with a slightly different focus: The CSCC is located at the University Hospital Jena and integrates clinical research and patient care in the project. Thus, at the centre many physicians closely collaborate with natural scientists.

The project consortium InfectControl2020 – Novel Antimicrobial Strategies – Science · Society · Economy unites more than forty partners from academia and industry in order to work together on the effective prevention, fast diagnosis, and efficient treatment of infectious diseases. The collaborative project which is funded under the Zwanzig20 initiative of the Federal Ministry of Education and Research brings together German research institutions, public authorities, medical institutions and companies with a focus on Eastern Germany. InfectControl2020 uses an extensive transsectoral approach encompassing all aspects of human behaviour – in addition to classical infection biological and medical questions also problems ranging from climate change and human mobility to political counselling. The Transfer Group Antifungos, established by the InfectControl2020 consortium, identifies novel substances and promotes their development to drugs. The Transsectoral Research Platform is a nationwide graduate training programme that unites the doctoral researchers of InfectControl 2020 under the umbrella of infection research. The doctoral researchers of the Transsectoral Research Platform are associated to the Jena School for Microbial Communication, benefiting from the well-established extensive qualification programme.

There are also other projects that take the leap from pure microbiology towards other disciplines. In the Leibniz ScienceCampus InfectoOptics for example scientists use methods from physics and photonics to work on the diagnosis and therapy of infectious diseases. Along the same lines, the Research Campus InfectoGnostics is a public-private partnership consisting of public research institution and private biotech companies aiming at a faster and safer diagnosis of infectious diseases. The Leibniz Research Cluster is an initiative of several Leibniz Institutes which join their expertise in biotechnology and engineering sciences to expand the available spectrum of methods for compound identification. The goal is to create synthetic production units for the development of novel compounds by integrating novel technologies into existing production processes.

From basic research to product development

Motivated junior scientists and interesting research results are not the only outcome of microbiological research: The founding of new companies is another option that arises. The collaborations of the research institution in Jena led to the foundation of various start-up companies which create a lively and innovative biotech environment in and around Jena. Some of them, such as Alere Technologies GmbH, Analytik Jena AG, and Wacker Biotech GmbH to name just a few were bought by large companies. The foundation and the distinct team spirit of all players and the great motivation and creativity of the junior scientists. Nationally and internationally, Jena is a good place for our science.
JSMC Panel discussion

The secrets to scientific success: career advice from experienced scientists

Chairs: Natalie Töpfer, Carolin Dewald, Daniel Leichnitz, Miguel Tovar

Do you wonder what a PI looks for in a postdoc? Is my research of good quality? How can I increase the impact of my research? Should I patent or publish? What are my career perspectives in microbiology?

If you have asked yourself these or related questions, you are welcome to attend the panel discussion. A panel of experienced scientists will share their career advice and perspectives for young microbiologists and engage in an interactive discussion with the audience, moderated by JSMC students.

Location: Hörsaal 3
Date: Monday, 14 March 2016
Time: 12.45 – 13.45 h

JSMC Lunch symposium

Microbiologists’ communication: Networking and communicating your science

Participants: Prof. Michael Poulsen, Dr. Ivan Savin

Chairs: Maja Rischer, René Benndorf

How to reach the public with your science? How to build a stronger scientific network?

Prof. Poulsen (University of Copenhagen, Denmark) and Dr. Savin (Karlsruhe Institute of Technology, Germany) will discuss networking and public relations in science, exchanging their experiences and interacting with the participants of the workshop. In this Lunch workshop you will learn the basics and strategies for networking with PhD students, professors, companies and the public.

The Jena School for Microbial Communication (JSMC) and the company Wacker Biotech GmbH Jena will provide Lunch boxes. The number of participants is limited to 60. So first come, first served.

Location: Hörsaal 3
Date: Tuesday, 15 March 2016
Time: 12.00 – 13.55 h

Young scientists get-together

The Jena School for Microbial Communication (JSMC) invites all postdocs, PhD, master and bachelor students to a get-together on Monday, 14 March 2016. Starting at 20.00 h, with free admission for everybody, the event will take place at Rosenkeller, Johannistrasse 13 (5 min walk from the conference location). The get-together focuses on networking and encourages scientific discussions with other students from different countries in a harmonious and relaxed atmosphere. Sharing experiences and ideas can be synergistic with having fun! Please bring your name tag with you.

Location: Rosenkeller, Johannistrasse 13
Date: Monday, 14 March 2016
Time: 20.00 h (meet at Venue entrance and walk to Rosenkeller) – open end

InfectControl 2020 – New Anti-infective Strategies – Science · Society · Economy

Panel discussion: New drugs and resistances

Participants: Prof. Michael Bauer, University Hospital Jena, Prof. Peter Hammann, Sanofi, Dr. Sabina Heim, Ascension, Prof. Christian Hertweck, Hans Knöll Institute

Chair: Axel Brakhage, Hans Knöll Institute

A rapidly increasing threat is arising from new or resistant pathogens and their growing global dissemination that affects all areas of human life. This threat is further aggravated by a drastic lack of (new) effective drugs as well as insufficient preventive and diagnostic possibilities. InfectControl 2020 is an application-oriented consortium of enterprises and research institutions which aims at developing solutions to these problems ranging from the national to the global level.

It is funded within the scope of the programme Zwanzig20 – Partnerschaft für Innovation initiated by the Federal Ministry for Education and Research (BMBF). InfectControl 2020 cordially invites interested researchers of all microbiological disciplines to a prominently staffed panel discussion including short keynote presentations focusing on new ways to overcome resistances by novel drugs.

Location: Hörsaal 3
Date: Tuesday, 15 March 2016
Time: 15.40 – 16.55 h
Registration fees include:
- Participation in the scientific programme as well as access to the industrial exhibition
- Opening event
- Conference documents (programme, abstract book, etc.)
- Beverages within the scope of the breaks given in the programme
The conference fee also includes the provision of snacks and drinks at the welcome reception as well as buffet and beverages at the Mixer.

Check-In
The Check-In can be found on the ground floor of the conference venue Campus Ernst-Abbe-Platz, next to the main entrance.

No longer waiting lines at the counter!
With our Quick Check-In you can check in fast and comfortably by yourself. After your invoice is paid you receive a QR code (approximately 2 weeks prior to the congress itself). Please hold it under the scanner at the Quick Check-In counter on site. Your name badge will be printed out directly in seconds and your registration is completed.

Opening Hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Exhibition</td>
<td>15:00 – 21:00 h</td>
<td>09:30 – 19:30 h</td>
<td>10:00 – 19:30 h</td>
<td>10:30 – 13:00 h</td>
</tr>
<tr>
<td>Check-In</td>
<td>13:00 – 19:00 h</td>
<td>07:30 – 19:30 h</td>
<td>08:00 – 19:30 h</td>
<td>08:30 – 13:00 h</td>
</tr>
<tr>
<td>Media</td>
<td>13:00 – 19:00 h</td>
<td>07:30 – 18:00 h</td>
<td>08:00 – 18:00 h</td>
<td>08:30 – 11:00 h</td>
</tr>
</tbody>
</table>

Wardrobe
The wardrobe can be found in Seminarraum 121 on the first floor and will be free of charge. Please note that the capacity is limited. We therefore kindly ask you to only use the wardrobe if absolutely necessary, e.g. preferably for your luggage.

Internet
We can offer you the following opportunities for internet usage:

Education Roaming (eduroam)
If your home university participates in eduroam and you have an internet account at your home university, you should be able to use the eduroam network at the the Friedrich Schiller University Jena. Just follow these easy steps:
- Follow the eduroam tutorials of your home university.
- As Wi-Fi network choose eduroam.
- For user name, outer identity, inner identity and password, exclusively follow the eduroam tutorials of your home university. Please keep in mind that a short outer identity (e.g., only Muellerx) will not work in eduroam networks.

Hint: Before you use the eduroam network at the Friedrich Schiller University, we suggest to first successfully connect at least one time with the eduroam network at your home university.

Voucher
Every participant without access to the eduroam network has the opportunity to get a free voucher at the Check-In on site.
Poster Session

The poster presentations are divided in two sessions.

Monday, 15.30 – 17.30 h: All posters with even numbers (e.g. XXP02, XXP04) will be presented on 14 March 2016 from 15.30 – 17.30 h. We kindly ask all poster authors with the corresponding poster IDs to be present at their poster during this time, for presentation, discussion and questions.

Tuesday, 15.30 – 17.30 h: All posters with odd numbers (e.g. XXP01, XXP03) will be presented on 15 March 2016 from 15.30 – 17.30 h. We kindly ask all poster authors with the corresponding poster IDs to be present at their poster during this time, for presentation, discussion and questions.

Poster Sessions are allocated in the following rooms:

- **Tent**: Archaea and Extremophiles (AEP01 – AEP32); Biodiversity and Ecosystem Functions (BEFP01 – BEFP28); Biotechnology (BTP01 – BTP88); Microbial Communication (MCP01 – MCP86); Synthetic Microbiology (SnMP01 – SnMP16)
- **EG/ Hörsaal 4**: Natural Products (NPP01 – NPP37)

1. **OG**

- **Foyer**: Environmental Microbiology (EMP01 – EMP70); Systems Microbiology (SsMP01 – SsMP09)
- **SR 113**: Biodegradation (BDP01 – BDP28); Fungal Biology (FBP01 – FBP46)
- **SR 114**: Infection Biology (IBP01 – IBP57); Microbial Evolution (MEP01 – MEP15)

2. **OG**

- **SR 208**: Chemotaxis and Motility (CMP01 – CMP07); Signal Transduction (STP01 – STP35)
- **SR 207**: Bioenergetics (BEP01 – BEP15); Membranes and Transport (MTP01 – MTP15); Open Topics (OTP01 – OTP08)
- **SR 206**: Open Topics (OTP09 – OTP48)

Travel and City Map

Travel by Car

Address: Friedrich Schiller University Jena · Carl-Zeiss-Straße 3/Ernst-Abbe-Platz · 07743 Jena (DE)

Please note that there are no parking spaces available on the campus. We recommend using one of the following parking areas near the venue:

- Car Park Goethe Galerie Ernst-Abbe-Straße 15, 07743 Jena (distance to the venue: 200 m)
 - Fees: 1 EUR per hour
 - Opening Hours: Mo-Fr: 07.00 – 23.00 h; Sa: 08.00 – 23.00 h
- Car Park Neue Mitte Leutragraben 1, 07743 Jena (distance to the venue: 200 m)
 - Fees: 1 EUR per 30 min
 - Opening Hours: Mo-Su: 07.00 – 24.00 h
- Parking „Eichplatz“ (distance to the venue: 250m)
 - Please note: the maximum parking time is 2 hours.

Travel by Public Transport

The tramway station Ernst-Abbe-Platz (served by tramway 5, 33 and 35) is located directly next to the congress venue.

Travel by Train

Acting today for tomorrow: Travel by train from 99 Euro with 100% green power to the Annual Conference 2016 of the VAAM.

In cooperation with Conventus Congressmanagement & Marketing GmbH and Deutsche Bahn you travel safely and conveniently to the Annual Conference 2016 of the VAAM in Jena! Your way to save the environment: Travel with 100% green power to your event with Deutsche Bahn long-distance services. We guarantee to get the energy you needed for your journey in Germany from 100% renewable sources.

The price for your Event Ticket for a return trip* to Jena is:

<table>
<thead>
<tr>
<th>Class</th>
<th>Price for defined train connection</th>
<th>Price for all trains</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd class</td>
<td>99 EUR</td>
<td>139 EUR</td>
</tr>
<tr>
<td>1st class</td>
<td>159 EUR</td>
<td>199 EUR</td>
</tr>
</tbody>
</table>

Our call centre is glad to inform you about the ticket price for international journeys. This special offer is valid for all congresses of Conventus Congressmanagement & Marketing GmbH in 2016.

To book call +49 (0)180 6 31 1 1 53** and quote “CONVENTUS” as reference. Have your credit card ready please.

** An advance booking of at least three days is required. Changes and reimbursement before the first day of validity are EUR 15 excluded from the first day of validity onwards. Passengers restrict themselves to a particular train and travel times. For a supplement of EUR 40 full flexible tickets are also available for domestic travels within Germany.

** The booking line is available from Monday to Saturday 07.00 – 22.00 h. Calls will be charged at 0.40 EUR to per call, from mobiles 0.60 EUR to per call at maximum.

Connection Hamburg-Berlin-Munich, destination: Jena-Paradies

From station Jena-Paradies – 10 min by foot

- After leaving the train station, cross the main road in front of the station and walk straight ahead into the street Am Volksbad
- Pass the bus station and turn left into Grietgasse, follow the street for 150 m
- At the crossroads turn right and walk on Schillerstraße for about 120 m
- Then turn left, follow the same route as the tram runs, onto Ernst-Abbe-Platz

IC/ICE-Connection Frankfurt-Leipzig-Dresden, with change in Weimar, destination: Jena-West

From station Jena-West – 10 min by foot

- After leaving the train station turn left and continue walking to the main road Westbahnhofstraße
- Turn right and follow the road downhill for 300 m
- At the crossroads turn left into Ernst-Häckel-Straße
- After 150 m, walk across the Carl-Zeiss-Platz (right hand side) and turn right into Carl-Zeiss-Straße
- Use the underpass at the right hand side to the Ernst-Abbe-Platz

General Terms and Conditions

You can find the general terms and conditions on our conference website www.vaam-kongress.de.
City Map

1. Tagungsort / Conference Venue
2. Mixer, Volkshaus
3. Westbahnhof
4. Paradiesbahnhof

© Stadt Jena/Stand: April 2015
Mikrobiologie – Studium, Promotion und dann?
Veranstaltungen zur Karriereplanung für den wissenschaftlichen Nachwuchs

The secrets to scientific success: career advice from experienced scientists

VAAM-Karrieresymposium: Montag, 14. März 2016, 15.45–17.15 Uhr, Hörsaal 3
Erfahrene Wissenschaftler berichten über ihre Berufsweg und beantworten Fragen zur eigenen Karriereplanung
Andreas Strecker, DFG
Jan Krauss, Patentanwalt
Christine Beemelmanns, HKI Jena
Oskar Zelder, BASF

Microbiologists‘ communication: Networking and communicating your science

DFG-Antragsberatung**: Montag, 14. März 2016, 09.00–12.00 Uhr, Seminarraum 130
Andreas Strecker berät im Einzelgespräch zu den Förderprogrammen der Deutschen Forschungsgemeinschaft

*The number of participants is limited to 60. **Bitte registrieren Sie sich im Tagungsbüro.

1. Microbe Slam

15. März 2016 17.00 Uhr Hörsaal 1

RENÉ BENNDORF, Jena
The delightfulness of termites and their little helpers

OLGA SARENKOO, Berlin
Bakterielle Biofilme oder: Zusammen sind wir stark!

BENJAMIN KORTH, Leipzig
Doktorand Seltsam oder: Wie ich lernte mit Elektrochemie zu leben

BENJAMIN STEGMANN, Ulm
Phage my Clostridium

LISA SIEGMUND, Jena
A novel model for endosymbiosis in Protozoa

CORRADO NAI, Berlin
n. a.

Ihr wählt den Gewinner!
Moderator: Oliver Kling, Jena
Einladung zur Mitgliederversammlung der VAAM

Hiermit lade ich alle Mitglieder der VAAM zur Mitgliederversammlung ein. Sie wird am Dienstag, den 15. März, um 18.30 Uhr im Hörsaal 3 der Friedrich-Schiller-Universität in Jena stattfinden.

Vorläufige Tagesordnung:
3. Bericht der Kassenprüfer
4. Entlastung des Vorstandes
5. Verschiedenes

Im Anschluss: Verleihung einer Ehrenmitgliedschaft

Hubert Bahl
Schriftführer

Einladung zur Mitgliederversammlung der Sektion Mikrobiologie der Leopoldina

Michael Hecker
Senator

Einladung zu den Mitgliederversammlungen der VAAM-Fachgruppen

<table>
<thead>
<tr>
<th>Fachgruppe</th>
<th>Termin</th>
<th>Uhrzeit</th>
<th>Hörsaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionelle Genomanalyse</td>
<td>Montag, 14.03</td>
<td>12.45 Uhr</td>
<td>Hörsaal 8</td>
</tr>
<tr>
<td>Umweltmikrobiologie</td>
<td>Montag, 14.03</td>
<td>12.45 Uhr</td>
<td>Hörsaal 1</td>
</tr>
<tr>
<td>Regulation und Signaltransduktion</td>
<td>Montag, 14.03</td>
<td>19.30 Uhr</td>
<td>Hörsaal 2</td>
</tr>
<tr>
<td>Mikrobielle Pathogenität</td>
<td>Montag, 14.03</td>
<td>19.30 Uhr</td>
<td>Hörsaal 3</td>
</tr>
<tr>
<td>Wasser / Abwasser</td>
<td>Montag, 14.03</td>
<td>19.30 Uhr</td>
<td>Hörsaal 6</td>
</tr>
<tr>
<td>Hefen</td>
<td>Montag, 14.03</td>
<td>19.30 Uhr</td>
<td>Hörsaal 9</td>
</tr>
</tbody>
</table>
68.

Jahrestagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie (DGHM) e. V.

11.–14. September 2016 • Messe Ulm • Ulm

Wissenschaftliche Leitung
Prof. Dr. med. Steffen Stenger
Universitätsklinikum Ulm

www.dghm-kongress.de
Sponsors

We would particularly like to thank our Sponsors for their enormous commitment.

Main Sponsor

Eurogentec S.A. (Seraing/BE)

Sponsor Lunchbags Symposium JSMC

Wacker Biotech GmbH (Jena/DE)

Sponsor

Adipogen AG (Liestal/CH) MACHEREY-NAGEL GmbH & Co. KG (Düren/DE)

BIOLOG Life Science Institute – Forschungslabor und Proteome Factory Berlin/DE

Biochemica-Vertrieb GmbH (Bremen/DE) Sigma Aldrich (St. Gallen/CH)

CAISTER ACADEMIC PRESS (Poole/UK) WERNER BioAgents GmbH (Jena/DE)

Sponsors PhD Awards

BASF SE (Ludwigshafen)

Bayer Healthcare AG (Leverkusen/DE)

Evonik Degussa (Essen/DE)

New England Biolabs GmbH (Frankfurt a. M./DE)

Sanofi Aventis Deutschland GmbH (Frankfurt a. M./DE)

Sponsors Poster Awards

Springer-Verlag GmbH, BIOspektrum (Heidelberg)

Media Cooperations

Succidia AG (Darmstadt/DE) TRILLIUM GmbH (Grafrath/DE)
labor & more Trillium Diagnostik

S. Karger AG (Basel/CH) WILEY-VCH Verlag GmbH & Co KGaA (Weinheim/DE)
Journal of Molecular Microbiology GIT Laborfachzeitschrift
Alphabetische Reihenfolge/Alphabetical order

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Booth no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytik Jena AG</td>
<td>28</td>
</tr>
<tr>
<td>Applied Maths NV</td>
<td>29</td>
</tr>
<tr>
<td>BaseClear</td>
<td>6</td>
</tr>
<tr>
<td>biomers.net GmbH</td>
<td>30</td>
</tr>
<tr>
<td>Biozym Scientific GmbH</td>
<td>24</td>
</tr>
<tr>
<td>Bruker Daltonik GmbH</td>
<td>18</td>
</tr>
<tr>
<td>Cameca GmbH</td>
<td>5</td>
</tr>
<tr>
<td>dianova GmbH</td>
<td>3</td>
</tr>
<tr>
<td>Eppendorf AG</td>
<td>23</td>
</tr>
<tr>
<td>Eurofins Genomics</td>
<td>2</td>
</tr>
<tr>
<td>Eurogentec</td>
<td>15</td>
</tr>
<tr>
<td>GATC Biotech AG</td>
<td>12</td>
</tr>
<tr>
<td>Gilson International</td>
<td>39</td>
</tr>
<tr>
<td>I&L Biosystems GmbH</td>
<td>34</td>
</tr>
<tr>
<td>IBA GmbH</td>
<td>27</td>
</tr>
<tr>
<td>Implen GmbH</td>
<td>8</td>
</tr>
<tr>
<td>Infors GmbH</td>
<td>13</td>
</tr>
<tr>
<td>Jena Bioscience GmbH</td>
<td>38</td>
</tr>
<tr>
<td>JSMC</td>
<td>35</td>
</tr>
<tr>
<td>Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen</td>
<td>32</td>
</tr>
<tr>
<td>LGC Standards GmbH</td>
<td>20</td>
</tr>
<tr>
<td>LI-COR Biosciences GmbH</td>
<td>25</td>
</tr>
<tr>
<td>m2p-labs GmbH</td>
<td>33</td>
</tr>
<tr>
<td>MACHEREY-NAGEL GmbH & Co. KG</td>
<td>36</td>
</tr>
<tr>
<td>Meintrup DWS Laborgeräte GmbH</td>
<td>40</td>
</tr>
<tr>
<td>MobiTec GmbH</td>
<td>19</td>
</tr>
<tr>
<td>MP Biomedicals SAS</td>
<td>41</td>
</tr>
<tr>
<td>New England Biolabs GmbH</td>
<td>31</td>
</tr>
<tr>
<td>NIPPON GENETICS EUROPE GmbH</td>
<td>9</td>
</tr>
<tr>
<td>Pearson Deutschland GmbH</td>
<td>10</td>
</tr>
<tr>
<td>Perkin Elmer LAS (Germany) GmbH</td>
<td>4</td>
</tr>
<tr>
<td>PreSens Precision Sensing GmbH/Kuhner Shaker GmbH</td>
<td>1</td>
</tr>
<tr>
<td>Proteome Factory AG</td>
<td>37</td>
</tr>
<tr>
<td>SARSTEDT AG & Co.</td>
<td>11</td>
</tr>
<tr>
<td>SERVA Electrophoresis GmbH</td>
<td>26</td>
</tr>
<tr>
<td>Sigma-Aldrich</td>
<td>22</td>
</tr>
<tr>
<td>Springer Spektrum</td>
<td>Springer-Verlag GmbH</td>
</tr>
<tr>
<td>Takara Clontech</td>
<td>14</td>
</tr>
<tr>
<td>Unisense A/S</td>
<td>16</td>
</tr>
<tr>
<td>Wacker Biotech GmbH</td>
<td>21</td>
</tr>
<tr>
<td>Zymo Research</td>
<td>17</td>
</tr>
</tbody>
</table>

State at Printing
Poster Session

Tent
- Archaea and Extremophiles (AEP01 – AEP32)
- Biodiversity and Ecosystem Functions (BEFP01 – BEFP28)
- Biotechnology (BTP01 – BTP88)
- Microbial Communication (MCP01 – MCP86)
- Synthetic Microbiology (SnMP01 – SnMP16)

Hörsaal 4
- Natural Products (NPP01 – NPP37)

Legend:
- Industrial Exhibition
- Poster Exhibition
- Check-In & Quick Check-In
- Lecture Hall/Seminar Room
- Catering
Please remember to bring your copy of the BIOspektrum Sonderausgabe 2016; at the meeting it will cost 20 EUR.
Mikrobiologie - Aktuelle Neuerscheinungen & Highlights

<table>
<thead>
<tr>
<th>Autorininhaber</th>
<th>Titel</th>
<th>Ausgabe</th>
<th>Seiten</th>
<th>Abbildungen</th>
<th>Format</th>
<th>Preis (D)</th>
<th>Preis (A)</th>
<th>Preis (*sFr)</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walter Reineke, Michael Schömann</td>
<td>Umweltmikrobiologie</td>
<td>2., überarb. u. aktualisierte Aufl. 2015. XIV, 494 S. 293 Abb. Brosch.</td>
<td>€ (D) 39,99</td>
<td>€ (A) 41,11</td>
<td>*sFr 50,00</td>
<td>ISBN 978-3-642-41764-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eckhard Bast</td>
<td>Mikrobiologische Methoden</td>
<td>3., überarb. u. erg. Aufl. 2014. XVIII, 472 S. 31 Abb. Sonderbindung</td>
<td>€ (D) 39,99</td>
<td>€ (A) 41,07</td>
<td>*sFr 50,00</td>
<td>ISBN 978-3-8274-1813-5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Neue didaktische Aufbereitung des Lernstoffes: Grundlagenwissen der Mikrobiologie erklärt mit Beispielen aus der aktuellen Forschung
- Stilistisch einheitliche besonders anschauliche Farbbebilderung mit Erklärungen und korrekten Maßangaben
- Eines der wichtigsten Teilgebiete in der Umwelt- schutz-Ausbildung
- Im Gegensatz zu den Konkurrenzwerken eher grundlagenorientiert (Biochemie, Mikrobiologie, Ökologie) und deshalb als Lehrbuch gut geeignet
- Das Werk fußt auf der erfolgreichen Umwelt- Mikrobiologie von Wolfgang Fritsche (Gustav Fischer Verlag, 1998) und setzt dessen Tradition fort
- Die bedeutendsten Entdeckungen der Mikrobiolo- logie
- Fundgrube von Details und Zusammenhängen
- Verzicht auf unnötige Fachbegriffe
- 3. überarbeitete Auflage des bewährten Labor- handbuch zu den Routinenmethoden der Mikro- biologie
- Der Autor hat 30 Jahre Erfahrung mit dem mikro- biologischen Praktikum
- Neu hinzugekommen sind Regeln der Biostoffver- ordnung, Schnelltests zur Gramfärbung und die Epifluoreszenzmikroskopie mit zahlreichen Farbe- verfahren

Jetzt bestellen auf springer-spektrum.de oder in Ihrer lokalen Buchhandlung

(€ (D) sind gebundene Ladenpreise in Deutschland und enthalten 7 % MwSt. € (A) sind gebundene Ladenpreise in Österreich und enthalten 10 % MwSt. Die mit * gekennzeichneten Preise sind unverbindliche Preisempfehlungen und enthalten die landesübliche MwSt. Preisänderungen und Irrtümer vorbehalten.)
Social Programme

Sunday, 13 March 2016 · Welcome Reception
The organisers welcome all participants of the conference at the industrial exhibition area. Meet your colleagues and other participants by fresh drinks and snacks.

Time 19:30 h
Place Industrial Exhibition

Monday, 14 March 2016 · Young scientists get-together
The Jena School for Microbial Communication (JSMC) invites all postdocs, PhD, master and bachelor students to a get-together on Monday, 14 March 2016. The get-together focuses on networking and encourages scientific discussions with other students from different countries in a harmonious and relaxed atmosphere. Sharing experiences and ideas can be synergistic with having fun! Free admission for everybody – please bring your name tag with you.

Time 20:00 h – open end
Place Rosenkeller
 Johannisstrasse 13 (meet at Venue entrance and walk 5 min to Rosenkeller)

Tuesday, 15 March 2016 · Mixer
We like to invite you to the MIXER for speakers, participants and exhibitors. The marvellous music group “AnnRed” will play for your entertainment. An extensive buffet will conduce to your well-being. Please note that the maximum number of participants to the Mixer is limited to 1,000 simultaneously due to the safety regulations of the Volkshaus. Please make sure to wear your name badge as this serves as entrance ticket to the Mixer.

Time 20:00 h
Place Volkshaus Jena, Carl-Zeiss-Platz 15

Become a VAAM-member and get a lot of benefits!

- Networks and contacts in industry and academia
- The membership journal **BIOspektrum** (7 issues a year)
- Career planning and job exchange
- Travel grants for students to the annual meeting and reduced registration fees for all VAAM-conferences and special group-meetings
- Access to FEMS-research grants and FEMS-meeting attendance grants
- Travel grants for international meetings after 2 years of membership

www.vaam.de
Fachgruppe Archaea

Die Fachgruppe Archaea wurde 2005 gegründet und hat derzeit etwa 100 Mitglieder. Sie soll den an Archaea Interessierten ein Diskussionsforum bieten und den wissenschaftlichen Austausch erleichtern.

Fachgruppe Biologie bakterieller Naturstoffproduzenten

Die Fachgruppe Biologie bakterieller Naturstoffproduzenten beschäftigt sich mit vielfältigen Aspekten der Naturstoffbiosynthese. Dazu gehören genetische Grundlagen der Sekundärmetabolitproduktion ebenso wie deren Regulation und Biochemie. Die Fachgruppe wurde ursprünglich auf Streptomyceten fokussiert, die eine bedeutende Rolle bei der Methanbildung aus hyperthermophilen Archaea finden Anwendung vor allem in der Molekularbiologie.

Fachgruppe Biologie und Biotechnologie der Pilze

Themen der Biologie und Biotechnologie der Pilze werden seit Jahrzehnten aktiv in Deutschland beforscht. Die weitreichende Bedeutung von Pilzen für Mensch und Umwelt ist unstrittig, sei es, weil sie gefürchtete Krankheitserreger sind, als effiziente biotechnologische Produktionsplattformen genutzt werden, als Saprophyten oder Symbionten in Mykorrhiza und Flechten zum Stoffkreislauf innerhalb von Ökosystemen beitragen oder als leicht handhabbare und genetisch zugängliche Modelssysteme für Eukaryonten genutzt werden.

Die Entwicklung und Anwendung neuer systembiologischer Technologien erlaubt einen tieferen und ganzheitlichen Einblick in die Molekulargenetik und die Stoffwechselleistungen pilzlicher Systeme. Dies wird in erheblichem Maße zu einem verbesserten Verständnis ihrer Biologie sowie ihrer Anwendungen führen.

Fachgruppe Cyanobakterien

Fachgruppe Qualitätssicherung und Diagnostik

Auch in 2016 werden wieder zwei Fachgruppentreffen stattfinden, in denen über unterschiedlichen Themen berichtet wird: während der Jahrestagung in Jena (siehe Programm Seite 45) sowie am 18.11.16 in Braunschweig auf Einladung der DSMZ und mit Beteiligung des HZI. Für dieses Treffen können gerne Vorschläge für Präsentationen eingereicht werden.
Fachgruppe Identifizierung und Systematik

Bei der diesjährigen Tagung wird kein Minisymposium stattfinden; dies ist erst wieder für die gemeinsame Tagung mit der DGHM in 2017 geplant. Dort sollen, während einer Mitgliederversammlung Sprecher und stellvertretender Sprecher der Fachgruppe gewählt werden, alternativ über Email.

Bei der diesjährigen Tagung wird kein Minisymposium stattfinden; dies ist erst wieder für die gemeinsame Tagung mit der DGHM in 2017 geplant. Dort sollen, während einer Mitgliederversammlung Sprecher und stellvertretender Sprecher der Fachgruppe gewählt werden, alternativ über Email.

VAAM-DGHM-Fachgruppe Lebensmittelmikrobiologie und -hygiene

Vom 15. bis 17. April 2015 fand das 15. Fachsymposium Lebensmittelmikrobiologie in Freising statt, das traditionell von den beiden Fachgruppen Lebensmittelmikrobiologie der VAAM und Lebensmittelmikrobiologie und -hygiene der DGHM (Deutsche Gesellschaft für Hygiene und Mikrobiologie) veranstaltet wird. Diesmal organisierte turnusmäßig die FG der VAAM die Veranstaltung mit 126 Teilnehmern aus Wissenschaft, Lebensmittelüberwachung und -industrie.

Auf der Mitgliederversammlung, die im Rahmen des Symposiums stattfand, wurde einstimmig die Fusion der beiden Fachgruppen der DGHM und VAAM zu einer neuen gemeinsamen Fachgruppe Lebensmittelmikrobiologie und -hygiene beschlossen. Die beiden Fachgruppen kooperieren seit vielen Jahren erfolgreich und bringen dies nun durch einen gemeinsamen Fachgruppenvorstand zum Ausdruck. Zur Sprecherin wurde Mareike Wenning vom Lehrstuhl für mikrobielle Ökologie der TU München gewählt; ihre Stellvertreterin ist Agnes Weiß vom Institut für Lebensmittelwissenschaft und Biotechnologie, Fachgebiet Lebensmittelmikrobiologie und -hygiene der Universität Hohenheim in Stuttgart. Horst Neve vom Institut für Mikrobiologie und Biotechnologie am Max Rubner-Institut in Kiel wird die Aufgaben des Schriftführers im neuen Vorstand wahrnehmen.

VAAM-DGHM-Fachgruppe Mikrobielle Pathogenität

Sprecher: Sven Hammerschmidt, Universität Greifswald
sven.hammerschmidt@uni-greifswald.de
Stellvertretender Sprecher: Holger Rohde, UKE Hamburg
rohde@uke.de
Schriftführerin: Alexandra Schubert-Unkmeir, Universität Würzburg
aunkmeir@hygiene.uniwuerzburg.de

Fachgruppe Mikrobielle Zellbiologie

Im vergangenen Jahr hat sich die Fachgruppe weiter erfreulich entwickelt und seit ihrer Neuausrichtung 2012 interessierte Mikrobiologen hinzugewinnen können. Wir sind nun eine Gruppe mit rund 200 Mitgliedern. Das Interesse an der Fachgruppe spiegelt den zunehmenden Stellenwert des Wissenschaftsgebiets wider.

Für die Jahrestagung in Jena wünschen wir Ihnen allen wissensweiternde Beiträge, erkenntnisreiche Gespräche und nette Begeg- nungen!

Sprecher: Harald Engelhardt, MPI für Biochemie München
engelhar@biochem.mpg.de
Stellvertretender Sprecher: Andreas Klingl, Universität Marburg
andreas.klingl@biologie.uni-marburg.de
Fachgruppe Hefen

Auf Antrag der Mitglieder der Fachgruppe Hefen wurde die Fachgruppe in der VAAM-Vorstandsitzung um weitere vier Jahre verlängert.

Bei der VAAM-Tagung in Jena beteiligt sich die Fachgruppe mit einem Fachgruppensymposium mit sechs Beiträgen (Seite 45).

Fachgruppe Regulation und Signaltransduktion in Prokaryoten

Sprecherin: Julia Frunzke, Forschungszentrum Jülich j.frunzke@fz-juelich.de

Stellvertretender Sprecher: Thorsten Mascher, TU Dresden thorsten.mascher@tu-dresden.de

Fachgruppe Umweltmikrobiologie

Sprecher: Rainer Meckenstock, Universität Duisburg-Essen rainer.meckenstock@uni-due.de

Stellvertretender Sprecher: Karl-Heinrich Engesser, Universität Stuttgart karl-h.engesser@iswa.uni-stuttgart.de
Fachgruppe Symbiotische Interaktionen

Ziel der VAAM-Fachgruppe Symbiotische Interaktionen ist es, den regelmäßigen Kontakt und Austausch zwischen den Arbeitsgruppen in deutschsprachigen Raum zu fördern, die Arbeiten der Fachgruppe international sichtbar zu machen sowie gemeinsame Fortbildungsveranstaltungen für den wissenschaftlichen Nachwuchs durchzuführen. Die Forschungsaktivitäten sind, ebenso wie die Fachgruppe selbst, stark interdisziplinär ausgerichtet. Im Vordergrund stehen die vielfältigen Interaktionen von Mikroorganismen mit tierischen, menschlichen oder pflanzlichen Wirt(en).

Im vergangenen Jahr veranstaltete unsere Fachgruppe unter der Leitung von Andreas Brune (MPI Marburg) ein Minisymposium zum Thema “Insect Microbe Symbioses”. Zwei internationale Gastredner, Angela E. Douglas (Cornell University, USA) und Yuichi Hongoh (Tokyo Institute of Technology, Japan), referierten über Funktion und metabolische Ko-Evolution zwischen Insekten und Mikroorganismen. Die renomierte Evolutionbiologin Nancy A. Moran (University of Texas, USA) schilderte die Rolle von Darmbakterien in der Symbiose mit Honigbienen. Weitere Kurzvorträge aus deutschen und niederländischen Arbeitsgruppen über die vielfältigen Interaktionen von Mikroorganismen und Insekten machten das Minisymposium zu einem vollen Erfolg. Im Rahmen der Jahrestagung 2015 wurden auf der Mitgliederversammlung Ute Hentschel Humeida (Universität Kiel/GEOMAR) und Martin Kaltenpoth (Universität Mainz) einstimmig als Sprecherin und Vertreter der Fachgruppe gewählt. Martin Kaltenpoth löst somit Andreas Schwieritz (Institut für Mikroökologie, Herborn) ab. Martin Kaltenpoth hat im Jahr 2015 eine W3-Professur am Lehrstuhl für Ökologie an der Universität Mainz angetreten und erforscht die Symbiose von Insekten und Bakterien. Die Fachgruppe dankt Andreas Schwieritz herzlich für sein Engagement in der Gründung der Fachgruppe und für seine vielen konstruktiven Beiträge.

VAAM-DECHEMA-Fachgruppe Biotransformationen

Für das Jahr 2015 sind rückblickend die Veranstaltungen „Paving the way from Protein expression to Protein production“ im Rahmen der VAAM-Jahrestagung in Marburg, „New Reactions with Enzymes and Microorganisms“ in Stuttgart sowie die Unterstützung der „BioFlavor 2015“ in Frankfurt zu nennen.

Aufruf zur Neugründung

VAAM-Fachgruppe Weltraummikrobiologie und Astrobiologie

Für die Gründung einer VAAM-Fachgruppe Weltraummikrobiologie und Astrobiologie werden 25 interessierte ordentliche VAAM-Mitglieder mit Interesse und Faszination an Raumfahrt, Weltraumexperimenten und extremen Mikroorganismen gesucht. Bei Interesse kontaktieren Sie bitte:

Ralf Möller
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)
Institut für Luft- und Raumfahrtmedizin AG Weltraummikrobiologie
rafl.moeller@dlr.de
+49 2203 601 3145
Programme Overview · Sunday · March 13, 2016

Welcome Addresses
Opening Lecture
VAAM Honorary Award
Microbe of the year and School Award

Industrial exhibition and Coffee break

Welcome Reception

15:00–15:30
15:30–16:15
16:15–17:00
17:00–17:15
17:45–19:15
ab 19:15
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00-10:00</td>
<td>Conference Programme Overview · Monday · March 14, 2016</td>
<td>Borssal 1/EG, Borssal 2/EG,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borssal 3/EG, Borssal 5/EG,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borssal 6/1.OG, Borssal 7/1.OG,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borssal 8/1.OG, Borssal 9/1.OG,</td>
</tr>
<tr>
<td></td>
<td>Borssal 1/EG</td>
<td>Microbial Communication I –</td>
</tr>
<tr>
<td></td>
<td>Borssal 2/EG</td>
<td>Community Structure &</td>
</tr>
<tr>
<td></td>
<td>Borssal 3/EG</td>
<td>Communication</td>
</tr>
<tr>
<td></td>
<td>Borssal 5/EG</td>
<td>Environmental Microbiology I</td>
</tr>
<tr>
<td></td>
<td>Borssal 6/1.OG</td>
<td>Infection Biology I</td>
</tr>
<tr>
<td></td>
<td>Borssal 7/1.OG</td>
<td>Signal Transduction</td>
</tr>
<tr>
<td></td>
<td>Borssal 8/1.OG</td>
<td>Biodiversity and</td>
</tr>
<tr>
<td></td>
<td>Borssal 9/1.OG</td>
<td>Ecosystem Functions</td>
</tr>
<tr>
<td></td>
<td>Industrial exhibition and Coffee break</td>
<td></td>
</tr>
<tr>
<td>10:30-11:30</td>
<td>VAAM PhD Awards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p. 41</td>
<td></td>
</tr>
<tr>
<td>11:30-12:15</td>
<td>Hans-Günter-Schlegel Lecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p. 42</td>
<td></td>
</tr>
<tr>
<td>12:15-13:45</td>
<td>Industrial exhibition and Lunch break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:45–13:45 JSMC Panel discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial exhibition and Lunch break</td>
<td></td>
</tr>
<tr>
<td>12:45-13:45</td>
<td>MV Fachgruppe funktionelle Genomanalyse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MV Sektion Mikrobiologie der Leopoldina</td>
<td></td>
</tr>
<tr>
<td>12:45-13:45</td>
<td>MV Umweltmikrobiologie* MV Wasser/Abwasser*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MV Mikrobielle Pathogenität MV Wasser/Abwasser*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MV Regulation und Signaltransduktion*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MV Hefen*</td>
<td></td>
</tr>
<tr>
<td>14:00-15:00</td>
<td>Plenary Session II Systems Biology & Biotechnology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p. 42</td>
<td></td>
</tr>
<tr>
<td>15:00-17:30</td>
<td>Poster Session (posters with even numbers), Industrial exhibition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Coffee break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:45–17:15 Karrieresymposium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p. 11</td>
<td></td>
</tr>
<tr>
<td>15:45-17:15</td>
<td>MV Regulation and Signal Transduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MV Microbial Pathogenicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MV Fungal Biology and Biotechnology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MV Water and Sewage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MV Quality Assurance & Diagnostics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symbiotic Interactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yeast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p. 42</td>
<td></td>
</tr>
<tr>
<td>17:30-19:00</td>
<td>MV Wasser / Abwasser*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MV Hefen*</td>
<td></td>
</tr>
<tr>
<td>19:00-20:00</td>
<td>Short Lectures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Group Mini-Symposium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitgliederversammlung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* in German</td>
<td></td>
</tr>
</tbody>
</table>
Programme Overview · Wednesday · March 16, 2016

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00–11:00</td>
<td>Wednesday Exhibition and Coffee Break</td>
</tr>
<tr>
<td>11:30–11:45</td>
<td>Plenary Session V: Biodiversity & Ecosystem functions</td>
</tr>
<tr>
<td>11:45–13:15</td>
<td>Plenary Session V: Biodiversity & Ecosystem functions</td>
</tr>
<tr>
<td>13:15–13:30</td>
<td>Short Lectures</td>
</tr>
</tbody>
</table>

Microbial Communication III

- Plant Pathology & Symbiosis
- Biodegradation
- Natural Products & Microbial Evolution
- Archaea and Extremophiles
- Fungal Biology II
- Infection Biology II
- Open Topics

Biotechnology & Environmental Microbiology

- Natural Products & Microbial Evolution
- Biodegradation
- Archaea and Extremophiles
- Fungal Biology II
- Infection Biology II
- Open Topics

Fungal Biology II

- Infection Biology II
- Open Topics

Natural Products & Microbial Evolution

- Biodegradation
- Archaea and Extremophiles
- Fungal Biology II
- Infection Biology II
- Open Topics

VAAM Poster Awards

- Posters

Closing Remarks

- Remarks
Annual Conference 2016 of the VAAM

Sunday, 13 March 2016

Room Hörsaal 1, live broadcast in Hörsaal 3
15:00–15:30 Welcome Addresses
Axel A. Brakhage (Conference Chair)
Wolfgang Tiefensee (Thuringian Minister of Economy, Science and the Digital Society)
Walter Rosenthal (President of the Friedrich Schiller University Jena)
15:30–16:15 Opening Lecture
ISV01 Science and society – infectious diseases as an example
Jörg Hacker (Berlin/DE)
16:15–17:00 VAAM Honorary Award
ISV02 Harnessing nature’s sensory devices for metabolic engineering and single-cell analysis
Julia Frunzke (Jülich/DE)
17:00–17:15 Microbe of the year and School Award
17:15–17:45 Coffee break/Industrial exhibition
17:45–19:15 Plenary Session I – Microbial Communication and Multicellular & Behavior Fungal Biology
ISV03 Exploring the pole – cellular asymmetry and adhesin localization drive biofilm formation in Agrobacterium tumefaciens
Clay Fuqua (Bloomington, IN/US)
18:30 Dissecting the biology and pathology of the Irish potato famine pathogen Phytophthora infestans
Francine Govers (Wageningen/NL)
19:15–21:00 Welcome Reception
Room Industrial Exhibition

Monday, 14 March 2016

08:00–10:00 Short lectures and Mini-Symposia Special Group (see page 38–41)
10:00–10:30 Coffee break/Industrial exhibition
10:30–11:30 VAAM PhD Awards
Room Hörsaal 1, live broadcast in Hörsaal 3
11:30–12:15 Hans-Günter-Schlegel-Lecture
Room Hörsaal 1, live broadcast in Hörsaal 3
ISV03 Physiological proteomics of Gram-positive model bacteria
Michael Hecker (Greifswald/DE)
12:15–14:00 Lunch break/Industrial exhibition
12:45–13:45 JSMC Panel discussion (see page 11)
Room Hörsaal 3
14:00–15:30 Plenary Session II – Systems Biology & Biotechnology
Room Hörsaal 1, live broadcast in Hörsaal 3
14:00 Systems biology of yeast metabolism
ISV06 Jens Nielsen (Göteborg, Lyngby, Stockholm/SE)
14:45 Engineering microbial metabolism for the production of fuels and chemicals
ISV07 Greg Stephanopoulos (Cambridge, MA/US)
15:30–17:30 Poster Session (see page 13), Coffee break/Industrial exhibition
15:45–17:15 Karrieresymposium (see page 15)
Room Hörsaal 3
17:30–19:30 Mini-Symposia Special Groups (see page 42–45)
20:00 JSMC Young scientists get-together (see page 11)
Tuesday, 15 March 2016

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Room</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30-10:30</td>
<td>Short lectures (see page 46–49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>Coffee break/Industrial exhibition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>How the Nagoya-Protocol challenges microbiological research in Germany</td>
<td>Hörsaal 1, live broadcast in Hörsaal 3</td>
<td>Jörg Overmann (Braunschweig/DE)</td>
</tr>
<tr>
<td>11:30-13:00</td>
<td>Plenary Session III – Infection & Natural Products</td>
<td>Hörsaal 1, live broadcast in Hörsaal 3</td>
<td>Carmen Buchrieser (Paris/FR)</td>
</tr>
<tr>
<td>11:30–11:30</td>
<td>Legionella pneumophila, a unique model to study host pathogen interactions and the evolution of virulence*</td>
<td></td>
<td>Helge B. Bode (Frankfurt a. M./DE)</td>
</tr>
<tr>
<td>12:00-13:00</td>
<td>Plenary Session IV – Bio-Geo-Interactions & Biodegradation</td>
<td>Hörsaal 1, live broadcast in Hörsaal 3</td>
<td></td>
</tr>
<tr>
<td>12:00-12:45</td>
<td>Geomycology – metals, minerals and mycota</td>
<td></td>
<td>Geoffrey M. Gadd (Dundee/UK)</td>
</tr>
<tr>
<td>12:45-13:30</td>
<td>They can’t do it on their own – community control over organohalide-respiring Chloroflexi</td>
<td></td>
<td>Frank Loeffler (Knoxville, TN/US)</td>
</tr>
<tr>
<td>13:30–17:30</td>
<td>Poster Session *(see page 13), Coffee break/Industrial exhibition</td>
<td>Foyer</td>
<td></td>
</tr>
<tr>
<td>14:00-15:30</td>
<td>InfectControl 2020 Panel discussion (see page 11)</td>
<td>Hörsaal 3</td>
<td></td>
</tr>
<tr>
<td>17:00-18:30</td>
<td>Microbe Slam (see page 15)</td>
<td>Hörsaal 1</td>
<td></td>
</tr>
<tr>
<td>18:30-20:00</td>
<td>VAAM Annual General Meeting</td>
<td>Hörsaal 3</td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td>Mixer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wednesday, 16 March 2016

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Room</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00-11:00</td>
<td>Short Lectures (see page 51–54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>Coffee break/Industrial exhibition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-11:45</td>
<td>VAAM Poster Awards</td>
<td>Hörsaal 1</td>
<td></td>
</tr>
<tr>
<td>11:45-13:15</td>
<td>Plenary Session V – Biodiversity & Ecosystem functions</td>
<td>Hörsaal 1</td>
<td></td>
</tr>
<tr>
<td>11:45-12:30</td>
<td>Methane oxidation in Lake Constance</td>
<td></td>
<td>Bernhard Schink (Konstanz/DE)</td>
</tr>
<tr>
<td>12:30-13:15</td>
<td>Environmental change, niche specialisation and microbial communities – What can we learn from ammonia oxidisers?</td>
<td></td>
<td>James Prosser (Aberdeen/UK)</td>
</tr>
<tr>
<td>13:15-13:30</td>
<td>Closing Remarks</td>
<td>Hörsaal 1</td>
<td></td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:00–15:00</td>
<td>Registration & Industrial Exhibition</td>
<td>Industrial Exhibition</td>
</tr>
<tr>
<td>15:00–15:30</td>
<td>Welcome Addresses</td>
<td>Hörsaal 1, live broadcast in Hörsaal 3</td>
</tr>
<tr>
<td></td>
<td>Axel A. Brakhage (Conference Chair)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wolfgang Tiefensee (Thuringian Minister of Economy, Science and the Digital Society)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walter Rosenthal (President of the Friedrich Schiller University Jena)</td>
<td></td>
</tr>
<tr>
<td>15:30–16:15</td>
<td>Opening Lecture</td>
<td>Hörsaal 1, live broadcast in Hörsaal 3</td>
</tr>
<tr>
<td></td>
<td>Chair: Axel Brakhage (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISV01: Science and society – infectious diseases as an example</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jörg Hacker (Berlin/DE)</td>
<td></td>
</tr>
<tr>
<td>16:15–17:00</td>
<td>VAAM Honorary Award</td>
<td>Hörsaal 1, live broadcast in Hörsaal 3</td>
</tr>
<tr>
<td></td>
<td>Chair: Oskar Zelder (Ludwigshafen/DE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISV02: Harnessing nature’s sensory devices for metabolic engineering and single-cell analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Julia Frunzke (Jülich/DE)</td>
<td></td>
</tr>
<tr>
<td>17:00–17:15</td>
<td>Microbe of the year and School Award</td>
<td>Hörsaal 1, live broadcast in Hörsaal 3</td>
</tr>
<tr>
<td>17:45–19:15</td>
<td>Plenary Session I – Microbial Communication and Multicellular Behavior & Fungal Biology</td>
<td>Hörsaal 1, live broadcast in Hörsaal 3</td>
</tr>
<tr>
<td></td>
<td>Chairs: Wilhelm Boland, Erika Kothe (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17:45–18:30: Exploring the pole – cellular asymmetry and adhesin localization drive biofilm formation in Agrobacterium tumefaciens</td>
<td>Clay Fuqua (Bloomington, IN/US)</td>
</tr>
<tr>
<td></td>
<td>18:30–19:15: Dissecting the biology and pathology of the Irish potato famine pathogen Phytophthora infestans</td>
<td>Francine Govers (Wageningen/NL)</td>
</tr>
<tr>
<td>19:15–21:00</td>
<td>Welcome Reception</td>
<td>Industrial Exhibition</td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

08:00–10:00 Short Lectures – Microbial Communication: Community Structure & Microbial Communication

Room: Hörsaal 1
Chairs: Ulrich Kück (Bochum/DE), Miguel Tovar (Jena/DE)

08:00–08:15 The social amoeba and its opponents – a source of novel small molecules
MCV09: Pierre Stallforth (Jena/DE)

08:15–08:30 Microbial invasion into drinking water-related bacterial communities
MCV10: Nicole Hahn (Ghent/BE)

08:30–08:45 *Staphylococcus schleiferi* volatiles inhibit quorum sensing controlled phenotypes in Gram-negative bacteria
MCV11: Marie Chantal Lemfack (Rostock/DE)

08:45–09:00 Ultrafast alignment and analysis of metagenomic DNA sequence data from the Tyrolean Iceman using MALT
MCV12: Alexander Herbig (Jena/DE)

09:00–09:15 Auxotrophy and intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model community
MCV13: Sarahi L. Garcia (Uppsala/SE)

09:15–09:30 Genome-wide mapping of *Aspergillus nidulans* and *Streptomyces* interaction
MCV14: Juliane Fischer (Jena/DE)

09:30–09:45 Molecular basis of the symbiotic interaction between prokaryotes in phototrophic consortia
MCV15: Petra Henke (Braunschweig/DE)

09:45–10:00 Global and local patterns of bacterial communities associated with peatland bryophytes
MCV16: Andrea Kiss (Potsdam/DE)

08:00–10:00 Short Lectures – Biotechnology I

Room: Hörsaal 2
Chairs: Uwe Horn (Jena/DE), Vera Meyer (Berlin/DE)

08:00–08:15 Model-based metabolic engineering of *Escherichia coli* for high yield itaconic acid production
BTV01: Björn-Johannes Harder (Magdeburg/DE)

08:15–08:30 Construction of plasmid-free bacterial strains for the synthesis of human milk oligosaccharides
BTV02: Florian Baumgartner (Stuttgart/DE)

08:30–08:45 The 2-C-methyl-D-erythritol 4-phosphate pathway as a platform for isoprenoid formation – metabolic regulation and engineering of isoprenoid production in microbes
BTV03: Daniel Volke (Aachen/DE)

08:45–09:00 Enzymatic hydrolysis of macroalgae for the production of biobased chemicals
BTV04: Christin Burkhardt (Hamburg/DE)

09:00–09:15 Acetoin production via unbalanced fermentation in *S. oneidensis*
BTV05: Thea Busarc (Karlsruhe/DE)

09:15–09:30 Microbial synthesis of butadienes – a look into patent literature
BTV06: Jens Harder (Bremen/DE)

09:30–09:45 Engineering industrial acetogenic biocatalysts – a comparative metabolic and genomic analysis
BTV07: Frank R. Bengelsdorf (Ulm/DE)

09:45–10:00 α-Ketoglutarate production from pentose *in vitro* – one of the bedstones for hydroxyl amino acids production *in vivo*
BTV08: Lu Shen (Essen/DE)
Annual Conference 2016 of the VAAM

Short Lectures – Environmental Microbiology I

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00–08:15</td>
<td>The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7</td>
<td>Stephan Klähn (Freiburg/DE)</td>
<td>Hörsaal 3</td>
</tr>
<tr>
<td>08:15–08:30</td>
<td>Unprecedented hydrogen production of free-living Epsilonproteobacteria (Sulphurospirillum spp.)</td>
<td>Stefan Kruse (Jena/DE)</td>
<td>Hörsaal 3</td>
</tr>
<tr>
<td>08:30–08:45</td>
<td>Where to dig for exoelectrogens or is there any ecological niche of electroactive microorganisms?</td>
<td>Christin Koch (Leipzig/DE)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>08:45–09:00</td>
<td>Environmental distribution and enrichment of anaerobic methanotrophs from Italian paddy fields</td>
<td>Claudia Lüke (Nijmegen/NL)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>09:00–09:15</td>
<td>Methylomagnus ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere</td>
<td>Ashraf Khalifa (Hofuof/SA)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Nutrient and increasing temperature effects on the microbial community structure and function in streambed sediments</td>
<td>Elisabeth Pohlon (Gießen/DE)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>The dark side of the Mushroom Spring microbial mat – life in the shadow of chlorophototrophs</td>
<td>Vera Thiel (Tokyo/JP, University Park, PA/US)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>Bacteria dominate the short-term assimilation of plant-derived N in soil</td>
<td>Robert Starke (Leipzig, Hohenheim/DE)</td>
<td>Hörsaal 5</td>
</tr>
</tbody>
</table>

Short Lectures – Infection Biology I

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00–08:15</td>
<td>CRASP1 recruits soluble human complement regulators and mediates complement evasion of Candida albicans</td>
<td>Justus Linden (Jena/DE)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>08:15–08:30</td>
<td>Candida albicans modulates the immune response of human blood monocytes</td>
<td>Emiliano Jo (Jena/DE)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>08:30–08:45</td>
<td>The killing of macrophages by Corynebacterium ulcerans</td>
<td>Elena Hacker (Erlangen/DE)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>08:45–09:00</td>
<td>Identification of Biomarkers for Invasive Aspergillosis in the Urine</td>
<td>Silke Silva (Jena/DE)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>09:00–09:15</td>
<td>The extracellular adherence protein (Eap) of Staphylococcus aureus affects proliferation and migration of eukaryotic cells by altering the adhesive and morphological properties of the host cell</td>
<td>Janina Eisenbeis, Markus Bischoff (Homburg/DE)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Quantitative proteomics reveals the dynamics of protein phosphorylation in human bronchial epithelial cells during internalization, phagosomal escape and intracellular replication of Staphylococcus aureus</td>
<td>Erik Richter (Greifswald/DE)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>The cystic fibrosis lower airways microbial metagenome</td>
<td>Patricia Moran Losada (Hannover/DE)</td>
<td>Hörsaal 5</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>Clinical Streplococcus pneumoniae isolates from patients with pneumococcal hemolytic uremic syndrome efficiently control host innate immune attack</td>
<td>Christian Meinel (Jena/DE)</td>
<td>Hörsaal 5</td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

08:00–10:00 Short Lectures – Signal Transduction

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00–08:15</td>
<td>Cross-talk between the Kdp and Pho two-component systems interconnects K⁺ and PO₄³⁻ homeostasis in Escherichia coli</td>
<td>Hannah Schramke (Martinsried, München/DE)</td>
</tr>
<tr>
<td>08:15–08:30</td>
<td>Coping with stress – convergence of cell cycle and stress signaling pathways by a bifunctional histidine kinase</td>
<td>Kristina Heinrich (Marburg/DE)</td>
</tr>
<tr>
<td>08:30–08:45</td>
<td>Genetic analysis of competence development in Micrococcus luteus</td>
<td>Angel Angelov (Freising/DE)</td>
</tr>
<tr>
<td>08:45–09:00</td>
<td>Regulation of phenotypically heterogeneous anthraquinone production in Photorhabdus luminescens via the novel transcriptional activator AntJ</td>
<td>Angela Glaeser (Martinsried, München/DE)</td>
</tr>
<tr>
<td>09:00–09:15</td>
<td>The Aspergillus fumigatus DHN-melanin production is regulated by MEF2-like (RlmA) and bHLH (DevR) transcription factors</td>
<td>Vito Valiante (Jena/DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Regulation by the nitrogen PTSII in Pseudomonas putida – metabolism rules</td>
<td>Katharina Pflüger-Grau (Garching/DE)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Phosphorylation and thiol-redox modifications as molecular switches in host-microbe interactions</td>
<td>Falko Hochgräfe (Grefswald/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>Regulation of the C₄-Dicarboxylate sensor kinase DcuS by the transporters DcuB and DctA</td>
<td>Sebastian Wörner (Mainz/DE)</td>
</tr>
</tbody>
</table>

08:00–10:00 Short Lectures – Biodiversity and Ecosystem Functions

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00–08:15</td>
<td>Effects of micro-predators of different specialization on the adaptation of three different prey species</td>
<td>Julia Johnke (Leipzig/DE)</td>
</tr>
<tr>
<td>08:15–08:30</td>
<td>The intestinal microbiome of root fly larvae – a source of isothiocyanate degrading enzymes</td>
<td>Tijs van den Bosch (Nijmegen/NL)</td>
</tr>
<tr>
<td>08:30–08:45</td>
<td>Elucidation of the structural and functional diversity of the rumen microbiota</td>
<td>Simon Deusch (Stuttgart/DE)</td>
</tr>
<tr>
<td>08:45–09:00</td>
<td>Contribution of uncultured Planctomycetaceae to the degradation of 4-chloro-2-methylphenoxyacetic acid in the drilosphere</td>
<td>Marcus A. Horn (Bayreuth/DE)</td>
</tr>
<tr>
<td>09:00–09:15</td>
<td>Genomic signatures of plant growth promoting Bacillus</td>
<td>Oleg Reva (Pretoria/ZA)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Distribution pattern of arbuscular mycorrhizal fungi in a tropical dry forest</td>
<td>Natalia M.F. Sousa (Dahlem/DE, Recife/BR)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Diversity and species recognition of the Mucor circinelloides complex</td>
<td>Lysett Wagner (Jena/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>The troublesome life of microbes in leached slag</td>
<td>Carl-Eric Wegner (Marburg/DE)</td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

08:00–10:00 **Short Lectures – Chemotaxis and Motility**
Room Hörsaal 8
Chairs Sonja-Verena Albers (Freiburg/DE), Markus Nett (Jena/DE)
08:00–08:15 **Laws of attraction and repulsion – a novel family of bacterial chemosensors**
CMV01 Anna Roujeinikova (Clayton/AU)
08:15–08:30 **How a bacterial cell detects the direction of light?**
CMV02 Annegret Wilde (Freiburg/DE)
08:30–08:45 **Better together – a simultaneous tactic and kinetic response of the diatom *Seminavis robusta* in response to nutrient and pheromone gradients**
CMV03 Karen Grace Bondoc (Jena/DE)
08:45–09:00 **How to analyse motility, chemoreceptors and chemotaxis in hyperthermophilic Archaea**
CMV04 Annett Bellack (Regensburg/DE)
09:00–09:15 **In situ structure of the archaellar assembly and motor complex**
CMV05 Bertram Daum (Frankfurt a. M./DE)
09:15–09:30 **The nucleotide-dependent interaction of FlaH and Flai is essential for assembly and function of the archaellum motor**
CMV06 Paushali Chaudhury (Freiburg/DE)
09:30–09:45 **The bacterial flagellum of *Salmonella* – length control and type-III protein export mechanisms of a macromolecular machine**
CMV07 Marc Erhardt (Braunschweig/DE)
09:45–10:00 **Identification and characterization of minor pilins and *PiiY1* proteins involved in type IV pili-dependent motility in *Myxococcus xanthus***
CMV08 Anke Treuner-Lange (Marburg/DE)

08:00–10:00 **Mini-Symposium Special Group – FG Cyanobacteria**
Natural Products from Cyanobacteria – from secondary metabolites to biopolymers
Room Hörsaal 9
Chairs Karl Forchhammer, Julia Kleinteich (Tübingen/DE)
08:00–08:40 **Orthogonal natural product studies of the jamaican marine cyanobacterium *Moorea producens* JBH**
CBV-FG01 William H. Gerwick (La Jolla/US)
08:40–08:55 **The role of carbon-polymer biosyntheses of both glycogen and poly-β-hydroxybutyrate in non-diazotrophic cyanobacteria**
CBV-FG02 Yvonne Zilliges (Berlin/DE)
08:55–09:10 **Current and potential exploitation of cyanobacterial natural products in health care and biotechnology industry**
CBV-FG03 Wolfram Lorenzen (Berlin/DE)
09:10–09:25 **Metabolic pathway engineering using the central signal processor P₂**
CBV-FG04 Björn Watzer (Tübingen/DE)
09:25–09:40 **GC-MS based profiling of primary metabolism in Cyanobacteria**
CBV-FG05 Joachim Kopka (Potsdam-Golm/DE)
09:40–09:55 **Physiological aspects of microcystin production in *Microcystis aeruginosa* PCC 7806**
CBV-FG06 Sven Meissner (Potsdam-Golm/DE)

10:30–11:30 **VAAM PhD Awards**
Room Hörsaal 1, live broadcast in Hörsaal 3
Chair Wolfgang Buckel (Marburg/DE)
Sponsored by BASF SE, Bayer Healthcare AG, Evonik Degussa, New England Biolabs GmbH and Sanofi-Aventis Deutschland GmbH
Annual Conference 2016 of the VAAM

11:30–12:15
Hans-Günter-Schlegel-Lecture
Room: Hörsaal 1, live broadcast in Hörsaal 3
Chair: Dieter Jahn (Braunschweig/DE)
11:30–12:15: Physiological proteomics of Gram-positive model bacteria
ISV05: Michael Hecker (Greifswald/DE)

12:45–13:45
JSMC Panel discussion (see page 11)
Room: Hörsaal 3
Chairs: Natalie Töpfer, Carolin Dewald, Daniel Leichnitz, Miguel Tovar (Jena/DE)

14:00–15:30
Plenary Session II – Systems Biology & Biotechnology
Room: Hörsaal 1, live broadcast in Hörsaal 3
Chairs: Christian Hertweck, Thomas Munder (Jena/DE)
14:00–14:45: Systems biology of yeast metabolism
ISV06: Jens Nielsen (Göteborg/SE)
14:45–15:30: Engineering microbial metabolism for the production of fuels and chemicals
ISV07: Greg Stephanopoulos (Cambridge, MA/US)

15:30–17:30
Poster Session (see page 13)

15:45–17:15
Karrieresymposium
Room: Hörsaal 3
Vorstellung verschiedener Berufsbilder in den Biowissenschaften (siehe Seite 15).

17:30–19:30
Mini-Symposium Special Group – FG Environmental Microbiology
Microscopy-supported discoveries in environmental microbiology
Room: Hörsaal 1
Chairs: Heribert Cypionka (Oldenburg/DE), Rainer Meckenstock (Essen/DE)
17:30–18:00: How do *Anabaena* cells communicate?
EMV-FG01: Amin Omairi-Nasser (Chicago/US)
18:00–18:15: Determinants of heterogeneous cell development of *Dinoroseobacter shibae*
EMV-FG02: Jürgen Tomasch (Braunschweig/DE)
18:15–18:30: A microscopic perspective on the planctomycetal ecology
EMV-FG03: Christian Jogler (Braunschweig/DE)
18:30–18:45: Towards applications of superresolution microscopy in environmental microbiology
EMV-FG04: Christina Moraru (Oldenburg/DE)
18:45–19:00: Simple generation of stereoscopic 3D images with any light- or scanning electron microscope
EMV-FG05: Heribert Cypionka (Oldenburg/DE)
Annual Conference 2016 of the VAAM

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:30–19:30</td>
<td>Mini-Symposium Special Group – FG Regulation and Signal Transduction
Synthetic regulatory circuits in Procaryotes
in Procaryotes
Synthetic regulatory circuits in metabolic engineering</td>
<td>Hörsaal 2</td>
</tr>
<tr>
<td>Chairs</td>
<td>Thorsten Mascher (Dresden/DE), Julia Frunzke (Jülich/DE)</td>
<td></td>
</tr>
<tr>
<td>17:30–17:40</td>
<td>Welcome</td>
<td>Julia Frunzke (Jülich/DE)</td>
</tr>
<tr>
<td>17:40–18:20</td>
<td>Engineering synthetic regulatory systems for enhanced chemical production</td>
<td>Fuzhong Zhang (St. Louis/US)</td>
</tr>
<tr>
<td>18:20–18:45</td>
<td>Hunting for new genetic targets – biosensor-based FACS screening of microorganisms</td>
<td>Jan Marienhagen (Jülich/DE)</td>
</tr>
<tr>
<td>18:45–19:10</td>
<td>Engineered riboswitches – convenient building blocks for the construction of synthetic genetic circuits</td>
<td>Beatrix Suess (Darmstadt/DE)</td>
</tr>
<tr>
<td>19:10–19:30</td>
<td>Synthetic RNA-based control units for balanced triterpene biosynthesis in cyanobacteria</td>
<td>Ilka Maria Axmann (Düsseldorf/DE)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:30–19:30</td>
<td>Mini-Symposium Special Group – FG Microbial Pathogenicity
Virulence and immune evasion strategies of pathogens
in Procaryotes
Synthetic regulatory circuits in metabolic engineering</td>
<td>Hörsaal 3</td>
</tr>
<tr>
<td>Chairs</td>
<td>Sven Hammerschmidt (Greifswald/DE), Peter F. Zipfel (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td>17:30–17:47</td>
<td>Phase-Locked Mutants elucidate novel functions and differential virulence of variable surface lipoproteins</td>
<td>Rohini Chopra Dewasthaly (Wien/AT)</td>
</tr>
<tr>
<td>MPV-FG01</td>
<td>encoded by mycoplasma multigene families</td>
<td></td>
</tr>
<tr>
<td>17:47–18:04</td>
<td>Skin-specific unsaturated fatty acids were taken by Staphylococcus aureus and their incorporation into lipoprotein boosts innate immune response</td>
<td>Minh Thu Nguyen (Tübingen/DE)</td>
</tr>
<tr>
<td>MPV-FG02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:04–18:21</td>
<td>Immunogenicity of lipoproteins and other classical pneumococcal surface proteins</td>
<td>Franziska Voß (Greifswald/DE)</td>
</tr>
<tr>
<td>MPV-FG03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:21–18:38</td>
<td>Plasminogen interaction to Helicobacter pylori confers serum resistance</td>
<td>Birendra Singh (Malmö/SE)</td>
</tr>
<tr>
<td>MPV-FG04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:38–18:55</td>
<td>Pra 1, the Candida immune evasion protein is a protease that cleaves complement C3 and also blocks the effector components C3a and C3b</td>
<td>Prasad Dasari (Jena/DE)</td>
</tr>
<tr>
<td>MPV-FG05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:55–19:12</td>
<td>Stoichiometry of the bacterial type III secretion export apparatus</td>
<td>Susann Zilkenat (Tübingen/DE)</td>
</tr>
<tr>
<td>MPV-FG06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:12–19:29</td>
<td>Essential role of the SepF mycobacterial cell division protein</td>
<td>Susanne Gola (Madrid/ES)</td>
</tr>
<tr>
<td>MPV-FG07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

17:30–19:30 Mini-Symposium Special Group – FG Fungal Biology and Biotechnology
Gene regulatory networks

<table>
<thead>
<tr>
<th>Room</th>
<th>Hörsaal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairs</td>
<td>Philipp Benz (München/DE), Julia Schumacher (Münster/DE)</td>
</tr>
</tbody>
</table>

17:30–18:00 The novel Zn$_2$Cys$_6$ transcription factor BcGaaR regulates D-galacturonic acid utilization in *Botrytis cinerea*

FBV-FG01 Jan A.L. van Kan (Wageningen/NL)

18:00–18:15 Characterization of novel regulators for pectin degradation in *Neurospora crassa*

FBV-FG02 Nils Thieme (Freising/DE)

18:15–18:30 Regulatory networks of the gibberellin cluster in *Fusarium fujikuroi*

FBV-FG03 Eva-Maria Niehaus (Münster/DE)

18:30–18:45 Aspects in microbial interactions and intracellular regulation of *Schizophyllum commune*

FBV-FG04 Elke-Martina Jung (Jena, Berlin/DE)

18:45–19:00 Comparative genomics and transcriptomics to study fruiting body development in ascomycetes

FBV-FG05 Minou Nowrousian (Bochum/DE)

19:00–19:15 Regulation dynamics in the HOG signaling pathway in filamentous fungi

FBV-FG06 Stefan Bohnert (Kaiserslautern/DE)

19:15–19:30 A gene co-expression network as a tool to predict functional modules in *Aspergillus niger*

FBV-FG07 Vera Meyer (Berlin/DE)

17:30–19:30 Mini-Symposium Special Group – FG Water and Sewage
Legionella in water and air – legislation, occurrence and new detection methods

<table>
<thead>
<tr>
<th>Room</th>
<th>Hörsaal 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairs</td>
<td>Bernd Bendinger (Hamburg/DE), Ulrich Szewzyk (Berlin/DE)</td>
</tr>
</tbody>
</table>

17:30–17:55 *Legionella* in evaporative cooling systems – new federal immission control act

WAV-FG01 Regine Szewzyk (Berlin/DE)

17:55–18:20 Occurrence, frequency and distribution of *Legionella pneumophila* strains isolated from environmental sources in Germany

Christian Lück (Dresden/DE)

18:20–18:45 *Legionella* species diversity and dynamics from surface reservoirs to cold and hot tap water – from a cold adapted to a thermophilic community

Ingrid Brettar (Braunschweig/DE)

18:45–19:00 Detection of system-wide *Legionella* contaminations in drinking water plumbing systems – risk factors, temporal-spatial variability, strategies

Christiane Schreiber (Bonn/DE)

19:00–19:15 New detection methods for *Legionella* in water and air

WAV-FG05 Michael Seidel (München/DE)

19:15–19:30 Detection of *Legionella* in aerosols from cooling towers

WAV-FG06 Martin Strathmann (Mühlheim a. d. Ruhr/DE)
Annual Conference 2016 of the VAAM

17:30–19:30 Mini-Symposium Special Group – FG Quality Assurance and Diagnostics
New aspects of applied quality assurance and diagnostics

Room Hörsaal 7
Chairs Andreas Seiffert-Störiko (Frankfurt a. M./DE), Steffen Prowe (Berlin/DE)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:30-18:00</td>
<td>Molecular diagnostic in the era of MRGN bacteria</td>
<td>Oliwia Makarewicz (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td>18:00-18:20</td>
<td>Acceleration of microbiological diagnostics of sepsis</td>
<td>Evgeny A. Idelievich (Münster/DE)</td>
<td></td>
</tr>
<tr>
<td>18:20-18:40</td>
<td>DiAL-FISH for the rapid detection and identification of bacterial agents</td>
<td>Karin Aistleitner (München/DE)</td>
<td></td>
</tr>
<tr>
<td>18:40-19:00</td>
<td>Effect of nisin on the survival of Listeria monocytogenes in sour curd cheese after artificial contamination</td>
<td>Maik Szendy (Coburg/DE)</td>
<td></td>
</tr>
<tr>
<td>19:00-19:20</td>
<td>A view to a kill? – ambient bacterial load of frames and lenses of spectacles and evaluation of different cleaning methods</td>
<td>Markus Egert (Villingen-Schwenningen/DE)</td>
<td></td>
</tr>
</tbody>
</table>

17:30–19:30 Mini-Symposium Special Group – FG Symbiotic Interactions
The chemical language of symbiosis

Room Hörsaal 8
Chairs Christian Kost (Jena/DE), Ute Hentschel Humeida (Kiel/DE)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:30–18:00</td>
<td>Cryptic pathways at the host-microbe interface</td>
<td>Christian Hertweck (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td>18:00–18:15</td>
<td>Does indole-3-acetic acid modulate Tricholoma vaccinum ectomycorrhiza?</td>
<td>Katrin Krause (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td>18:15–18:30</td>
<td>Bacterial-macroalgal interactions – the symbiotic tripartite community of Ulva (Chlorophyta)</td>
<td>Thomas Wichard (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td>18:30–19:00</td>
<td>Host and symbiont jointly control gut microbiota during complete metamorphosis</td>
<td>Paul R. Johnston (Berlin/DE)</td>
<td></td>
</tr>
<tr>
<td>19:00–19:15</td>
<td>Nitric oxide is an ambivalent mediator of microbial interactions in beewolves</td>
<td>Tobias Engl (Mainz/DE)</td>
<td></td>
</tr>
<tr>
<td>19:15–19:30</td>
<td>Pleasant guests restrain – Can selective advantages explain the AT-bias of endosymbiotic genomes?</td>
<td>Anne-Kathrin Dietel (Jena/DE)</td>
<td></td>
</tr>
</tbody>
</table>

17:30–19:30 Mini-Symposium Special Group – FG Yeast

Room Hörsaal 9
Chair Karl-Dieter Entian (Frankfurt a. M./DE)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:30–17:50</td>
<td>Two novel yeast species from the gut of two different termite species</td>
<td>Steffen Handel (Mainz/DE)</td>
<td></td>
</tr>
<tr>
<td>17:50–18:10</td>
<td>Three alcohol dehydrogenase genes are responsible for ethanol degradation in Y. lipolytica</td>
<td>Michael Gatter (Dresden/DE)</td>
<td></td>
</tr>
<tr>
<td>18:10–18:30</td>
<td>Triterpenoids from Saccharomyces cerevisiae</td>
<td>Thomas Polakowski (Berlin/DE)</td>
<td></td>
</tr>
<tr>
<td>18:30–18:50</td>
<td>Urm 1 – a unique ubiquitin-like protein that functions in protein and tRNA modification</td>
<td>André Jüdes (Kassel, Mainz/DE)</td>
<td></td>
</tr>
<tr>
<td>18:50–19:10</td>
<td>Hypermodification of eukaryotic 18S rRNAs</td>
<td>Britta Meyer (Frankfurt a. M./DE)</td>
<td></td>
</tr>
<tr>
<td>19:10–19:30</td>
<td>Analysis of 25S rRNA Base modifications</td>
<td>David Hartmann (Frankfurt a. M./DE)</td>
<td></td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

08:30–10:30 Short Lectures – Microbial Communication: Biofilms & Bio-Geo-Interactions

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30–08:45</td>
<td>Architectural transitions in Vibrio cholerae biofilms at single-cell resolution</td>
<td>Knut Drescher (Marburg/DE)</td>
</tr>
<tr>
<td>08:45–09:00</td>
<td>Spatial segregation in Bacillus subtilis biofilm allows the emergence of growth yield strategists</td>
<td>Eisha Mhatre (Jena/DE)</td>
</tr>
<tr>
<td>09:00–09:15</td>
<td>SiaABCD coordinates cellular aggregation and virulence of Pseudomonas aeruginosa in response to environmental conditions</td>
<td>Janosch Klebensberger (Stuttgart/DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Formation and integrity of multicellular aggregates in Staphylococcus aureus</td>
<td>Charlotte Wermser (Würzburg/DE)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Biofilms as a protective niche for non-halophilic sulfur cycling bacteria at groundwater springs in the Dead Sea</td>
<td>Jan Frösler (Essen/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>Viability of Deinococcus geothermalis in biofilms during desiccation</td>
<td>Martin Mühling (Freiberg/DE)</td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>Metagenomic analysis of an acidophilic (pH 3.5) and microaerophilic enrichment culture dominated by iron oxidising strains of the genus Sideroxydans</td>
<td>Dheeraj Kanaparthi (Neuherberg, Halle a. d. Saale/DE)</td>
</tr>
</tbody>
</table>

08:30–10:30 Short Lectures – Biotechnology II

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30–08:45</td>
<td>Metabolic engineering of Corynebacterium glutamicum for production of astaxanthin</td>
<td>Nadja A. Henke (Bielefeld/DE)</td>
</tr>
<tr>
<td>08:45–09:00</td>
<td>Systems metabolic engineering of Corynebacterium glutamicum for the production of bio-based nylon</td>
<td>Judith Becker (Saarbrücken/DE)</td>
</tr>
<tr>
<td>09:00–09:15</td>
<td>Extracellular targeting of an active endoxylanase by a TolB negative mutant of Glucobacter oxydans</td>
<td>Konrad Kosciow (Bonn/DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>A surprising diversity of solventogenic clostridia</td>
<td>Anja Poehlein (Göttingen/DE)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Proteotyping of biogas plant microorganisms</td>
<td>Robert Heyer (Magdeburg/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>Microbial electron uptake during biocorrosion and electrosynthesis</td>
<td>Joerg Deutzmann (Stanford/US)</td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>Production of biobased fuels and plastics from CO₂ and light in defined mixed cultures</td>
<td>Hannes Löwe (Garching/DE)</td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>Enoate reductase whole cell biocatalysis in Synechocystis sp. PCC 6803</td>
<td>Katharina Königer (Bochum/DE)</td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

08:30–10:30 Short Lectures – Environmental Microbiology II

Room: Hörsaal 3
Chairs: Matthias Boll (Freiburg/DE), Rainer Meckenstock (Essen/DE)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>A novel central carbon assimilation pathway in the marine Alphaproteobacterium Erythrobacter sp. NAP-1</td>
<td>Iria Bernhardsgrüter</td>
<td>Marburg/DE</td>
</tr>
<tr>
<td>08:45</td>
<td>Biological significance of glucosinolate break-down products on soil microbiome</td>
<td>Meike Siebers</td>
<td>Bonn/DE</td>
</tr>
<tr>
<td>09:00</td>
<td>Metabolic labor united – complete nitrification by a single microorganism</td>
<td>Sebastian Lücker</td>
<td>Nijmegen/NL</td>
</tr>
<tr>
<td>09:15</td>
<td>Microbial communities in extremely oligotrophic sediments of the South Pacific Gyre – Do they eat phages?</td>
<td>Franziska Preuss</td>
<td>Oldenburg/DE</td>
</tr>
<tr>
<td>09:30</td>
<td>Regulatory network of Dinoroseobacter shibae DFL 12T for the adaptation to low oxygen tension</td>
<td>Matthias Ebert</td>
<td>Braunschweig/DE</td>
</tr>
<tr>
<td>09:45</td>
<td>Diversity and function of bacterial communities in sublittoral marine surface sediments</td>
<td>David Probandt</td>
<td>Bremen/DE</td>
</tr>
<tr>
<td>10:00</td>
<td>A targeted mutation system is active in the filamentous N\textsubscript{2}-fixing cyanobacteria Trichodesmium erythraeum</td>
<td>Ulrike Pfreundt</td>
<td>Freiburg/DE</td>
</tr>
<tr>
<td>10:15</td>
<td>Low wind speed induces strong bacterial community changes in the sea surface microlayer of a wind-wave system</td>
<td>Janina Rahlff</td>
<td>Wilhelmshaven/DE</td>
</tr>
</tbody>
</table>

08:30–10:30 Short Lectures – Infection Biology and Systems Microbiology

Room: Hörsaal 5
Chairs: Thilo Figge (Jena/DE), Katharina Pflüger-Grau (Garching/DE)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Dual proteome analysis towards understanding neutrophil interaction with Aspergillus fumigatus</td>
<td>Iordana Shopova</td>
<td>Jena/DE</td>
</tr>
<tr>
<td>08:45</td>
<td>Real-time imaging of the bacillithiol redox potential in the human pathogen Staphylococcus aureus using a novel genetically encoded redox biosensor</td>
<td>Van Loi Vu</td>
<td>Berlin/DE</td>
</tr>
<tr>
<td>09:00</td>
<td>Prognostic model of urinary tract infections</td>
<td>Ivana Blazenovic</td>
<td>Braunschweig/DE</td>
</tr>
<tr>
<td>09:15</td>
<td>Sorting of Vancomycin BODIPY FL labeled Staphylococcus aureus from infection experiments – fast and easy enrichment of S. aureus isolates for analysis by mass spectrometry</td>
<td>Kristin Surmann</td>
<td>Greifswald/DE</td>
</tr>
<tr>
<td>09:30</td>
<td>Predicting compositions of microbial communities from stoichiometric models with applications for the biogas process</td>
<td>Sabine Koch</td>
<td>Marburg/DE</td>
</tr>
<tr>
<td>09:45</td>
<td>Anatomy of the bacitracin resistance network in Bacillus subtilis</td>
<td>Georg Fritz</td>
<td>Marburg/DE</td>
</tr>
<tr>
<td>10:00</td>
<td>Bacterial phase diagrams – using engineering concepts to predict cell-to-cell heterogeneity of microbial gene expression</td>
<td>Alexander Grünberger</td>
<td>Jülich/DE</td>
</tr>
<tr>
<td>10:15</td>
<td>Transcriptional, proteomic and metabolic networks of the Fur regulated iron metabolism of Clostridium difficile</td>
<td>Mareike Berges</td>
<td>Braunschweig/DE</td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

08:30–10:30 Short Lectures – Fungal Biology I

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30–08:45</td>
<td>Intracellular and potential extracellular roles of the Ustilago maydis Acyl-CoA-binding protein Acb1</td>
<td>Joachim Jungmann (Marburg/DE)</td>
<td>Room Hörsaal 6</td>
</tr>
<tr>
<td>08:45–09:00</td>
<td>Soil amoeba impose predatory selection pressure on environmentally acquired pathogenic fungi</td>
<td>Silvia Novohradska (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td>09:00–09:15</td>
<td>Molecular background of virulence in human pathogenic Mucoralean fungi</td>
<td>Gábor Nagy (Szeged/HU)</td>
<td></td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Parasitella parasitica, an experimental laboratory system for studying horizontal gene transfer</td>
<td>Johannes Wöstemeyer (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Redox regulation of hypoxic response in Aspergillus fumigatus</td>
<td>Elena Shekhova (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>Post-transcriptional regulation impacts on iron metabolism regulation in Candida glabrata</td>
<td>Franziska Gerwien (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>A glimpse into the role of the fungal rhodopsins CarO and OpsA in Fusarium fujikuroi</td>
<td>Ulrich Terpitz (Würzburg/DE)</td>
<td></td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>Regulatory networks of the gibberellin cluster in Fusarium fujikuroi</td>
<td>Eva-Maria Niehaus (Münster/DE)</td>
<td></td>
</tr>
</tbody>
</table>

08:30–10:30 Short Lectures – Natural Products

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30–08:45</td>
<td>Biosynthesis of the 6-pentylsalicylate building block in the antibiotic micacocidin</td>
<td>Hirokazu Kage (Jena/DE)</td>
<td>Room Hörsaal 7</td>
</tr>
<tr>
<td>08:45–09:00</td>
<td>NPS2 of Ceriporiopsis subvermispora exemplifies the model for the most conserved basidiomycete peptide synthetase</td>
<td>Eileen Brandenburger (Jena/DE)</td>
<td></td>
</tr>
<tr>
<td>09:00–09:15</td>
<td>SimC7 is an unusual angucyclinone ketoreductase essential for antibiotic activity of simocyclinone D8</td>
<td>Martin Schäfer (Norwich/GB)</td>
<td></td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Elucidation of the biosynthetic gene cluster involved in the biosynthesis of the natural compound sodorifen in S. plymuthica 4Rx13</td>
<td>Dajana Domik (Rostock/DE)</td>
<td></td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>The role of short-lived intermediates in the Pseudomonas aeruginosa alkylquinolone biosynthesis pathway</td>
<td>Steffen Lorenz Drees (Münster/DE)</td>
<td></td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in Talaromyces islandicus (Penicillium islandicum)</td>
<td>Thomas Schafhauser (Tübingen/DE)</td>
<td></td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>A yersiniabactin-like siderophore/virulence factor of entomopathogenic bacteria</td>
<td>Merle Hirschmann (Frankfurt a. M./DE)</td>
<td></td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>Construction of a Corynebacterium glutamicum platform strain for the production of high-value plant secondary metabolites</td>
<td>Nicolai Kallscheuer (Jülich/DE)</td>
<td></td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

08:30–10:30 Short Lectures – Synthetic Microbiology

Room: Hörsaal 8
Chairs: Tobias Erb (Marburg/DE), Vito Valiante (Jena/DE)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30–08:45</td>
<td>The Bacillus BioBrick Box 2.0 – generation and evaluation of new essential genetic building blocks for standardized work with Bacillus subtilis</td>
<td>Philipp Popp (Dresden/DE)</td>
</tr>
<tr>
<td>08:45–09:00</td>
<td>CRISPy-web – design sgRNAs for CRISPR applications in microbes using an easy online tool</td>
<td>Kai Blin (Harsholm/DK)</td>
</tr>
<tr>
<td>09:00–09:15</td>
<td>Synthetic secondary chromosomes to study chromosome maintenance in Escherichia coli</td>
<td>Torsten Waldminghaus (Marburg/DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Employing photocaged carbohydrates in light-controlled cell factories for synthetic bio(techno)logy and single cell applications</td>
<td>Dennis Binder (Jülich/DE)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Investigation of the anaerobic propionate metabolism in Escherichia coli K12</td>
<td>Francesca Simonte (Karlsruhe/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>Metabolic engineering of Escherichia coli for the biosynthesis of para-amino-L-phenylalanine</td>
<td>Jung-Won Youn (Stuttgart/DE)</td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>Introduction of the Calvin-Benson-Bassham cycle to create synthetic autotrophy in Methylobacterium extorquens, a heterotrophic Alphaproteobacterium</td>
<td>Lennart Schada von Borzyskowski (Marburg/DE, Zürich/CH)</td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>Metabolic engineering of syngas fermenting Clostridium ljungdahlii for jet fuel production using an efficient genomic delivery system</td>
<td>Gabriele Philipps (Aachen/DE)</td>
</tr>
</tbody>
</table>

08:30–10:30 Short Lectures – Bienergetics and Membranes and Transport

Room: Hörsaal 9
Chairs: Volker Müller (Frankfurt a. M./DE), Torsten Schubert (Jena/DE)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30–08:45</td>
<td>The tetrathionate/thiosulfate reduction potential determined by catalytic protein film electrochemistry</td>
<td>Julia Kurth (Bonn/DE)</td>
</tr>
<tr>
<td>08:45–09:00</td>
<td>A class C radical S-adenosylmethionine methyltransferase synthesizes 8-methylmenaquinone</td>
<td>Oliver Klimmek (Darmstadt/DE)</td>
</tr>
<tr>
<td>09:00–09:15</td>
<td>Occurrence and function of the Rnf complex in bacteria</td>
<td>Martin Kuhns (Frankfurt a. M./DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Microbes with identity issues – the cell wall and energy-conserving prokaryotic organelle of anaerobic ammonium-oxidizing bacteria</td>
<td>Laura van Niftrik (Nijmegen/NL)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Molecular model of the pIP501 type IV secretion system from Enterococcus faecalis</td>
<td>Ines Probst (Freiburg/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>From substrate specificity to promiscuity – molecular analysis of a hybrid ABC transporter</td>
<td>Laura Teichmann (Marburg/DE)</td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>The DNA translocator of Thermus thermophilus – In situ structure and structure/function correlation of a dynamic channel for DNA uptake and pilus extrusion</td>
<td>Ralf Salzer (Frankfurt a. M./DE)</td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>The h-region of the TMAO reductase signal peptide – a major determinant for Tat-dependent protein translocation</td>
<td>Agnes Ulfig (Jülich/DE)</td>
</tr>
</tbody>
</table>
SCIENTIFIC PROGRAMME, TUESDAY, 15 MARCH 2016

Annual Conference 2016 of the VAAM

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Room</th>
<th>Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00–11:30</td>
<td>How the Nagoya-Protocol challenges microbiological research in Germany</td>
<td>Hörsaal 1, broadcast in Hörsaal 3</td>
<td>Kerstin Voigt (Jena/DE)</td>
</tr>
<tr>
<td>11:30–11:30</td>
<td>Plenary Session III – Infection & Natural Products</td>
<td>Hörsaal 1, broadcast in Hörsaal 3</td>
<td>Ilse Jacobsen, Stefan Schuster (Jena/DE)</td>
</tr>
<tr>
<td>11:30–12:15</td>
<td>Legionella pneumophila, a unique model to study host pathogen interactions and the evolution of virulence</td>
<td>Carmen Buchrieser (Paris/FR)</td>
<td></td>
</tr>
<tr>
<td>12:15–13:00</td>
<td>Natural products from entomopathogenic bacteria – from chemical ecology to synthetic biology</td>
<td>Helge B. Bode (Frankfurt a. M./DE)</td>
<td></td>
</tr>
<tr>
<td>13:00–13:55</td>
<td>JSMC Lunch symposium (see page 11)</td>
<td>Hörsaal 1, broadcast in Hörsaal 3</td>
<td>Rene Benndorf, Maja Rischer (Jena/DE)</td>
</tr>
<tr>
<td>14:00–15:30</td>
<td>Plenary Session IV – Bio-Geo-Interactions & Biodegradation</td>
<td>Hörsaal 1, broadcast in Hörsaal 3</td>
<td>Georg Büchel, Gabriele Diekert (Jena/DE)</td>
</tr>
<tr>
<td>14:00–14:45</td>
<td>Geomycology – metals, minerals and mycota</td>
<td>Geoffroy Gadd (Dundee/GB)</td>
<td></td>
</tr>
<tr>
<td>14:45–15:30</td>
<td>They can’t do it on their own – community control over organohalide-respiring Chloroflexi</td>
<td>Frank Loeffler (Knoxville, TN/US)</td>
<td></td>
</tr>
<tr>
<td>15:40–16:55</td>
<td>InfectControl 2020 Panel discussion</td>
<td>Hörsaal 3</td>
<td>Axel Brakhage (Jena/DE)</td>
</tr>
<tr>
<td>15:30–17:30</td>
<td>Poster Session (see page 13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00–18:30</td>
<td>Microbe Slam (see page 15)</td>
<td>Hörsaal 1</td>
<td></td>
</tr>
<tr>
<td>18:30–19:45</td>
<td>Annual Meeting VAAM</td>
<td>Hörsaal 3</td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td>Mixer (see page 15)</td>
<td>Volkshaus</td>
<td></td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

09:00–11:00 Short Lectures – Microbial Communication: Plant Pathology & Symbiosis

Room: Hörsaal 1
Chairs: Holger Deising (Halle a. d. Saale/DE), Falk Hillmann (Jena/DE)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00–09:15</td>
<td>Microbial hub taxa link host and abiotic factors to plant microbiome variation</td>
<td>MCV17 Matthew Agler (Köln/DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Transcriptional profiling during in planta development of the corn smut fungus</td>
<td>MCV18 Daniel Lanver (Marburg/DE)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Acclimatization of arbuscular mycorrhizal fungi leads to increased stress tolerance of their host plants</td>
<td>MCV19 Philipp Franken (Erfurt/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>The tripartite symbiosis of Piriformospora indica, its endofungal bacterium, and plants</td>
<td>MCV20 Stefanie P. Glaeser (Gießen/DE)</td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>What it takes to be a giant gut bacterium – metabolic flexibility and diel lifestyle of Epulopiscium</td>
<td>MCV21 David Kamanda Ngugi (Thuwal/SA)</td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>Surface modifications of Escherichia coli influence ingestion and digestion of the ciliate Tetrahymena pyriformis</td>
<td>MCV22 Lisa Siegmund (Jena/DE)</td>
</tr>
<tr>
<td>10:30–10:45</td>
<td>Evidence of terpene degradation by pine weevil (Hylobius abietis) microbiota and its effect on host fitness</td>
<td>MCV23 Aileen Berasategui (Jena/DE)</td>
</tr>
<tr>
<td>10:45–11:00</td>
<td>Exploiting Streptomyces in agro-ecosystems for biological control and plant growth promotion</td>
<td>MCV24 Xiaoyulong Chen (Milan/IT)</td>
</tr>
</tbody>
</table>

09:00–11:00 Short Lectures – Biotechnology and Environmental Microbiology

Room: Hörsaal 2
Chairs: Erhard Bremer (Marburg/DE), Christian Jogler (Braunschweig/DE)

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00–09:15</td>
<td>Mining the treasures of microbial diversity for industrial biotechnology with an optimized droplet-microfluidic screening platform</td>
<td>BEmV01 Miguel Tovar (Jena/DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Development of a self-cleavable protein linker for the purification of fusion proteins</td>
<td>BEmV02 Susanne Zehner (Dresden/DE)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Upgrading the toolbox for fermentation of (crude) syngas</td>
<td>BEmV03 Florian Oswald (Karlsruhe/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>A super competent Bacillus subtilis 168 strain enables the genome manipulation without using plasmid DNA</td>
<td>BEmV04 Regine Rahmer (Stuttgart/DE)</td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>A grass associated microbial diversity and structure across the two successional stages of arctic inland dunes</td>
<td>BEmV05 Anbu Poosakkannu (Jyväskylä/FI)</td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>Evolution of ecological diversity in Acidobacteria in German grassland soils</td>
<td>BEmV06 Johannes Sikorski (Braunschweig/DE)</td>
</tr>
<tr>
<td>10:30–10:45</td>
<td>Eco-systems biology of a rare biosphere member active in cryptic sulfur cycling of a model peatland</td>
<td>BEmV07 Michael Pester (Konstanz/DE)</td>
</tr>
<tr>
<td>10:45–11:00</td>
<td>Microbiological assessment and prevalence of food borne pathogens from aprons of meat vendors in an abattoir, Awka Anambra Nigeria</td>
<td>BEmV08 Malachy Ugw (Awka/NG)</td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

09:00–11:00 **Short Lectures – Fungal Biology II**

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00–09:15</td>
<td>Coordinated process in polarized growth of the filamentous fungus Aspergillus nidulans</td>
<td>Norio Takeshita (Karlsruhe/DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Role of the autophagy-related gene Smatg12 in fruiting-body development of the filamentous ascomycete Sordaria macrospora</td>
<td>Stefanie Pöggeler (Göttingen/DE)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>In-depth characterization of the Aspergillus fumigatus mating-type system</td>
<td>Yidong Yu (Erlangen/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>Impact of light on differentiation and virulence of the plant pathogen Botrytis cinerea</td>
<td>Julia Schumacher (Münster/DE)</td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>Why some like it on the rocks – recurring stresses select for organisms with manifold protective pigments</td>
<td>Nicole Knabe (Berlin/DE)</td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>Identification of novel factors involved in dimorphism and pathogenicity of Zymoseptoria tritici</td>
<td>Alexander Yemelin (Kaiserslautern/DE)</td>
</tr>
<tr>
<td>10:30–10:45</td>
<td>Environmental decisions in early steps of fruiting of Coprinopsis cinerea</td>
<td>Shanta Subba (Göttingen/DE)</td>
</tr>
<tr>
<td>10:45–11:00</td>
<td>Towards making Agrocybe aegerita a modern model basidiomycete for mushroom formation</td>
<td>Florian Hennicke (Frankfurt a. M./DE)</td>
</tr>
</tbody>
</table>

09:00–11:00 **Short Lectures – Infection Biology II**

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00–09:15</td>
<td>The biochemical RNA landscape of a cell revealed by Grad-seq</td>
<td>Jörg Vogel (Würzburg/DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>The RNA chaperone Hfq mediates post-transcriptional regulation of adhesins in the enteropathogen Yersinia enterocolitica</td>
<td>Ombeline Rossier (München/DE)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>tRNA modifications – a novel virulence factor in pathogenic Candida species</td>
<td>Bettina Böttcher (Jena/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>The extracellular adherence protein (Eap) of Staphylococcus aureus exhibits DNase activity</td>
<td>Henrik Peisker, Markus Bischoff (Homburg/DE)</td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>The phospholipases of A. baumannii – role in interbacterial competition and pathogenicity</td>
<td>Julia Stahl (Frankfurt a. M./DE)</td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>Flotillin controls the assembly of protein complexes related to staphylococcal virulence</td>
<td>Benjamin Miichel-Süß (Würzburg/DE)</td>
</tr>
<tr>
<td>10:30–10:45</td>
<td>Structure of the bacterial cell division determinant GpsB and its interaction with penicillin binding proteins</td>
<td>Sven Halbedel (Wernigerode/DE)</td>
</tr>
<tr>
<td>10:45–11:00</td>
<td>Identification of a pneumococcal enzyme essential for anchoring of lipoteichoic acid to the bacterial cell surface</td>
<td>Nathalie Heß (Greifswald/DE)</td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

09:00–11:00 Short Lectures – Archaea and Extremophiles

Room Hörsaal 6
Chairs Peter Schönhöft (Kiel/DE), Michael Thomm (Regensburg/DE)
09:00–09:15 How to stay in hell – how hyperthermophiles colonize black smokers
AEV01 Reinhard Wirth (Regensburg/DE)
09:15–09:30 Structure of the formylmethanofuran dehydrogenase-polyferredoxin complex – methanogens’ chemical trick to fix CO₂ without ATP consumption
AEV02 Tristan Wagner (Marburg/DE)
09:30–09:45 Methanogenesis upside down – metabolic reconstruction of an archaeon performing nitrate-dependent anaerobic oxidation of methane
AEV03 Cornelia Welte (Nijmegen/NL)
09:45–10:00 Calvin-Cycle reinvented – autotrophic CO₂ fixation in *Ammonifex degensii*
AEV04 Achim Mall (Freiburg/DE)
10:00–10:15 Ced – a DNA import system conserved in Crenarchaea
AEV05 Alexander Wagner (Freiburg/DE)
10:15–10:30 New insights into the functions of TrmB proteins in *Pyrococcus furiosus*
AEV06 Robert Reichelt (Regensburg/DE)
10:30–10:45 Small RNA₄₁ involved in carbon metabolism in *Methanosarcina mazei* Gö1
AEV07 Anne Buddeweg (Kiel/DE)
10:45–11:00 Circularization restores signal recognition particle RNA functionality in *Thermoproteus*
AEV08 Michael Daume (Marburg/DE)

09:00–11:00 Short Lectures – Natural Products and Microbial Evolution

Room Hörsaal 7
Chairs Christine Beemelmanns, Christian Kost (Jena/DE)
09:00–09:15 Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory
NMV01 Gulimila Shabuer (Jena/DE)
09:15–09:30 Treasures of the submarine rain forests – Kelp-associated Planctomycetes as a novel source for powerful bioactive compounds
NMV02 Patrick Rast (Braunschweig/DE)
09:30–09:45 Diversity and metabolite profiles of Actinobacteria from the Atacama Desert
NMV03 Álvaro Villalobos (Kiel/DE)
09:45–10:00 Discovery of the tryptacidin gene cluster in the human-pathogenic fungus *Aspergillus fumigatus*
NMV04 Derek J. Mattern, Jakob Weber (Jena/DE)
10:00–10:15 Experimental evolution of metabolic dependency in bacteria
NMV05 Glen D’Souza (Jena/DE)
10:15–10:30 Virulence in smut fungi – insights from evolutionary comparative genomics
NMV06 Gabriel Schweizer (Marburg/DE)
10:30–10:45 Ancient *Yersinia pestis* genome from a post-Black Death outbreak in Southwestern Germany
NMV07 Maria Alexandra Spyrou (Jena/DE)
10:45–11:00 Impact of the extent of pyoverdine production in *Pseudomonas* populations on the development of cooperation
NMV08 Felix Becker (Martinsried, München/DE)
Annual Conference 2016 of the VAAM

09:00–11:00 Short Lectures – Biodegradation

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00–09:15</td>
<td>Soil – sediment microbial community adaptation due to a long history of oil contamination</td>
<td>Susanne Fetzner (Münster/DE), Sandra Studenik (Jena/DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>Biodegradation of aromatic compounds in a coal tar polluted aquifer studied by denitrifying BTEX-degrading enrichment cultures and in-situ community analysis</td>
<td>Antonios Michas (Neuherberg/DE)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Conversion of cis-2-carboxycyclohexylacetic acid in the down-stream pathway of anaerobic naphthalene degradation</td>
<td>Martin Sperfeld (Jena/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>Anoxic degradation of auxin in denitrifying Betaproteobacteria</td>
<td>Karola Schühle (Marburg/DE)</td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>Identification of glyphosate degradation pathways in soil and water-sediment systems – a stable isotope co-labeling approach</td>
<td>Karolina Nowak (Leipzig, Aachen/DE)</td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>Characterization of Latex Clearing Protein (Lcp) from Rhodococcus rhodochrous</td>
<td>Wolf Röther (Stuttgart/DE)</td>
</tr>
<tr>
<td>10:30–10:45</td>
<td>Formation of bisphenol-phosphate conjugates by Bacillus amylobiilefaciens – a novel mechanism to reduce toxicity and estrogenicity of bisphenols</td>
<td>Marie-Katherin Zühlke (Greifswald/DE)</td>
</tr>
<tr>
<td>10:45–11:00</td>
<td>Identification of an unusual decarboxylase crucial for norcobamide biosynthesis in the tetrachloroethene-respiring bacterium Sulfurosirillum multivorans</td>
<td>Sebastian Keller (Jena/DE)</td>
</tr>
</tbody>
</table>

09:00–11:00 Short Lectures – Open Topics

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00–09:15</td>
<td>Two regulatory RNA elements affect toxin-driven depolarization and persister formation in Escherichia coli</td>
<td>Bork Berghoff (Gießen, Uppsala/DE)</td>
</tr>
<tr>
<td>09:15–09:30</td>
<td>IscR of Rhodobacter sphaeroides functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein</td>
<td>Bernhard Remes (Gießen/DE)</td>
</tr>
<tr>
<td>09:30–09:45</td>
<td>Formation of polyphosphate by polyphosphate kinases and its relationship to Poly(3-Hydroxybutyrate) accumulation in Ralstonia eutropha</td>
<td>Tony Tumlirsch (Stuttgart/DE)</td>
</tr>
<tr>
<td>09:45–10:00</td>
<td>Identification of the key enzyme of roseoflavin biosynthesis</td>
<td>Valentino Konjik (Mannheim/DE)</td>
</tr>
<tr>
<td>10:00–10:15</td>
<td>The cell cycle of Corynebacterium glutamicum</td>
<td>Kati Böhm (München/DE)</td>
</tr>
<tr>
<td>10:15–10:30</td>
<td>The heterododecameric, membrane-associated bacterioferritin of Magnetospirillum gryphiswaldense is not involved in magnetite biosynthesis</td>
<td>René Uebe (Bayreuth/DE)</td>
</tr>
<tr>
<td>10:45–11:00</td>
<td>Biological agents in sight – danger avoided the GESTIS-database on biological agents combines expertise</td>
<td>Matthias Rastetter (Heidelberg/DE)</td>
</tr>
</tbody>
</table>
Annual Conference 2016 of the VAAM

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Room</th>
<th>Chairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30–11:45</td>
<td>VAAM Poster Awards</td>
<td>Hörsaal 1</td>
<td>Georg Fuchs (Freiburg/DE), Felicitas Pfeifer (Darmstadt/DE)</td>
</tr>
<tr>
<td>11:45–13:15</td>
<td>Plenary Session V – Biodiversity & Ecosystem Functions</td>
<td>Hörsaal 1</td>
<td>Dirk Hoffmeister, Kirsten Küsel (Jena/DE)</td>
</tr>
<tr>
<td>11:45–12:30</td>
<td>Methane oxidation in Lake Constance</td>
<td></td>
<td>Bernhard Schink (Konstanz/DE)</td>
</tr>
<tr>
<td>12:30–13:15</td>
<td>Environmental change, niche specialisation and microbial communities – What can we learn from ammonia oxidisers?</td>
<td>ISV14</td>
<td>James Prosser (Aberdeen/GB)</td>
</tr>
<tr>
<td>13:15–13:30</td>
<td>Closing Remarks</td>
<td>Hörsaal 1</td>
<td></td>
</tr>
</tbody>
</table>
Oral Presentations

<table>
<thead>
<tr>
<th>Invited Speakers (ISV01 – ISV14)</th>
<th>p. 58</th>
</tr>
</thead>
</table>

Short Lectures

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaea and Extremophiles (AEV01 – AEV08)</td>
<td>p. 61</td>
</tr>
<tr>
<td>Biodegradation (BDV01 – BDV08)</td>
<td>p. 63</td>
</tr>
<tr>
<td>Biodiversity and Ecosystem Functions (BEV01 – BEV08)</td>
<td>p. 65</td>
</tr>
<tr>
<td>Bioenergetics and Membranes and Transport (BMV01 – BMV08)</td>
<td>p. 68</td>
</tr>
<tr>
<td>Biotechnology (BTV01 – BTV16)</td>
<td>p. 70</td>
</tr>
<tr>
<td>Biotechnology and Environmental Microbiology (BEmV01 – BEmV08)</td>
<td>p. 75</td>
</tr>
<tr>
<td>Chemotaxis and Motility (CMV01 – CMV08)</td>
<td>p. 77</td>
</tr>
<tr>
<td>Environmental Microbiology (EMV01 – EMV16)</td>
<td>p. 79</td>
</tr>
<tr>
<td>Fungal Biology (FBV01 – FBV16)</td>
<td>p. 84</td>
</tr>
<tr>
<td>Infection Biology (IBV01 – IBV16)</td>
<td>p. 88</td>
</tr>
<tr>
<td>Infection Biology and Systems Microbiology (IbSV01 – IbSV08)</td>
<td>p. 93</td>
</tr>
<tr>
<td>Microbial Communication – Biofilms & Bio-Geo-Interactions (MCV01 – MCV08)</td>
<td>p. 96</td>
</tr>
<tr>
<td>Microbial Communication – Community Structure & Microbial Communication (MCV09 – MCV16)</td>
<td>p. 98</td>
</tr>
<tr>
<td>Microbial Communication – Plant Pathology & Symbiosis (MCV17 – MCV24)</td>
<td>p. 100</td>
</tr>
<tr>
<td>Natural Products (NPV01 – NPV08)</td>
<td>p. 102</td>
</tr>
<tr>
<td>Natural Products and Microbial Evolution (NMV01 – NMV08)</td>
<td>p. 105</td>
</tr>
<tr>
<td>Open Topics (OTV01 – OTV08)</td>
<td>p. 107</td>
</tr>
<tr>
<td>Signal Transduction (STV01 – STV08)</td>
<td>p. 109</td>
</tr>
<tr>
<td>Synthetic Microbiology (SMV01 – SMV08)</td>
<td>p. 111</td>
</tr>
</tbody>
</table>

Special Groups Mini Symposia

FG Cyanobacteria (CBV-FG01 – CBV-FG06)	p. 113
FG Environmental Microbiology (EMV-FG01 – EMV-FG05)	p. 115
FG Fungal Biology and Biotechnology (FBV-FG01 – FBV-FG07)	p. 116
FG Microbial Pathogenicity (MPV-FG01 – MPV-FG07)	p. 118
FG Quality Assurance and Diagnostics (QDV-FG01 – QDV-FG05)	p. 120
FG Regulation and Signal Transduction in Procaryotes (RSV-FG01 – RSV-FG04)	p. 121
FG Symbiotic Interactions (SIV-FG01 – SIV-FG06)	p. 122
FG Water and Sewage (WAV-FG01 – WAV-FG06)	p. 123
FG Yeast (YEV-FG01 – YEV-FG06)	p. 125
Poster Presentations

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaea and Extremophiles (AEP01 – AEP32)</td>
<td>p. 126</td>
</tr>
<tr>
<td>Biodegradation (BDP01 – BDP28)</td>
<td>p. 136</td>
</tr>
<tr>
<td>Biodiversity and Ecosystem Functions (BEFP01 – BEFP28)</td>
<td>p. 143</td>
</tr>
<tr>
<td>Bioenergetics (BEP01 – BEP15)</td>
<td>p. 152</td>
</tr>
<tr>
<td>Biotechnology (BTP01 – BTP88)</td>
<td>p. 156</td>
</tr>
<tr>
<td>Chemotaxis and Motility (CMP01 – CMP07)</td>
<td>p. 179</td>
</tr>
<tr>
<td>Environmental Microbiology (EMP01 – EMP70)</td>
<td>p. 181</td>
</tr>
<tr>
<td>Fungal Biology (FBP01 – FBP46)</td>
<td>p. 200</td>
</tr>
<tr>
<td>Infection Biology (IBP01 – IBP57)</td>
<td>p. 212</td>
</tr>
<tr>
<td>Membranes and Transport (MTP01 – MTP15)</td>
<td>p. 228</td>
</tr>
<tr>
<td>Microbial Communications (MCP01 – MCP86)</td>
<td>p. 232</td>
</tr>
<tr>
<td>Microbial Evolution (MEP01 – MEP15)</td>
<td>p. 255</td>
</tr>
<tr>
<td>Natural Products (NPP01 – NPP37)</td>
<td>p. 259</td>
</tr>
<tr>
<td>Open Topics (OTP01 – OTP48)</td>
<td>p. 268</td>
</tr>
<tr>
<td>Signal Transduction (STP01 – STP35)</td>
<td>p. 281</td>
</tr>
<tr>
<td>Synthetic Microbiology (SnMP01 – SnMP16)</td>
<td>p. 290</td>
</tr>
<tr>
<td>Systems Microbiology (SsMP01 – SsMP09)</td>
<td>p. 294</td>
</tr>
</tbody>
</table>
ISV01 Science and society – infectious diseases as an example

J. Hacker
Deutsche Akademie der Naturforscher Leopoldina, Nationale Akademie der Wissenschaften, Berlin, Germany

U.S. Surgeon General W.H. Smith declared in 1967 that „it was time to close the book on infectious diseases“. People were confident that the war against infectious diseases was all but won since tuberculosis, polio and other threatening infectious diseases were on decline. But since then several new infectious pathogens and diseases like HIV, MRSA or EHEC have been established. The recent Ebola outbreak in 2014 and 2015 showed that emerging and re-emerging infectious diseases continue to represent a serious international threat despite major research advances in recent years. Concerning to WHO-data, infectious diseases cause nowadays 12 % of global deaths and pathogenic microbes and infections still pose a continuing threat to human health and play a prominent role in health politics worldwide.

The spread of infectious diseases is on the one hand due to changes in human behavior, as increased trade and travel, globalized food distribution and inappropriate use of antibiotics. On the other hand mutations, gene transfer and recombination are responsible for pathogen variability. Continuing progress in the treatment of many infections is threatened by the increasing number and expanded distribution of antibiotic resistant pathogens. In 2015, the German National Academy of Sciences Leopoldina together with the Academy of Science in Hamburg published the report “Antibiotics research: problems and perspectives”. It declares that the policy makers in the fields of science, politics, society and industry need to cooperate and act on a national and international level and that special emphasis should be placed on research and development. And in 2015, the G7 science academies prepared statements on resistance to antibiotics and neglected tropical diseases to advise heads of the state and government at their annual summit.

The challenges facing the control of infectious diseases today are tremendous and make a more global approach necessary to improve health of populations. In 2015, the UN General Assembly adopted the 2030 Development Agenda titled Transforming our world: the 2030 Agenda for Sustainable Development. The agenda includes 17 sustainable development goals. Goal 3 Ensure healthy lives and promote well-being. The agenda includes 17 sustainable development goals. The agenda includes 17 sustainable development goals. The agenda includes 17 sustainable development goals. Goal 3 Ensure healthy lives and promote well-being.

In conclusion, it can be stated that: the fight against infectious diseases stands as an example for the globalization of science and that policy and science need to establish new models of collaboration and interaction.

ISV02 Harnessing nature’s sensory devices for metabolic engineering and single-cell analysis

J. Frunzke
Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-1: Biotechnology, Jülich, Germany

Nature has evolved a plethora of different sensor devices to sense and respond to a variety of intra- and extracellular stimuli, including physical parameters, nutrient availability and the production of small molecules. In this talk, I will illustrate how we can harness nature’s toolbox for the development of strain development. Recently, we have developed genetically-encoded biosensors based on bacterial transcriptional regulators to report on intracellular amino acid accumulation in the biotechnological platform organisms Corynebacterium glutamicum and Escherichia coli. In ongoing studies, we apply these sensors in FACS high-throughput (HT) screening approaches for the isolation of amino acid producing mutants as well as for biosensor-driven adaptive evolution of production strains. Furthermore, the design of synthetic regulatory circuits translating a certain intra- or extracellular stimulus into a measurable reporter output enables the visualization of microbial population dynamics at the single-cell level and spatiotemporal resolution. This is exemplified by our recent studies of spontaneous prophage induction representing a common phenomenon of lysogenic bacterial cultures.

ISV03 Exploring the pole – cellular asymmetry and adhesion localization drive biofilm formation in Agrobacterium tumefaciens

J. Fuqua
Indiana University, Department of Biology, Bloomington, USA

The bacterial pathogen Agrobacterium tumefaciens is well known for its ability to genetically modify plants through interkingdom gene transfer and integration of a segment of DNA (T-DNA) into the plant genome, causing the disease called crown gall. Despite extensive studies of T-DNA transfer, little is known regarding the initial processes and interactions at the plant surface. A. tumefaciens can assemble dense biofilms on both abiotic and biotic surfaces which on plants may increase the gene transfer efficiency while affording protection against host defense responses. One of the primary factors mediating surface attachment and biofilm formation in A. tumefaciens is the unipolar polysaccharide (UPP), an adhesin produced at a single cellular pole following surface contact. The UPP is only one of several polarly-localized A. tumefaciens cellular structures, including a tuft of unipolar flagellum, and components of the Type IV secretion system (T4SS) that exports T-DNA and several associated virulence proteins. The process of cell division for A. tumefaciens is also decidedly polar, with a profound asymmetry and highly localized, or a zonal pattern of cell biogenesis. A. tumefaciens cells attached by their poles to surfaces produce daughter cells from their unattached pole, and flagella emerge from the old pole of the daughter cell. This cellular asymmetry is orchestrated by the Pseudomonas aeruginosa complex phosphorylase cascade designated the Control of Division and Development (CDD) pathway. However, distinct from the CDD pathway, UPP targeting to the pole is dependent on the PodJ protein, thought to function as a distinct localization factor. Regulation of surface-contact dependent polar extrusion of the UPP is strictly mediated through the bacterial second messenger cyclic di-guanosine monophosphate (c-di-GMP). Over 30 separate putative diguanylate cyclases (DGCs) could drive synthesis of c-di-GMP in A. tumefaciens, but several specific DGCs have been found to have a pronounced impact on UPP production and other attachment processes. One of the downstream regulators in this respect is a dual function enzyme called DcpA with DGC activity, and a separable phosphodiesterase (PDE) activity, responsible for c-di-GMP inactivation. DcpA is controlled by a complex pathway that involves several other partner proteins, and small metabolites called monoperins. Production of a monoperin is required to foster the PDE activity of DcpA under laboratory conditions, maintaining low levels of c-di-GMP and preventing inappropriate deployment of the UPP. Mutants in this pterin-DcpA response pathway are uncoupled from surface contact dependence, and produce the UPP in planktonic phase.

ISV04 Dissecting the biology and pathology of the Irish potato famine pathogen Phytophthora infestans

F. Govers
Wageningen University, Laboratory of Phytopathology, Wageningen, Netherlands

The oomycete Phytophthora infestans is the causal agent of late blight in potato and tomato. This plant pathogen has a hemibiotrophic life style and exploits a variable repertoire of effector proteins for manipulating plant defence and facilitating colonization. It has a ‘two-speed’ genome of ~240 Mb with 74 % repetitive DNA and composed of gene-dense and gene-poor regions. Comparative genomics revealed features illuminating the success of Phytophthora as a pathogen, such as a massive expansion of families encoding effectorors, and peculiar gene innovations resulting in proteins with oomycete-specific domain combinations. Examples of novel proteins are the GPRC-PIPKPs (GKs) that have a N-terminal 7-transmembrane domain typical for G-protein coupled receptors (GPCRs) combined with a phosphatidylinositol phosphate kinase (PIP) domain at the C-terminus. This domain structure suggests that GKS use GPCRs to directly feed extracellular signals into phospholipid signalling pathways. For one GK we could demonstrate a role in asexual development, including spore germination, hyphal elongation and sporangia cleavage, whereas inactivation of another GK disturbed sexual development. We have also indications for a role of GK in the dynamics of the actin cytoskeleton, an organized intracellular framework that is indispensable for the viability of eukaryotic cells and functions in e.g. intracellular transport, formation of contractile rings, nuclear segregation, and endocytosis. Microscopic analysis of P. infestans transformants expressing the actin binding peptide Lifeact-eGFP revealed actin filament cables and plaques. The latter are nearly immobile structures with average lifetimes exceeding one hour;
much longer (over 500-fold) than the lifetimes of actin patches in fungi. Moreover, in contrast to actin patches in yeast, plate disassembly is not accompanied with formation and internalization of endocytic vesicles. The oomycete specific features of Gks and actin plaques justify more in depth research to evaluate their potential as target for novel oomicides.

ISV05

Physiological proteomics of Gram-positive model bacteria

M. Hecker

University of Greifswald, Institute for Microbiology, Greifswald, Germany

The genome sequence of an organism, the blueprint of life, does not explain life. Because proteins are the main workhorses of cell physiology, it is the proteome that largely translates the genome sequence into cell function. The knowledge on physiology and molecular genetics of model bacteria such as *Bacillus subtilis* and *Staphylococcus aureus* combined with the new perspective of functional genomics/proteomics should bring a new quality in understanding the life style of these model organisms. Complex mechanisms of global gene expression control guarantee that each single protein is provided in sufficient amounts, at the right time and at the right place to organize cellular life. For our model bacteria we identified almost 70 to 80 % of the proteome, absolute quantitative data included, shown in the first part of the talk. The main challenge that follows is to understand how hundreds of different proteins leaving the ribosome tunnel organize the main processes of life. Proteomics is a great toolbox to follow the fate of the single proteins from birth at the ribosome via aggregate formation, modification, damage, repair and finally to death in the Clp machine. In the following part the question will be addressed: How can we use physiological proteomics to understand cell physiology and pathophysiology of both model organisms. This will be demonstrated for the SigB-dependent general stress response of *B. subtilis*. New results on the function of the general stress proteins will be discussed. In the final part a proteomic view of pathogenicity of *S. aureus* will be presented.

ISV06

Systems biology of yeast metabolism

J. Nielsen 1,2,3

1Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden

2Technical University of Denmark, Novo Nordisk Foundation Center for BioSustainability, Lyngby, Sweden

3Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden

Metabolism is highly complex involving a large number of chemical reactions. These reactions are traditionally grouped into pathways with dedicated functions, but recent analysis of metabolism has shown that there is a high degree of connectivity between these pathways due to common sharing of co-factors and key metabolites. Also regulation of metabolism is complex due to the requirements for maintaining cellular homeostasis. In this talk there will be given illustrations of how different parts of cellular metabolism are connected, i.e. central carbon metabolism, lipid metabolism and protein secretion. The role of key regulatory components, e.g. Sir2 and Snf1, on controlling the central carbon metabolism will be discussed together with presentation of a new hypothesis for how these two regulators interact in controlling shifts between fermentation and respiration. Snf1 regulation of lipid metabolism will also be discussed, and finally it will be discussed how lipid metabolism interacts with protein secretion. All the pathways discussed are conserved between yeast and human and the findings are therefore having direct impact on our understanding of different human diseases.

ISV07

Engineering microbial metabolism for the production of fuels and chemicals

G. Stephanopoulos

MIT, Department of Chemical Engineering, Cambridge, USA

Biotechnology is rapidly coming of age as enabling technology for the production of biobased chemicals and biofuels. In this task, it is aided by critical advancements in Metabolic Engineering that transforms microbes into little chemical factories capable of converting renewable feedstocks to a variety of products. While in earlier years this application was limited to specialized chemicals and pharmaceutical products, recent advances in metabolic engineering have expanded the portfolio of biotechnological applications beyond the space of specialty products and into the domain of commodity chemicals that have been traditionally the realm of chemical process industry using fossil fuels as feedstocks. As such, we are witnessing a process of creative destruction whereby one manufacturing technology based on chemistry is gradually being replaced by another based on biology. To be sure, chemical technologies have some definite advantages such as very high space times due to high temperatures of operation. These benefits can be counterbalanced by the superb specificity of biotechnological processes and their unique ability to convert with high efficiency renewable feedstocks.

In this talk, I will present the origin and basic technologies of metabolic engineering and illustrate its applications with examples from the engineering of microbes for lipid synthesis for biodiesel production, as well as synthesis of monoethylene glycol and fermentation of gases for biofuel production. I will expand on the parameters that will define the winners and losers of the antagonism between chemistry and biotechnology whose ultimate result will be efficient processes for the sustainable manufacturing of the products needed by current society.

ISV08

How the Nagoya-Protocol challenges microbiological research in Germany

J. Overmann

1Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany

The Convention on Biological Diversity (CBD) acknowledges the right of each state to exploit the biological resources under its jurisdiction. The Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization (short, "Nagoya Protocol") to the CBD has been adopted to provide legal certainty for the actors involved in the use and international exchange of genetic resources and specifies means to share benefits gained from the use of genetic materials. Motives of the Nagoya Protocol were to (i) prevent misappropriation of biological resources and traditional knowledge that fall under the sovereignty of a provider state, (ii) contribute to the conservation and the sustainable use of biological diversity, and (iii) develop scientific capabilities in developing countries through international scientific cooperation in biodiversity research. The Nagoya Protocol entered into force on October 12, 2014, and within the EU is implemented through regulation 511/2014; the national law for implementation was passed on October 15, 2015.

According to the Nagoya Protocol "use" of biological resources also includes non-commercial, basic research activities. The definition of "genetic resources" not only extends to microbial strains as such, but also their biochemical compounds, DNA/RNA, and even the information on nucleic or protein sequences. Compliance with the new legislation requires (1) proof of legal acquisition of any microbial resource, (2) documentation of this proof and (3) inspections of users by the national authorities.

Particular features of microorganisms that are relevant for the compliance with the Nagoya Protocol are the frequent lack of biogeography and of latitudinal diversity gradients. Against this background, the presentation will focus on the far-reaching implications of the Nagoya Protocol for basic microbiological research. Real world examples will be used to illustrate the new obligations for the individual scientist and practical recommendations for future work with microbial cultures and genetic materials will be provided.

ISV09

Legionella pneumophila, a unique model to study host pathogen interactions and the evolution of virulence

C. Buchrieser

1Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France

Legionella pneumophila is the etiological agent of Legionnaire’s disease, a Gram-negative bacterium present in fresh and artificial water environments that replicates in protozoan hosts. When aerosolized bacteria are inhaled, they are able to colonize the respiratory tract, invade alveolar macrophages and replicate therein causing the disease. Replication within protozoa is essential for the survival of the bacterium. Genome sequencing and analyses led to a giant step forward in our understanding of how *L. pneumophila* replicates intracellularly by suggesting new ways by which this bacterium might subvert host functions. Our analyses revealed that the *L. pneumophila* genome encodes a high number and great diversity of eukaryotic-like proteins. We suggested that these are mimicking host proteins to subvert host-signalling pathways. Indeed, we and others have shown that *L. pneumophila* employs its F-box encoding proteins to exploit
the ubiquitin signalling pathways of the host or a spingosine-1-phosphate lyase to restrain autophagy. Recently we characterized a SET-domain encoding protein and showed that it is secreted in the host cell where it induces epigenetic regulations to down regulate the host transcriptional response to infection. Comparative and evolutionary genomics analyses of the eukaryotic like proteins demonstrated that lateral gene transfer from eukaryotic hosts contributed to the evolution of these proteins within Legionella. Collectively these data shed new light on the virulence strategies of L. pneumophila, a major aspect of which is molecular mimicry.

ISV10

Natural products from entomopathogenic bacteria – from chemical ecology to synthetic biology

H. B. Bodde1
1Goethe Universität Frankfurt, Merck-Stiftungsprofessur für Molekulare Biotechnologie, Frankfurt a. M., Germany

Most antibiotics and several other therapeutics used in the clinic are derived from natural products produced by bacteria and fungi. Despite the importance of such compounds their natural function is often unknown but clearly they are not made originally to cure diseases. Using entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus we are trying to answer the following questions: What is the natural function of these natural products? How have these compounds been optimized for what mode of action? How is their biosynthesis regulated and what triggers their production? These questions typical for chemical ecology can be addressed since we can study the function of the bacterial natural products in the bacteria alone, together with their nematode host or the insect prey that is infected and killed by the nematodes carrying the bacteria in their gut and we can maintain all levels of this complex life cycle in the lab. Once the basic mechanisms have been identified they can be applied to manipulate the regulatory mechanisms for the production of specific natural products. Moreover, the detailed analysis of several bacterial genomes with their encoded biosynthetic capacity allows the identification of rules for synthetic biology enabling the modification of biosynthesis pathways and even the de novo design of “non-natural” natural products.

ISV11

Geomycology – metals, minerals and mycota

G. M. Gadd1
1University of Dundee, Geomicrobiology Group, School of Life Sciences, Dundee, Great Britain

“Geomycology” is a part of “geomicrobiology” and can be defined as the impact of fungi on geological processes, including the biowettering of rocks and minerals, metal accumulation and transformations, and element and nutrient cycling. There is growing appreciation of fungi as geoactive agents, particularly in soil, rock and mineral surface layers, and the built environment, as well as in symbioses with phototrophs. Fungal activities are dependent on hyphal growth patterns and chemoorganotrophic metabolism and, as with bacteria, many geomycological processes are of relevance to pollutant fate in the environment. Metal mobility can be altered through such processes as mineral dissolution, metal accumulation and biomining transformation. This presentation will emphasise some important activities of fungal systems in the transformation of metal(loids) such as Pb, U, Mn, Se, Te, Ca and Co where the formation of insoluble phosphates, oxides, carbonates or oxalates can provide a means of metal immobilization and biorecovery. Furthermore, some biominerals are formed at the micro- and nanoscale providing further interest for the development of novel biomaterials. Finally, mention will be made of the biodeteriorative properties of fungi regarding the destruction of mineral-based building materials, including concrete, which may have positive or negative consequences for nuclear decommissioning and radionuclide containment, and cultural heritage such as stone and mineral-based artefacts.

ISV12

They can’t do it on their own – community control over organohalide-respiring Chloroflexi

F. Löffler1
1University of Tennessee, Knoxville and Oak Ridge National Laboratory, Knoxville, USA

Hydrogen-driven reductive dehalogenation is the only energy-conserving pathway in obligate organohalide-respiring Chloroflexi such as Dehalococcoides mccartyi (Dhc). The reductive dehalogenase (RDase) enzyme systems that serve as terminal oxidoreductases require a corrinoid cofactor for catalytic activity. Remarkably, Dhc strains lack the ability for de novo corrin ring biosynthesis and strictly depend on corrinoid scavenging. Dhc strain BAV1 cultures that received 25 μg vitamin B12 L-1 dechlorinated 1,2-dichloroethene (cDCE) to ethene, but incomplete dechlorination to vinyl chloride (VC) occurred in cultures amended with 1 μg vitamin B12 L-1. Experiments with Dhc strain BAV1 and strain GT carrying the cDCE/VC reductive dehalogenase genes bvcA and vcrA, respectively, demonstrated that the lower bases of the cobamides affected dechlorination rates and extents. Amendment of 5′,6′-dimethylbenzimidazolyl-cobamide (DMB-Cba) to Dhc strain BAV1 and strain GT supported high-rate cDCE-to-ethene reductive dechlorination. Significantly lower reductive dechlorination rates were observed with cobamides carrying 5′-methoxybenzimidazole (MeBen), or benzimidazole (Ben) as the lower base. Strain-specific responses were observed in cultures supplied with MeOBen-Cba or Ben-Cba, and only strain BAV1 harboring the BvcA VC RDase, but not strain GT expressing the VcrA VC RDase, produced ethene. Amendment with DMB restored the VC-to-ethene-dechlorinating phenotype in strain GT. The characterization of cobamides synthesized in mixed cultures enriched with nitrate, sulfate, ferric iron or carbon dioxide as electron acceptors revealed that the redox conditions affect the bioavailable corrinoid pool, and thus Dhc activity. Taken together, these findings reveal that site geochemical conditions determine cobamide quantity and quality (i.e., the type of lower base), which affect Dhc reductive dechlorination rates and extents (i.e., ethene formation) and thus impact bioremediation.

ISV13

Methane oxidation in Lake Constance

B. Schink1, J. Deutzmann1, M. Bornemann1, M. Rahalkar1, I. Bussmann1
1University of Konstanz, Department of Biology, Konstanz, Germany

Methane is produced in the deeper layers of the sediment of Lake Constance and is reoxidized nearly completely within the oxygen-supplied upper 3-5 mm of the sediment. The methane-oxidizing community is rather heterogeneous, including largely type I methanotrophs. Novel methane-oxidizing bacteria were isolated in oxygen-limited cultivation devices, and growth could be improved by addition of methanol-oxidizing partners. At methane seeps in the Eastern part of the lake, higher numbers of methanotrophs were detected, and the predominant methane oxidizers differed also qualitatively from those at reference sites. Besides aerobic methane oxidation, nitrite-dependent anaerobic methane oxidation by NC10-like bacteria appeared to be dominant, especially in sediments at greater water depths (> 40 m). Sulfate-dependent methane oxidation was not detected. Our results show that the diversity of methane oxidation in a freshwater lake is far greater than expected until only a few years ago.

ISV14

Environmental change, niche specialisation and microbial communities – What can we learn from ammonia oxidisers?

I. E. Dennis1
1University of Aberdeen, Institute of Biological and Environmental Sciences, Aberdeen, Great Britain

Molecular techniques revolutionised both our ability to characterise natural communities of ammonia oxidisers and our views of their diversity and community structure. The first 16S rRNA gene-based studies demonstrated considerable diversity within soil ammonia oxidiser communities, phyllogenetic groups with no cultivated representatives and environmental conditions. Novel molecules were then developed and the field was further revolutionised by the discovery of archaeal ammonia oxidisers. Ammonia oxidisers therefore provided excellent model organisms to address ecological questions, including the links between diversity, community composition and ecosystem function, the consequences of environmental change for microbial communities and the existence of niche specialisation and differentiation. These questions have been addressed using a combination of metagenomics, molecular techniques and ecophysiological studies of cultivated organisms, genomics, correlation-based field studies and experimental microcosms. They have answered some long-standing questions in ammonia oxidiser ecology and have raised new ones, but have also highlighted many issues that plague studies of soil microbial diversity in general and ammonia oxidisers in particular. This presentation will therefore consider the influence of environmental change on ammonia oxidisers and niche specialisation in the context of broader studies of soil microbiology and the ways in which it is studied.
AEV01
How to stay in hell – how hyperthermophiles colonize black smokers
R. Wirth
1University of Regensburg, Microbiology - Archaea Centre, Regensburg, Germany

Question: Black smokers are an extreme habitat (inside: 400 °C; outside: 2–4 °C) with a constant fluid stream, transporting potential colonizers within one second ca. 100,000 cell diameters off a hostile surrounding. How then, can hyperthermophiles colonize such chimney structures?

Methods: We have used various electronic microscope and light microscopic techniques, combined with swimming assays to study cell appendages of hyperthermophiles and their motility.

Results: We have shown that e.g. *Pyrococcus furiosus* uses its flagella not only for motility, but also for adhesion (e.g. to sand grains collected at the original biotope) and formation of cell-cell connections (1). Similar data have been obtained for *Methanocaldococcus villosus* (2), a hyperthermophile isolated from black smokers. This latter organism swims extremely fast (3); if speed is measured in relative units bps (= bodies per second) *M. villosus* is the fastest organism on earth. Hyperthermophiles exhibit two different swimming modes: a very fast one covering long distances in liquid surroundings, and a slower “seek mode” if encountering surfaces (3). We also have shown - by using a newly developed device (4) – that hyperthermophiles can react within < 3 seconds to high temperature by starting swimming, even if stored for 9 months at 4 °C.

Conclusions: Hyperthermophiles are able to survive for prolonged time at low temperature (e.g. 4 °C). If they are transported by chance to a hostile surrounding for them, they immediately can react to high temperatures by starting swimming. Thereby they are able to swim to a place having their optimal temperature; they can scan such a region for an optimal surface for colonization, and finally adhere there by using their flagella.

AEV02
Structure of the formylmethanofuran dehydrogenase-polyferredoxin complex – methanogens’ chemical trick to fix CO2 without ATP consumption
T. Wagner, U. Ermiler*, S. Shima*
1MPI für Terrestrische Mikrobiologie, Seigo Shima Group, Marburg, Germany
2MPI für Biophysik, Molekulare Membranbiologie, Frankfurt a. M., Germany

Doubling of the concentration of methane in the atmosphere within the last 100 years is of concern since methane is a potent greenhouse gas which significantly contributes to global warming (1). This fact highlights the importance of the methane forming pathway only performed by methanogenic archaea. The first reaction step of hydrogenotrophic methanogenesis is catalyzed by tungsten-containing formylmethanofuran dehydrogenases (FwdFmd). CO2 is fixed to formylmethanofuran as a formlyl group of methanofuran forming formylmethanofuran. The amino group of methanofuran forming formylmethanofuran. The accumulation of formate in the vicinity of the FwdA active site might increase the reactivity of formate to methanofuran.

Present structural results reinterpret the previous catalytic mechanism of the Fwd complex. Fwd first activates CO2 to formate, which is then reduced to a methyldiolyldehydroxyalkane site via an inner cavity for reacting with methanofuran. The arrangements of the polyferredoxins for forming a giant electron network might accumulate electron and thus build up an electron storage device that drives/enhances CO2 reduction by an unknown mechanism.

AEV03
Methanogenesis upside down – metabolic reconstruction of an archaeon purifying nitrate-dependent anaerobic oxidation of methane
C. Welte, A. Arshad*, H. Op den Camp*, M.S.M. Jetten*
1Radboud University, Nijmegen, Netherlands

Methane oxidation is an important process to prevent the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only few substrates as electron acceptors.

Here, we investigated a methane oxidizing enrichment culture on physiological, biochemical and genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to methanogens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal culture encoded a variety of proteins involved in an electronic transport chain similar to those found in Methanosarcina species in addition to proteins not usually found in methanogenic archaea. Nitrate reduction seems to be located in the extracellular space and may be catalyzed by an unusual Nar-like protein complex. As membrane-integral electron carriers we identified quinones and not methanophanazinnes as in methanogens. The enrichment culture produced mainly nitrite but also some ammonium during nitrate reduction, presumably by the action of an extracellular Nir enzyme. One of the key questions is how electrons from cytoplasmic reverse methanogenesis reach the nitrate reduction enzymes in the extracellular space. We will present a tentative model, based on genome and transcriptome studies, how electrons from reverse methanogenesis are transported to the nitrate and nitrite reductases, thereby suggesting how central energy metabolism and energy conservation of nitrate-driven anaerobic oxidation of methane could work.

This work was supported by the ERC AG 339880 and the SIAM-Gravitation Grant 24002002.

AEV04
Calvin-Cycle reinvented – autotrophic CO2 fixation in *Ammonifex degensii*
*A. Mall1, R. F. Say1, H. Huber2, T. J. Erb3, C. Huber4, C. Graß4, J. Sobotta4, W. Eisenreich1, I. A. Berg5
1Albert Ludwigs University Freiburg, Department of Microbiology, Freiburg, Germany
2University of Regensburg, Institute for Microbiology and Archaea Centre, Regensburg, Germany
3MPI for Terrestrial Microbiology, Marburg, Germany
4Technische Universität München, Chair of Biochemistry, Garching, Germany

Question: A thermophilic, strictly anaerobic and autotrophic member of the low-GC, Gram-positive bacteria, *Ammonifex degensii*, harbours genes for two carbon fixation pathways, the Wood-Ljungdahl pathway (WJP) and the Calvin-Benson cycle (CBC). Almost all CBC genes, including rubisco and phosphoribulokinase are organised in an operon, whereas the gene for another characteristic CBC enzyme, sedohexulose bisphosphatase (SBPase) is missing from the genome of *A. degensii*. The only candidate enzyme for this reaction in *A. degensii* is a bifunctional fructose-bisphosphate aldolase/phosphatase (FBPAP), which is encoded on the same operon as rubisco and phosphoribulokinase. Our aim was to investigate if both the CBC and the WJP are active in vivo and whether the missing SBPase can be replaced by FBPAP.

Methods: To test how the WJP and the CBC contribute to autotrophic carbon fixation in *A. degensii*, we (1) measured specific reactions of both pathways in cell extracts of autotrophically grown *A. degensii* cells; (2)
expressed rubisco, phosphoribulokinase and FBPAp in E. coli and purified and characterized them; (3) screened for characteristic phosphoglucomutase intermediates of the CBC by LC-MS; (4) profiled amino acids, fatty acids and sugars from cells that were grown in the presence of \(^{13}C\)-labelled carbohydrates (a characteristic intermediate in the WJP) for their isotopologue composition by GC-MS.

Results & Conclusion: We have strong evidence that A. degensii fixes carbon via both the CBC and the WJP: (1) The key enzymes of both WJP and CBC were active in autotrophically grown A. degensii cells; (2) recombinant rubisco, phosphoribulokinase and FBPAp were active with their respective substrates; (3) large amounts of ribulose bisphosphate, the substrate for rubisco, could be detected in A. degensii cells; (4) \(^{13}CO\) was incorporated specifically into the C1-position of acetyl-CoA, which can only be explained by an active WJP. Incorporation could be detected in all experiment amino acids, but glucose and amino acids that derive from acetyl-CoA or pyruvate, can be explained by an influx of unlabelled carbon through the CBC. No SBPase activity could be detected in recombinant FBPAp; furthermore, no ribulose bisphosphate could be detected in the metabolic pathways. This is why we propose an alternative route that proceeds via transaldolase, an enzyme that is also encoded on A. degensii’s CBC operon. Phylogenetic analysis revealed that rubisco, phosphoribulokinase and FBPAp show a high similarity to archael sequences, indicating that A. degensii’s CBC has evolved through lateral gene transfer.

AEV/05

Ced – A DNA import system conserved in Crenarchaeae

A. Wagner, † M. van Wofleren, ‡ C. van der Does, §-V. Albers

† University Freiburg, Freiburg, Germany

Sulfoboluses exchange DNA in a pili dependent manner upon treatment with UV-light or other DNA double strand break inducing agents like bleomycin. Previously we showed that the UV-inducible pili system (Ups) initiates cellular aggregation, which is essential for the exchange of chromosomal DNA within these aggregates. Yet, intriguingly so far no obvious homologs of bacterial DNA transporters could be found among Sulfoboluses and Crenarchaeae in general, the mode of DNA transport therefore remained a mystery. We identified saci_0568 and saci_0748, two highly induced genes upon UV treatment encoding a transmembrane protein and an FtsK-HerA-ATPase homolog. Upon UV-treatment, deletion mutants of saci_0568 and saci_0748 are able to form wild type-like cellular aggregates suggesting that the proteins are not involved in Ups-pili formation. Interestingly, with DNA transfer assays we were able to show that both proteins are essential for DNA transfer between Sulfobolus pili. By screening the genotype of recombinants of mixtures of Ups strains with Ac_0568 or Ac_0748, we were able to show that Ac_0568 and Ac_0748 strains can only export DNA. We therefore propose that Saci_0568 and Saci_0748 are part of a novel DNA import system. In addition, we showed that two small neighboring genes (saci_0567 and saci_0569) encode proteins that seem to be part of this DNA transfer complex. This transporter system is widely spread among Crenarchaeae and therefore we propose to name it the Crenarchaeal system for exchange of DNA (Ced).

AEV/06

New insights into the functions of TrmB proteins in Pyrococcus furiosus

R. Reichelt, †J. Wiege, ‡M. Thomm, § W. Hausner

† University of Regensburg, Institute of Microbiology and Archaea Center, Regensburg, Germany

Question: Transcription factors of the TrmB family of transcriptional regulators are widely distributed in Archaea, but especially accumulated within the Thermococcales (1). TrmB1 of Pyrococcus furiosus is one of the best studied regulators of this family. It is a global regulator, which controls as repressor or activator genes expressing proteins involved in sugar uptake, glycolysis or gluconeogenesis (2). The dual functionality of TrmB1 relies on specific binding upstream or downstream of the corresponding promoters. TrmB2 is also highly conserved within the Thermococcales, but recent data indicate that this protein is a DNA-architectural protein instead of a transcriptional regulator (3, 4, 5). These findings argue for a more non-sequence-specific DNA binding in the case of TrmB2, although the DNA-binding domains of both proteins are highly conserved.

Methods: To get more information about the in vivo DNA binding specificity of these two proteins we performed Chromatin Immunoprecipitation experiments in combination with high-throughput sequencing (ChIP-seq). Identified binding sites were further assessed by bioinformatical and biochemical validation.

Results: ChIP-seq analysis of TrmB1 confirmed known and predicted binding sites as well as revealed numerous novel binding sites of this transcription factor in the genome of P. furiosus, which are almost exclusively located in promoter regions. Moreover, these data verified the function of the TGM as cis regulatory DNA element for TrmB1 binding in vivo. In contrast, TrmB2 binding events are widely distributed over the whole genome and are located in coding as well as non-coding genomic regions. Further bioinformatical and biochemical analyses indicate that binding of TrmB2 to the P. furiosus genome appears to be independent from a specific sequence feature or motif.

Conclusion: Combining ChIP-seq with detailed bioinformatical and biochemical analysis showed two different DNA binding modes by TrmB1 and TrmB2, which suggests differing functions of both proteins in vivo. Whereas TrmB1 specifically binds promoter regions, where it acts as transcriptional repressor or activator, TrmB2 binds the DNA as architectural protein contributing to nucleoid organization and compaction.

BIOspektrum · Tagungsband 2016
AEV08
Circularization restores signal recognition particle RNA functionality in Thermoproteus
*M. Daume1, A. Plagens1, L. Randau1
1Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany

All cells on earth generate proteins that are required to be transported to the cell membrane (in prokaryotes) or the endoplasmic reticulum (in eukaryotes) to allow their secretion. These proteins contain a signal peptide sequence that is recognized by the essential and evolutionarily conserved signal recognition particle (SRP) pathway. A SRP is always a ribonucleoprotein complex consisting of a single RNA molecule and few associated proteins. However, genome sequencing of archaeal species of the genus Thermoproteus did not identify standard SRP RNA genes. Thus, we aimed to solve the mystery of the “missing” component of this essential protein-targeting machine in these organisms using an RNA-Seq approach.

It was discovered that the “missing” universal SRP RNA gene was not yet identified due to its permutation; i.e. rearrangements of the genome resulted in a swap of the left and right portions of the SRP RNA gene. The correct sequence order is restored in mature SRP RNA molecules as their ends are permanently linked, resulting in circular SRP RNAs that can function in the cell. SRP assembly was confirmed in vitro. Furthermore, it was shown that the machinery that removes introns from transfer RNAs is responsible for the SRP RNA circularization reaction which highlights that moonlighting rearrangements can evolve for ancient pathways (1).

We will discuss possible selective pressures that led to these drastic genome rearrangement events and propose that only the presence of an intron within an SRP RNA gene allows gene permutation. The resulting circular RNA molecules are highly stable which might be an advantage for Thermoproteus species growing at temperatures of up to 95 °C.

BDV01
Soil – sediment microbial community adaptation due to a long history of oil contamination
*A. Michas1, M. Granitsiotis1, K. Trautwein2, K. Nikolaou3, C. Vorgias4, H. Mourad5, P. Schmitt-Kopplin5, H. Wilkes2, R. Rabus2, P. Avramidis3, D. Hatzinikolaou4, A. Schöler1, M. Schloter1
1Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
2University of Oldenburg, Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
3Friedrich Schiller University Jena, Angewandte und Ökologische Mikrobiologie, Jena, Germany
4Mikrobiologisches Zentrum München, Research Unit Environmental Genomics, Neuharberg, Germany
5University of Oldenburg, Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany

Oil contamination due to anthropogenic activity can persist in the environment for many years with severe environmental impact. Natural oil seeps offer a unique opportunity to study the evolution and adaptation of ecosystems to long-term contamination and the biodegradation potential of indigenous microorganisms. Most oil seeps investigated so far are located on the seabed, thus there is little data available about microbial communities in other environments.

Here, we investigate a natural coastal oil seep located in Zakynthos Island, western Greece, called Keri Lake. In this unique ecosystem, flow of tar and petroleum products to the surface has been observed for more than 2000 years. We hypothesize that a well-adapted microbial community has been shaped under the long presence of oil hydrocarbons in soil. In order to study its structure and functional potential related to hydrocarbon biodegradation, replicate soil cores up to 7 meters were collected in October 2013 from highly- and non-contaminated areas in Keri Lake. The cores were sampled in situ in various depths spanning from ~0.1 to 6.5 meters.

The influence of hydrocarbons and sampling depth on microbial communities was assessed using metagenomic shotgun sequencing. Our data revealed a significant influence of the contamination on community diversity. Highly- and non-contaminated sites were dominated by Bacteria, especially Desulfofhabacteriae and Dehalococcoidia species. Evidence that the latter play an important role in the degradation of aromatics is presented. Additionally, a clear increase of archaeal sequences was observed in the highly contaminated samples together with a higher potential for methanogenesis. In contrast, processes like sulfate reduction and denitrification were slightly decreased compared to non-contaminated sites.

To confirm these observations and further characterize this unique ecosystem the obtained molecular data was further correlated to abiotic soil parameters and the chemistry of the oil.

BDV02
Biodegradation of aromatic compounds in a coal tar polluted aquifer studied by denaturing BETX-degrading enrichment cultures and in-situ community analysis
*M. Sperfeld1,2, R. U. Meckenstock2
1Friedrich Schiller University Jena, Angewandte und Ökologische Mikrobiologie, Jena, Germany
2University of Duisburg-Essen, Biofilm Centre – Institute of Aquatic Microbiology, Essen, Germany

Question: Petrochemical processing of fossil fuels is often accompanied by an unintentional release of pollutants into the groundwater. Contaminants such as monoaromatic BETX are a serious risk to human health and their environment. Some microorganisms can utilize these compounds for energy conservation and growth. In this study, the capacity for natural attenuation was evaluated along a pollutant gradient in an anaerobic aquifer of a former gas works site.

Methods: Groundwater samples from three different wells were collected for DNA extraction and establishment of BETX-degrading enrichment cultures. For enrichment, anoxic groundwater was incubated with additional nitrate and single BETX (benzene, toluene, ethylbenzene, xylenes) and controlled for biotic substrate consumption. The community structure in the enrichment cultures as well as in the groundwater samples was analyzed by bacterial 16S rRNA next-generation sequencing and fingerprinting of a gene (bamA) involved in anaerobic degradation of monoaromatic compounds.

Results: Microorganisms that degrade toluene and ethylbenzene were enriched from all sampling wells, whereas p- and m-xylenes degrading microorganisms were only enriched from two wells with high contaminant concentrations. Benzene and o-xylene were not degraded. Toluene and ethylbenzene degrading cultures were dominated by Azotococcus spp. In p-xylenes degrading cultures, members of the genus Geogrbuchia were most frequent. Aromatic compound-degrading microorganisms were present in the groundwater well communities, including Fe(III)-reducing (Geobacter), sulfate-reducing (Desulfosarcina, Desulfomelle, Desulfomatuca) and fermenting (Syntrophus, Pelotomaculum) genera.

The highly conserved bamA gene was detected in all groundwater wells and in the enrichment cultures, supporting the applicability of bamA as a marker for monoaromatic compound degradation.

Conclusion: Enrichment cultures confirmed the presence of denitrifying BETX-degrading microorganisms in the polluted aquifer. It was further shown that different genera (all belonging to the Rhodocyclaceae) were specialized for the degradation of different BETX and that these organisms were unevenly distributed along the pollutant gradient. Besides the fermentation of enrichment cultures, new advances in lab rRNA sequencing allowed an affordable and in-depth microbial community analysis, from which conclusions can be drawn about the prevailing metabolic processes. The combinatorial application of the methods described here is well suited for the evaluation of natural attenuation capacities; a prerequisite for the decision-making and monitoring of bioremediation projects.

BDV03
Conversion of cis-2-carboxycyclohexylacetic acid in the down-stream pathway of anaerobic naphthalene degradation
*P. Weyrauch1,2, R. U. Meckenstock2
1Friedrich Schiller University Jena, Angewandte und Ökologische Mikrobiologie, Jena, Germany
2University of Duisburg-Essen, Biofilm Centre – Institute of Aquatic Microbiology, Essen, Germany

Background: The ability of anaerobic naphthalene degradation has been demonstrated for the deltaproteobacterial strains N47 and NaphS2 under sulfate-reducing conditions (Galushko et al., 1999, Meckenstock et al., 2000). It was shown recently that after carboxylation to 2-naphthoic acid (Mouttaki et al., 2012) and formation of the corresponding CoA-ester, the latter is stepwise reduced to a hexahydro-2-naphthoyl-CoA with unknown conformation of the remaining double bonds (Eberlein et al., 2013). Furthermore, cis-2-carboxycyclohexylacetic acid could be identified as a metabolite of the down-stream pathway (Annewiler et al., 2002).

Objectives: Starting from the known metabolite cis-2-carboxycyclohexylacetetyl-CoA, our aim for this study was the elucidation of the next metabolites of the pathway and the identification of the enzyme reactions finally leading to the second ring-cleavage.
Methods: The metabolite cis-2-carboxycyclohexylacetic acid was chemically synthesized and converted to the corresponding coenzyme A thioester. The latter was tested for conversion in cell-free extracts of N47 and NaphS2 in the presence of different potential co-factors and electron acceptors. Standards were analysed by HPLC and emerging metabolites were further characterised via GC-MS and high-resolution MS.

Conclusion: Conversion of cis-2-carboxycyclohexylacetyl-CoA was only observed in the presence of ferrocenium hexafluorophosphate, which can oxidise enzyme-bound co-factors like FADH2. The first emerging metabolite had a double-bond introduced, indicating the activity of a FAD-dependent acyl-CoA dehydrogenase. Also the product of the next enzyme, a hydratase, could be detected. Combining these data, we can for the first time make a detailed proposal for the steps leading to the second ring-cleavage in the down-stream pathway of anaerobic naphthalene degradation.

Results: In the water-sediment system, 55.7 % of 13C of glyphosate was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2.4 % of 13C of glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was mineralized in the soil more rapidly and at the end labelled CO2 constituted about 73 % of 13C3-glyphosate equivalents. A rapid increase in 13C3-N-AMPA after 10 days was noted in water-sediment system and these transformation products ultimately constituted 26.2 % of the 13C-glyphosate and 78.5 % of the 13C-N-glyphosate equivalents. Initially, glyphosate was biodegraded via the saccharic pathway related to microbial growth, as shown by co-labelled 13C3-N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of 13C-glycine.

Conclusion: The presented data provide the first evidence of the utilization of glyphosate as a C and N source and highlight the relevance of both the AMPA and the pathways in the water-sediment and soil system.

Methods: Enrichment cultivation, chromatographic purification, UV/Vis spectroscopy, HPLC, Oxygen consumption assay, ICP-MS, MALDI-TOF.

Results: A rubber-degrading bacterium isolated from latex waste was used for further analysis. The bacterium was able to degrade rubber latex, and the degradation products were analyzed by GC-MS and LC-MS. The results showed that the rubber was degraded into smaller fragments, and the degradation products were identified as fatty acids, alcohols, and aldehydes.

Conclusion: The organism isolated from latex waste is capable of degrading rubber, and the degradation products can be used as a source of carbon and energy by biodegradation. In Gram-positive bacteria, the ability to grow on polysaccharide correlates with the presence of Lcp (1). The heterologous expression of Lcp was achieved in 2014 (2,3) and recently LcpB30 was biochemically characterized and identified as a type-4 cytochrome (4). In this study, a newly isolated potent rubber degrading strain was described and its Lcp was biochemically characterized.

Methods: Enrichment cultivation, chromatographic purification, UV/Vis spectroscopy, HPLC, Oxygen consumption assay, ICP-MS, MALDI-TOF.

Results: A rubber-degrading bacterium isolated from an enrichment culture with latex gloves as carbon source was identified as *Rhodococcus rhodochrous*. The bacterium was able to degrade rubber latex, and the degradation products were analyzed by GC-MS and LC-MS. The results showed that the rubber was degraded into smaller fragments, and the degradation products were identified as fatty acids, alcohols, and aldehydes.

Conclusion: The organism isolated from latex waste is capable of degrading rubber, and the degradation products can be used as a source of carbon and energy by biodegradation. In Gram-positive bacteria, the ability to grow on polysaccharide correlates with the presence of Lcp (1). The heterologous expression of Lcp was achieved in 2014 (2,3) and recently LcpB30 was biochemically characterized and identified as a type-4 cytochrome (4). In this study, a newly isolated potent rubber degrading strain was described and its Lcp was biochemically characterized.
concentrated Lcp<R> was brown in contrast to the red color of Lcp
 and of most other cytochromes. Evidence for an open conformation of Lcp
 and for a closed conformation of Lcp
 was obtained by spectral analysis of both Lcp in the presence of imidazole as a small heine ligand. Our data indicates substantial differences in the active sites of Latex clearing proteins from different rubber degrading bacteria.

Conclusion: Lcp
 from the newly isolated potend rubber degrading strain *Rhodococcus rhodochrous* RPK1 was purified, biochemically characterized and differs from Lcp
 in the stated characteristics.

(B)VD07

Formation of bisphenol-phosphate conjugates by Bacillus amyloliquefaciens – a novel mechanism to reduce toxicity and estrogenicity of bisphenols

M.-K. Zühike, R. Schüttler*, A.-K. Henning†, M. Lipka†, A. Mikolasch‡, P. Schumann‡, M. Giersberg†, G. Kunze†, F. Schafer†

1Ernst Moritz Arndt University of Greifswald, Institute of Microbiology, Greifswald, Germany

2Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany

3Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany

Question: Bisphenol A (BPA) and structurally related bisphenols are used as a basic monomer in the manufacture of polycarbonate plastics and epoxy resins. Among other sources sewage treatment plants (STP) represent an important entry path of bisphenols into the environment. Their distribution is of great concern since these compounds are poorly biodegradable and considered to be toxic as well as endocrine disruptors that interact with several hormone receptors. Whereas these interactions are well described for BPA, little is known about other bisphenols regarding risks for human health and the environment. Therefore we focused on the transformation of BPA and four structurally related bisphenols by *Bacillus amyloliquefaciens* SBUG 1837 isolated from sewage sludge to investigate the ability of bacteria in STP to biodegrade environmental pollutants.

Methods: The microbial transformation of bisphenols was analyzed by high performance liquid chromatography (HPLC). For structure elucidation of the products formed mass spectrometric (LC-MS, GC-MS) and nuclear magnetic resonance spectroscopic analyses (NMR) as well as deconjugation experiments were carried out. Estrogenic activity was determined by a yeast-estrogen-screen-assay. Morphological effects of bisphenols on bacterial cells were studied using electron microscopic examinations.

Results: *B. amyloliquefaciens* SBUG 1837 transformed each bisphenol into one major product but its formation was partly reversible. Transformation rates varied from 77% of the initial bisphenol concentration to 60 μg ml⁻¹ were achieved. Structure elucidation proved the formation of bisphenol-phosphate conjugates. In contrast to the transformation reaction, toxicity and estrogenicity strongly depended on structure of bisphenols correlating with their hydrophobicity. However, conjugates formed were non-toxic and considerably less estrogenic than their parent bisphenols.

Conclusion: The formation of phosphate conjugates by *B. amyloliquefaciens* SBUG 1837 eliminated toxicity and significantly reduced estrogenicity of bisphenols. There is hardly any information about the linkage of environmental pollutants with phosphate residues (Kurozumi et al., 1978). Thus, we describe a new mechanism of conjugate formation with bisphenols. This demonstrates the potential of bacteria to transform pollutants in STP. However, it should be considered that the formation of bisphenol-phosphate conjugates by bacteria from wastewater can lead to a diminished analytical determination of bisphenols in STP and consequently to an underestimation of the potential risks to humans and animals due to the reversibility of this reaction.

Predators included a protist (generalist predator), a bacteriophage (specialist “predator”) and a predatory bacterium (Bdelovibrio-and-like organism, BALO) that only preys upon Gram-negative bacteria. Klebsiella sp., Staphylococcus sp., and Pseudomonas putida were included as typical wastewater bacteria. We found that only the specialist predators (phages and BALOs) were able to drive their preferred prey bacteria to extinction when incubated with all three prey species. However, phages and/or BALOs in combination with the generalist predator were able to reduce all prey species to a similar extent. Here, all predator and prey species were able to coexist. We therefore conclude that the protist acted as a key player in our system and was able to balance the effects of the specialist predators. We also found that predator growth was higher when incubated with multiple prey species, independent of the predator’s ability to utilize all those species. Surprisingly, we observed a reduction in the prey’s generation time when exposed to the specialist predators; on the contrary, predation by the protist led to an increase in the generation time. We were able to link the change in Klebsiella generation time to the development of resistance to the phage, but only in settings with sufficient nutrient supply for the bacterium. Resource availability might be promoted by a generalist predator, most likely due to its removal of potential resource competitors, as we find a high rate of bacterial resistance in experiments that contain protists. This trade-off might therefore only develop in highly nutritious environments like wastewater, since it is likely coupled with higher energy requirements.

Our results imply that a generalist predator may not only directly reduce prey in a multi-predator system, but also indirectly by its impact on the development of bacterial resistance to a specialist predator. Considering this effect in process operations containing microbes, might therefore help to strengthen a process’ robustness.

BEV02
The intestinal microbiome of root fly larvae – a source of isothiocyanate degrading enzymes
*T. van den Bosch1, R. de Graaf2, H. Op den Camp3, M.S.M. Jetten2, C. Welte1
Radboud University, Microbiology, Nijmegem, Netherlands

Question: Plants of the Brassicaceae family produce toxic isothiocyanates to provide protection against herbivorous insects and mammals, as well as pathogenic bacteria. The larvae of the cabbage root fly (Dela radicum) is one of few specialist insects that are able to feed on Brassicaceae. We hypothesized that D. radicum copes with high ITC concentrations with the help of microbes residing in the gut of the insect larvae.

Methods: The gut microbial community of lab-reared D. radicum larvae was profiled by 16S rRNA gene sequence analysis derived from a metagenome. ITC resistant strains were isolated from D. radicum intestines by successive clean streaking on 2-phenylethyl isothiocyanate (2PE-ITC) rich medium. Naturally occurring plasmids were isolated from these strains and subsequently sequenced, assembled and annotated. Plasmid-encoded genes were compared to a database of sax genes that are known to confer resistance against aliphatic isothiocyanate. saxA homologous gene sourced from one of those plasmids (pDbg3b) was transformed into competent E. coli cells and brought to expression. Transformed E. coli strains were tested for increased resistance against 2PE-ITC. Purified SaxA protein activity on 2PE-ITC was determined by GC-MS.

Results: Four strains capable of metabolizing 2PE-ITC were isolated from the gut. Plasmid pDbg3b, found in all four isolates, contained an operon with three genes with close homology to the saxCAB region associated with aliphatic ITC resistance. Heterologous expression of the saxA gene in E. coli transformants increased bacterial resistance to 2PE-ITC compared to empty vector controls. Purified SaxA protein was shown to catalyze the hydrolysis of several isothiocyanate species.

Conclusions: Four 2PE-ITC resistant bacterial strains in the D. radicum gut carry a natural plasmid containing genes that facilitate ITC breakdown. The SaxA protein is the first representative of a novel family of ITC hydrolyase enzymes and is hypothesized to facilitate the first step in a previously undescribed ITC breakdown pathway. Our findings suggest that bacteria may aid in detoxifying the insect diet. The degree of the insect’s dependence on gut microbes to overcome plant defenses awaits further study.

BEV03
Elucidation of the structural and functional diversity of the rumen microbiota
*S. Deusch1, A. Camarinha da Silva1, J. Conrad2, M. Rodehutscord1, J. Seifert1
1University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
2University of Hohenheim, Institute of Chemistry, Stuttgart, Germany

The structure and functions of microbiota inhabiting the gastrointestinal tract are mainly shaped by the host’s food intake. Apart the dietary impact, individuals maintain their own specific gut microbial composition. Describing the influence of various animal feedings on the inherent community arrangement and associated metabolic activities of the most active ruminal fractions (composed of bacteria and archaea) is of great interest for animal nutrition, biotechnology and climatology.

Samples were obtained from three fistulated Jersey cows rotationally fed either with corn silage, grass silage or hay and split into three sections (ruminal fluid, squeezed solid and solid matter). Microbial communities were examined by Illumina sequencing of the 16S rRNA (V1 and V2 regions) and by LC-MS/MS based metaproteomic analyses comprising specific sample preparation procedures (Deusch & Seifert, 2015). Further on the respective metabolomes were determined by 500 MHz-NMR spectroscopy.

Despite the predominating individuality of the microbiota structure, significant alterations in response to particular feedings were observed exploring the data obtained by metaproteomic and metabolomics. Species of the family Succinivibrionaceae showed higher abundance in corn-based samples whereas cellulolytic Fibrobacteraceae appeared in larger numbers in grass and hay diets. Fiber-degraders of the Lachnospiraceae family emerged in great quantities throughout the solid fractions. Comparing 16S rDNA based results with metaproteomic analyses, Prevotellaceae were found to be more abundant in the protein fractions. In contrast, proteins belonging to Acidaminococcaceae and Ruminococcaceae appeared to be less contributing. Enzymes involved in amino acid transport and metabolism increased in corn diets, proteins related to posttranslational modifications, proteins turn-over and chaperons were less present in hay feeding.

Disregarding the diet-introduced changes in structure and function of the microbiota a host dependent microbiota composition was found to be prevailing. The microbial community of solid rumen matter was shown to be clearly distant from rumen fluids. The combination of omics-technologies represents a powerful tool to investigate the microbiota of complex ecosystems like the rumen. In order to retrieve deeper insight into the complicated network of gut microbial adaptation and to improve efficiency in livestock further investigations will be necessary.

BEV04
Contribution of uncultured Planctomycetaceae to the degradation of 4-chloro-2-methylphenoxyacetic acid in the drilosphere
A.-L. Schöps1, A. Dallinger1, *M. A. Horn1
1University of Bayreuth, Ecological Microbiology, Bayreuth, Germany

4-chloro-2-methylphenoxyacetic acid (MCPA) is a widely used phenoxyacetic acid herbicide in agriculture and a potential soil and ground water contaminant. Degradation occurs mainly under oxic conditions in soils. Earthworms dominate macrofauna in many soils, shape soil microbial communities by selective activation, and aerate soils by their burrowing activity. Thus, the impact of the anecic, litter feeding earthworm Lumbricus terrestris on the mineralization of M CPA and associated microbial community was assessed in soil columns that received agriculturally relevant concentrations of [13C]MC PA via RNA stable isotope probing combined with GC-C-RMS and HPLC. Treatments with [13C]MC PA served as controls. [13C]MC PA disappeared and was mineralized within 45 and 60 days in the presence and absence of worms, respectively. Recoveries of M CPA-[13C] in [13C]O 2 approximated 45% and 25% in the presence and absence of worms, respectively. Illumina sequencing of 16S rRNA amplicons generated from [13C]-labelled and unlabelled [13C]-RNA suggested diverse active (family level) taxa in soil and drilosphere (i.e., earthworm impacted soil including burrows and cast). 16S rRNA affiliated with Planctomycetaceae was strongly [13C]-labelled in cast and burrow walls. Comamonadaceae, Comamonadaceae, Oxalobacteraceae, Rhodobacteraceae and Sphingomonadaceae were of minor importance. Comamonadaceae and Sphingomonadaceae related 16S rRNA were strongly [13C]-labelled in bulk soil. The collective data indicate that L. terrestris stimulates MCPA mineralization via activation of hitherto uncultured Planctomycetaceae, thus extending our knowledge on the physiological capabilities of an understudied, yet abundant family in soils.
BEV05

Genomic signatures of plant growth promoting *Bacillus*
"O. Reva"
University of Pretoria, Center for Bioinformatics and Computational Biology, Biochemistry Dep., Pretoria, South Africa

Variety of bacteria related to *B. subtilis - B. amyloliquefaciens* group are widely used in agriculture for plant growth promoting biocontrol of phytopathogens. Efficiency of these strains depends on the ability to colonize plants. Successful plant colonizers may be found among strains of different species. Identification of important genes and transcription regulation mechanisms ensuring the effective plant colonization will advance greatly our understanding of biology of plant growth promoting rhizobacteria (PGPR) and designing of new biopesticides. In this work, a holistic approach was used to compare whole genome sequence data generated for 12 model strains of *B. subtilis, B. amyloliquefaciens, B. atrophaeus* and *B. mojavensis* with biossay data on activities of these strains in terms of plant growth promotion, competing against phytopathogens, improving drought tolerance in plants and shelf-life prolongation of crops in store room. Sixteen genes involved in oxidative stress response, sugar metabolism and transcriptional regulation were found to be shared by the most active strains despite their belonging to different species but absent in their non-active closest relatives. Involvement of horizontal gene transfer events was hypothesized. Designing genome specific barcodes allowed tracing the distribution of different lineages of these microorganisms in nature by mapping reads from publicly available metagenomic datasets against the created barcodes. It was found that the active PGPR strains had different ecological preferences. While some of them were abundant in grassland, others were more frequent in forest rhizosphere or in phyllosphere. These differences also should be taken into consideration when new biopesticides are designed. Another level of research was on gene transcription regulation. RNA-Seq comparison of gene expression profiles of an active PGPR strain *B. atrophaeus* UCMB-5137 stimulated by root exudate revealed the most important transcriptional factors involved in gene regulation during rhizosphere colonization. Analysis of the differential expression in intragenic spacer regions identified 49 putative non-coding RNA (ncRNA) and their mRNA targets. Despite being located in hyper-variable intragenic regions, the loci involved in ncRNA-mRNA interaction showed significant sequence conservation between organisms of *B. subtilis* group and also in more distant bacteria of *B. pumilus, B. licheniformis, B. halodurans* and *B. cereus*. It was hypothesized that the analysis of conservation in these loci also may help in selection the most active PGPR strains for future biotechnological application. Comparison of genomes of selected organisms on the levels of genomic sequences and genome functionalities allowed selecting of genetic signatures suitable for estimation of biological activities of PGPR strains and designing of new biopesticides.

BEV06

Distribution pattern of arbuscular mycorrhizal fungi in a tropical dry forest
*N. M. F. Sousa*1, 2, S. D. Veresoglu1, F. Oehl1, L. C. Maia2, M. C. Rilling1
1Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Dahlem, Germany
2Federal University of Pernambuco, Department of Micology, Recife, Brazil, Brazil
3Federal Research Institute Agroscope, Plant Soil Interact, Zürich, Switzerland, Switzerland

Arbuscular mycorrhizal fungi (AMF) are symbionts of the majority of vascular terrestrial plants and achieving a better understanding of their ecology could be invaluable due to their pervasive effects on plant fitness and NPP. Here we asked whether AMF communities on the top of rocky outcrops, termed inselbergs, could differ systematically from those of the surrounding plains. Our study area was located at a tropical dry forest in northeast semi-arid Brazil. We identified 12 rocky outcrops and we delimited surrounding sites of 5m x 20m. These consisted of a plot on top of the outcrop and three plots evenly dispersed over the surrounding plain with a minimum distance of 1 km to each other. From all plots, we obtained a single composite soil sample (ten soil cores 0-20 cm depth). AMF communities were identified based on spore morphology. We tested for systematic community shifts or diversity differences between the inselberg and plain AMF communities. For this reason, we used a range of multivariate approaches as well as paired t-tests. We found no evidence for AMF diversity or community shift differences in our plain-inselberg comparisons. A further forward-backward-elimination redundancy analysis of 22 soil properties revealed that the only systematic differences other than a site effect present in our system resulted from soil sodium [Na] differences. The result was confirmed through a permANOVA and an indicator species analysis revealed that four AMF species were associated with soil of either low or high [Na]. The species *Gigaspora gigantea* was a good indicator of low [Na] and *Acudospore scrobiculata, Acudospora sp.* and *Rhizoglomus natalensis* of high [Na]. Our results suggest a potential role of [Na] as a factor affecting AMF community structure.

BEV07

Diversity and species recognition of the *Mucor circinelloides* complex
*L. Wagner*1, V. Schwartz1,2, K. Voigt1,2, D. de Hoog3, O. Kurzai1, G. Walther1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
2Friedrich Schiller University, Jena, Germany
3CBS, Utrecht, Netherlands

The zygomycete fungus *Mucor circinelloides* (Mucorales, Mucoromycotina) is a common saprotroph found in soil and all kinds of wet organic matter. As spoilage organism of food and beverage it is a permanent part of the human environment. It is used as fermenting agent of soybean based traditional Asian food. On the other hand, *M. circinelloides* is an opportunistic pathogen and the prevailing *Mucor* species involved in fungal infections (mucomycoses). The last taxonomic revision of the *Mucor circinelloides* complex based on morphology and mating tests was performed nearly fifty years ago and resulted in the recognition of four formae: *f. circinelloides*, *f. griseocyanus*, *f. janssensi* and *f. lusitanicus*. Recent molecular phylogenetic analyses based on a single locus only or on a small number of strains revealed an unexpected high diversity and several taxonomic discrepancies. The formae formed supported groups in these analyses for which reason their taxonomic status is controversial currently. In order to clarify the taxonomic status of the formae and to provide a reliable species concept we performed a polyphasic study of the *Mucor circinelloides* complex including multi-locus phylogenies, mating tests as well as morphological and physiological studies including about 80 strains. Using a phyloeme database of four mucoralean genomes new phylogenetic markers could be successfully applied for our molecular phylogenies. Mating experiments followed by a detailed analysis of the resulting zygospores were used to estimate biological species boundaries and to validate the results of the phylogenetic species recognition. Here we present the new taxonomic concept of the *Mucor circinelloides* complex that will contribute to a better understanding of epidemiology and ecology of these fungi.

BEV08

The troublesome life of microbes in leached slag
"C.-E. Wegener1, W. Liesack1
1Max Planck Institute for Terrestrial Microbiology, Biogeochemistry, Marburg, Germany

The leaching of sulfur-containing minerals such as alum from soft coal was common until the end of the 19th century for early industrial applications. The leaching process yielded large amounts of leached soft coal slag as by-product. These slags were dumped into the environment in an uncontrolled way until the 1970s, when local and national regulations were imposed for chemical and health reasons. The leaching of sulfur- containing minerals such as alum from soft coal was common until the end of the 19th century for early industrial applications. The leaching process yielded large amounts of leached soft coal slag as by-product. These slags were dumped into the environment in an uncontrolled way until the 1970s, when local and national regulations were imposed for chemical and health reasons. The leaching of sulfur-containing minerals such as alum from soft coal was common until the end of the 19th century for early industrial applications. The leaching process yielded large amounts of leached soft coal slag as by-product. These slags were dumped into the environment in an uncontrolled way until the 1970s, when local and national regulations were imposed for chemical and health reasons.

The leaching of sulfur-containing minerals such as alum from soft coal was common until the end of the 19th century for early industrial applications. The leaching process yielded large amounts of leached soft coal slag as by-product. These slags were dumped into the environment in an uncontrolled way until the 1970s, when local and national regulations were imposed for chemical and health reasons.
primarily affiliated with Acidobacteria (5), Actinobacteria (6), Alphaproteobacteria (5), Chloroflexi (6), and Planctomycetes (3), including genomes linked to the uncharacterized groups identified by SSU rRNA community profiling (DA052, KF-JG30-18, DA111). An detailed analysis of these genomes suggested that microbes residing in slag cope with high aluminum concentrations by combining strategies such as efflux systems, chelation, and aluminum-binding proteins. Although heavy metals and xenobiotics have not been detected in significant amounts in slag, microbes present harbor high numbers of genes linked to heavy metal detoxification and xenobiotics breakdown. The presence of these genes may provide us with a glimpse of the conditions that microbes were encountering while initially colonizing the slag. Aluminum is a frequently overlooked abiotic factor. Given the unusual geochemical settings and observed broad metabolic capabilities, ongoing work involves metagenomic mining and tailored enrichment and isolation efforts to shed more light on the mechanisms facilitating the survival and persistence of microbes in this unusual habitat.

BMV01

The tetrathionate/thiosulfate reduction potential determined by catalytic protein film electrochemistry

"J. Karth1, J. Butt2, C. Dahl3"

1Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Mikrobiologie & Biotechnologie, Bonn, Germany

2University of East Anglia, School of Chemistry and School of Biological Sciences, Norwich, Great Britain

The interconversion of tetrathionate and thiosulfate is a two-electron process: $\text{S}_4\text{O}_6^{2-} + 2 e^- \rightarrow 2 \text{S}_2\text{O}_3^{2-}$. Both transformations can support bacterial growth since thiosulfate can be used as energy source by several microorganisms, while tetrathionate serves as respiratory electron acceptor [1, 2]. Interest in thiosulfate oxidation also arises from its widespread use in volumetric analysis of oxidizing agents and bleach neutralization during water treatment. Thus, exact knowledge of the tetrathionate/thiosulfate reduction potential is not only of huge interest for the field of microbiology but also contributes to a better understanding of industrial applications involving thiosulfate. However, considerable ambiguity exists concerning this potential with values between $+24$ and $+300$ mV versus SHE published over the last five decades. This variation stems largely from the irreversible nature of the thiosulfate/tetrathionate interconversion at an inert electrode precluding direct measurements. As a consequence, all previously reported values relied completely on calculations from relevant thermodynamic data. Here, we solve the issue and report protein film electrochemistry as an experimental measure for the reduction potential of the tetrathionate/thiosulfate couple [3]. The reduction of tetrathionate to thiosulfate and the reverse reaction are catalyzed by enzymes of the thiosulfate dehydrogenase, TsdA, family adsorbed on graphite electrodes. Zero-current potentials measured with enzymes from two different bacterial sources (Campylobacter jejuni and Marichromatium purpuratum), at three pH values, and multiple thiosulfate and tetrathionate concentrations together with the relevant Nernst equation resolved the experimental measure for the reduction potential of the tetrathionate/thiosulfate reduction potential as $+198 \pm 4$ mV versus SHE.

BMV02

A class C radical S-adenosylmethionine methyltransferase synthesizes 8-methylmenaquinone

"O. Klümpek1, S. Hein1, D.-N. Schul1, M. Polly1, M. Kern1, J. Simon1"

1Technische Universität Darmstadt, Microbial Energy Conversion and Biotechnology, Darmstadt, Germany

Question: The membranous quinone/quinol pool is an essential cellular component for the majority of life forms on Earth. The most important biologically relevant quinones are ubiquinone (UQ) and menaquinone (MK; vitamin K$_3$), which differ in their biogenesis pathways and midpoint redox potentials, thus making them adaptable redox mediators in electron transport chains (ETCs) [1]. Some microorganisms are known to produce a methylated form of MK, designated methylmenaquinone (MMK) or thermoplasmaquinone, which is anticipated to serve in low-potential ETCs involved in anaerobic respiration, such as polysulfide respiration of Wollinella succinogenes [2]. However, it remained unclear how MMK is synthesized in microbial cells.

Methods and Results: Here we show that a phylogenetically widespread class of radical SAM methyltransferase (RSMT) is employed to synthesize MMK in bacteria. Such enzymes, termed either MqnK or MenL, are present in MMK-producing organisms that possess either the classical MK biosynthesis pathway (Men) or the futasolane pathway (Mqn) [3]. Quinones were extracted from the membrane of the model Epipolythrix bacteria Wollinella succinogenes, separated by HPLC and analyzed by UV absorption spectroscopy and mass spectrometry. An mqnK deletion mutant of W. succinogenes was unable to form 8-MMK but its production was restored upon complementation using either the native mqnK gene or a homologous menL gene from Alhercreuzia equilocium or Shenella oneidensis. In addition, it is shown that each of the menL genes enabled Escherichia coli cells to produce MMK-8 as well as a hitherto unknown methylated form of 2-demethylmenaquinone-8 (DMK).

Conclusion: The results expand the knowledge on quinone synthesis and demonstrate an unprecedented function for a class C RSMT enzyme in primary cell metabolism. The work also offers the prospect to design artificial quinones in vivo to operate low-potential anaerobic respiratory chains.

BMV04

Microbes with identity issues – the cell wall and energy-conserving prokaryotic organelle of anaerobic ammonium-oxidizing bacteria

M. van Teeseling1, S. Neumann1, R. Mesman1, *L. van Niftrik1

Aerobic ammonium-oxidizing (anammox) bacteria belong to the phylum Planctomycetes and are recognized as major players in the global nitrogen cycle. It is estimated that anammox bacteria are responsible for up to 50 % of the nitrogen in the air that we breathe. In addition, anammox bacteria are extremely valuable for wastewater treatment where they are applied for the cost-effective and environment-friendly removal of nitrogen compounds. Besides their ecological and industrial importance, anammox bacteria defy some basic biological concepts. Anammox bacteria harbor a major intracellular compartment called the anammoxosome which is the location of the anammox reaction. In addition it was proposed that anammox bacteria and all other Planctomycetes lack peptidoglycan; a cell wall structure crucial for cell shape and integrity. Here we investigated both the function of the anammoxosome in energy conservation and the proposed absence of peptidoglycan. To this end, we used subcellular fractionation, proteome analysis, activity assays and complementary state-of-the-art techniques such as cryo-transmission electron microscopy, peptidoglycan-specific probes and structured illumination microscopy and ultrasensitive UPLC-based muropeptide analysis. We show that peptidoglycan is present in the anammox bacterium Kuenenia stuttgartiensis after all. In addition, we isolated the anammoxosome from the cell and show it is able to perform the anammox reaction outside the confines of the cell. Currently we are investigating membrane potential and ATP synthesis of the isolated prokaryotic organelle. We conclude that anammox bacteria have a peptidoglycan-containing cell wall [1] and a prokaryotic organelle involved in energy conservation [2].

BMV05

Molecular model of the plp501 type IV secretion system from Enterococcus faecalis

*I. Probst1,2, K. Arends1,2, C. Fercher1, N. Goessweiner-Mohr3, W. Keller4, E. Grohmann1,7

1University Medical Centre Freiburg, Division of Infectious Diseases, Freiburg, Germany
2Albert Ludwigs University Freiburg, Institute of Biology II, Microbiology, Freiburg, Germany
3Robert Koch Institute Berlin, Berlin, Germany
4Iowa State University, Department of Plant Pathology, Ames, USA
5University Medical Centre Hamburg-Eppendorf (UEK), Centre for Structural Systems Biology (CSSB), Hamburg, Germany
6Beuth University of Applied Sciences Berlin, Faculty of Life Sciences and Technology, Berlin, Germany

Discovery void of novel antimicrobial substances and increasing antibiotic resistances in pathogenic bacteria present a serious threat for human health worldwide. Dissemination of antibiotic resistance genes often occurs through conjugal type IV secretion systems (T4SSs). An important conjugative model system in Gram-positive bacteria is the T4SS from broad-host-range plasmid plp501, which has been often found in nosocomial pathogens, as well as in clinical Enterococcus faecalis and Enterococcus faecium isolates. plp501 shows self-transfer to virtually all Gram-positive bacteria, e.g., to enterococci, streptococci and staphylococci and additionally to Escherichia coli. This multiresistance plasmid encodes 15 putative transfer genes in a single operon. The corresponding proteins of TraA-TraO are proposed to form a T4SS multiprotein complex. Putative key factors of the conjugal transfer complex are the relaxase TraA, two ATPases, TraD and TraT, the first putative two-protein T4S coupling protein, the muramidase TraG, the putative channel factors, TraH, TraI, and TraM and the surface factor TraN [1]. The functions of most of the transfer proteins and the mechanism of the conjugal T4SS are not known in detail. To elucidate the role of the plp501 tra genes in T4S in Gram-positive pathogens we generated a number of single tra knock-out mutants in E. faecalis harbouring plp501 using a markerless deletion method [2]. We have generated the deletion mutants: E. faecalis plp501△traE, △traF, △traG [3], △traH [2], △traM and △traN. Biparental matings showed that TraE, TraF, TraI, TraL and TraM are essential for plp501 conjugal transfer. Matings with E. faecalis plp501△traN as donor demonstrated, that TraN has a special role as oriT DNA binding transfer repressor. Generation of the knock-outs traI, traL and traO is in progress and will further help decipher the plp501 conjugal transfer machinery. A molecular model on the plp501 T4SS will be presented.

BMV07

The DNA translocator of Thermus thermophilus – In situ structure and function/fusion correlation of a dynamic channel for DNA uptake and pilus extrusion

R. Salzer1, E. D’Imprima2, V. Gold2, B. Averhoff1
1Goethe University Frankfurt, Molecular Microbiology & Bioenergetics, Frankfurt a. M., Germany
2Max Planck Institute of Biophysics, Department of Structural Biology, Frankfurt a. M., Germany

Question: Uptake of free DNA, referred to as natural transformation, is a major mechanism of horizontal gene transfer. In many bacteria DNA transfer systems are linked to type IV pilus (T4P) machineries [1]. However, information with respect to the role of T4P in DNA uptake, in situ structures of T4P and DNA translocators as well as information concerning structure/function correlation of key components of both systems is scare.

Methods: We used electron cryo-tomography to unravel the first in situ structure of a T4P in the open and closed state. Dynamics is mediated by a secretin complex (PiQO) essential for both, T4P extrusion and DNA uptake. This complex was found to comprise of a cone and six staggered rings. To identify ring-forming domains in the secretin protein and unravel their function we generated a whole set of deletion derivatives by site directed mutagenesis and performed single particle analyses of purified secretin complexes and electron cryo-tomography to identify ring-forming domains. The structure/function correlation was verified by mutant studies.

Results: Our studies unraveled the first structure of a dynamic channel guiding T4P and mediating DNA uptake [2]. Comparison of the open and closed state revealed major conformational changes whereby the N-terminal domains of the secretin were leading to a displacement of the two gates and pilus extrusion. Structural analyses of the secretin deletion derivatives led to the identification of a novel ββββββ fold, required for gate and ring formation. Furthermore, four ββββββ folds were identified as ring-building domains. Mutant studies revealed that each ring was important for pilus extrusion but dispensable for natural transformation.

Conclusions: Type IV pilin machineries and DNA translocators are highly dynamic machineries. Distinct domains in the secretin PiQO are essential for ring formation and pilus extrusion. T4P are not required for DNA uptake.

References:

BMV08

The h-region of the TMAO reductase signal peptide – a major determinant for Tat-dependent protein translocation

* A. Uhlig1, A. K. Heide1, F. Lausberg1, R. Freudl1
1Forschungszentrum Jülich GmbH, IBG-1, Bacterial Protein Secretion, Jülich, Germany

Question: The twin arginine translocation (Tat) pathway allows the translocation of folded and cofactor-containing proteins harboring a conserved twin-arginine motif in their signal peptides across the inner membrane of bacteria. While the importance of the Tat consensus motif for productive TatBC receptor binding has been demonstrated in various site-directed mutagenesis studies, the role of the hydrophobic h-region of Tat-signal peptides in the binding process is still unexplored.

Methods: Here, we investigate the role of the h-region of the Escherichia coli TMAO reductase (Tora) signal peptide in the bacterial Tat translocation process using a genetic approach. Export-defective reporter protein variants function as starting point for mutagenesis studies aimed at identifying gain-of-function mutations which restore the export.

Results: Introduction of a negatively charged aspartate into the hydrophobic core resulted in a complete export block of the model Tat translocase, however, the translocation efficiency increased with the length of an intact hydrophobic region suggesting that a minimal functional h-region in the signal peptide is required for productive binding to the TatBC receptor and thus for successful translocation. Moreover, we investigated the direct participation within the h-region. All mutant TorA-MalE variants were significantly accepted by the wildtype Tat translocase, however, the translocation process was significantly reduced for the mutant TorA[KQ]-MalE reporter, in which the crucial RR-motif was replaced by a lysine-glutamine pair. In all cases the overall hydrophobicity of the h-region was increased due to substitutions by more hydrophobic amino acid residues.

Conclusions: In this study we report mutations in the h-region which can compensate the loss of the crucial RR-motif and allow significant translocation of a normally transport-incompetent Tat precursor. Our results provide for the first time direct evidence for the importance of the h-region of Tat signal peptides as a major binding determinant of precursors to the TatBC receptor complex besides the Tat consensus motif.

BTV01

Model-based metabolic engineering of Escherichia coli for high yield itaconic acid production

* B. Harder1, K. Bettenbrock1, S. Klamt1
1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

Question: In 2004 Werpy and Petersen proposed twelve top value added compounds derived from biomass [1]. One of these potential platform chemicals was itaconic acid, which is primarily used for polymer synthesis and has the potential to replace petrochemically derived methacrylic acid [2]. Itonic acid is currently produced by Aspergillus terreus. Drawbacks of the fungal production are a low growth rate and the high impact of oxygen on the production performance. Therefore, the facultative anaerobic fast growing bacterium Escherichia coli seems to be a good organism for the heterologous itaconic acid production. However, titer and yields of itaconic acid production with E. coli are still low.

Methods: We expressed the cis-aconitic acid decarboxylase of Aspergillus terreus in E. coli Mgi1655 to allow itaconic acid production. Additionally we over-expressed the citrate synthase of Corynebacterium glutamicum, which is insensitive to NADH, to enable an improved flux through the tricarboxylic acid cycle. Then we applied a model-based metabolic engineering strategy (constrained minimal cut sets [3]) to further improve the itaconic acid production with E. coli. We used a stoichiometric network model [4] of the central metabolism of E. coli consisting of 113 reactions to calculate suitable intervention strategies. It was intended to reach an itaconic acid yield greater than 0.7 mol/mol while still allowing a minimum growth of 0.01 h⁻¹. One cut set was chosen as starting point and the gene knock-outs were iteratively introduced in E. coli by lambda red recombination or P1-transduction.

Results: After partially implementation of the chosen intervention set the E. coli strain produced 2.2 g/l itaconic acid with an excellent yield of 0.77 mol/mol and a minimum growth rate of 0.03 h⁻¹. A fed-batch cultivation with this strain led to the production of 32 g/l itaconic acid. This is the highest so far reported yield and product concentration for heterologous itaconic acid production.

Conclusions: Our results demonstrate that itaconic acid can be produced with high yield and titer by a dedicated E. coli mutant strain and that constrained minimal cut sets are a suitable tool to identify intervention strategies for redirecting carbon flux to high product formation.

References:

BTV02

Construction of plasmid-free bacterial strains for the synthesis of human milk oligosaccharides

* F. Baumgärtner1, G. A. Sprenger1, C. Albermann1
1University of Stuttgart, Institute of Microbiology, Stuttgart, Germany

Question: Beneficial effects of human milk oligosaccharides (HMOs) on infants’ well-being raised attention for HMOs as potential nutritional additives for infant formula [1]. However, chemical or in vitro enzymatic syntheses are laborious or costly. Objective of this work was to develop a construction of plasmid-free Escherichia coli strains capable of synthesizing HMOs using recombinant glycosyltransferases in combination with intracellularly generated nucleotide-activated sugars (e.g. GDP-L-fucose) to allow further research on these compounds.

Methods: Strain construction was based on the E. coli (JM109 or JJ110) using a site-specific λ-red recombineering technique for chromosomal integration of heterologous genes in combination with a screening on differential agar plates [2]. Strain evaluations and HMO syntheses were conducted in shake-flask cultivations and fed-batch fermentations.

References:
allowing quantification and improvement of intracellular precursor molecule levels via HPLC.

Results: With up to 6 consecutive integrations in one strain, plasmid-free *E. coli* strains were constructed for the synthesis of different HMOs. During strain improvement, different copy-numbers of genes allowed leveling of gene expression in order to raise HMO productivity. Furthermore, chromosomal stability allowed syntheses in fed-batch fermentations without the need for antibiotics as selection markers, resulting in product titers of up to 20 g/L (2-fucosyllactose) [3,4]. Utilizing chromosomal integration, we could also demonstrate the combination of specific glycosyltransferases (LgtA, WbgO) together with enhanced intracellular synthesis of UDP-nucleotide-activated sugars for the efficient preparative synthesis of oligosaccharide core-structures such as lacto-N-tetraose (LNT) [4,5]. Subsequent combination of these syntheses of core-structures with chromosomally integrated fucosyltransferases and enhanced intracellular supply of GDP-L-fucose resulted in fucosylated HMOs up to penta- and hexasaccharides such as LNPI and LDNFH II [6].

Conclusion: Chromosomal integration turned out to be a powerful tool for synthetic microbiology, allowing multiple rapid and site-specific insertions and construction of genetically stable strains. Using this method, we could construct strains for gram-scale syntheses of complex HMOs.

BT40

Enzymatic hydrolysis of macroalgae for the production of biobased chemicals

1Fraunhofer IME, Industrielle Biotechnologie, Aachen, Germany
2Alfred Krupp von Bohlen und Halbach Stiftung, Hamburg, Germany
3Cirariant Produkte (Deutschland) GmbH, Group Biotechnology, Planegg, Germany

Question: Increasing scarcity of fossil resources and climate change generate rising demand for renewable feedstocks. New concepts are needed to utilize plant biomass for the production of biofuels and bioplastics. As an alternative to lignocellulosic or starch, macroalgae represent a promising feedstock due to their high content of carbohydrates and the lack of lignin. Moreover, special esterifications, sulfations and sugar residues bring carbohydrates from algae into the focus of the chemical industry.

Thus, the biocconversion of macroalgae polysaccharides into their small building blocks is a promising but challenging task. Therefore, the identification and characterization of novel efficient enzymes for the hydrolysis of special polysaccharides like alginate, laminarin and fucoidan is the bottleneck for the development of the future biorefinery.

Methods: By a sequence-based screening approach of a metagenomic dataset we identified new putative enzymes from extreme environments for the enzymatic hydrolysis of macroalgae polysaccharides. Candidates were produced heterologously in *E. coli* and were subsequently purified to homogeneity. Promising enzyme candidates were characterized biochemically and their activities were determined against polysaccharides and macroalgae biomass.

Results: Here we present new promising biocatalysts for the enzymatic hydrolysis of brown algae. We describe biochemical characteristics of new thermostable alginate lyses, which are able to decompose alginate, the major polysaccharide in the cell wall of brown algae. Moreover, we characterized thermoactive laminarinases for the hydrolysis of another key component of brown algae: the main storage glucan, laminarin. Altogether, these enzymes represent a suitable toolset for an effective biocconversion of brown algae biomass to high value products.

Conclusion: We reported various promising enzymes for the biocconversion of macroalgae to fine chemicals and high-value biobased products. These results were generated in the BMBF funded project LIPOMAR (FKZ 031A261), "lipids and surfactants from marine biomass", which was established by a consortium of academic and industrial partners.

BT50

Acetoin production via unbalanced fermentation in *S. oneidensis*

T. Bursac, S. Böhlke*, J. Gescher*

1Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe, Germany

The aim of the described project is the realization of unbalanced anaerobic production processes in the proteobacterium *S. oneidensis*. Fermentation and respiration are the two metabolic processes used by bacteria to gain energy. The respiratory consumption of an organic carbon source is accompanied by its oxidation by using an external electron acceptor. In case of fermentation the oxidation state of the substrate is identical to the product’s oxidation state. Often, fermentative bacteria produce a mixture of products to achieve a balanced overall oxidation state of the products compared to the substrate. Typically, fermentative processes are of high biotechnological relevance since they offer high productivity and a low percentage of substrate consumption for anaerobic processes. Nevertheless, the range of compounds that can be produced as sole endproduct of a fermentative process is rather limited, due to the above mentioned prerequisites regarding balanced oxidation states. This limitation could be overcome by the transfer of the surplus of electrons to an electrode surface, which of note is an anaerobic electron acceptor that cannot be depleted.

S. oneidensis is a model organism to study the biochemistry of extended respiratory chains to the cell surface. As a proof of principle we genetically engineered the organisms for the production of acetoin, a precursor on the biochemical route to 2,3-butanediol. First, a chasis
organism was produced that is due to the deletion of prohapes more stable compared to the wild type. Moreover, this deletion strain produces more current when grown with an anode as electron acceptor. This higher current production is most likely due to increased biofilm production. The strain was further modified to contain codon optimized versions of acetolactate synthase and acetolactate decarboxylase. Hence, an acetoin biosynthesis pathway was introduced that branches from the metabolite pyruvate. Without further modification, we achieved acetoacetin production with a carbon recovery of 30-40 %. Further modification of the strain will stop the production of side products and extend the range of substrates produced by unbalanced fermentation processes.

BTV06
Microbial synthesis of butadienes – a look into patent literature
J. Harder
1Max Planck Institute for Marine Microbiology, Microbiology, Bremen, Germany

Question: Sustainability requires a shift in the production of intermediates for polymer synthesis from coal, crude oil and gas to plant biomass. The large-scale production of butadiene (as intermediates for polyester production) and isobutene by fermenting processes has opened the field for the development of processes and enzymes producing butadienes. With an annual market volume of millions of tons butadiene worth billions of $, many companies are motivated to explore the production of butadiene from renewable resources.

Methods: Patent literature was reviewed for the production of volatile alkenes, especially butadiene and isoprene (methyl-butadiene).

Results: The patents explore a number of enzymes for the production of butadienes. The alkene formation seems to be most efficient with elimination reactions. Released are water molecules from alcohols or aldehydes, carbon dioxide from a range of medium chain carboxylic acids, or water and carbon dioxide from beta-hydroxy carboxylic acids. Monoterpene biosynthesis is the elimination of an alcohol group after activation to a good leaving group in the form of pyrophosphate. An overview on these enzymes will be presented.

Conclusion: Synthesis of everyday polymers (tyres, nylon stockings, LEGO, etc.) require butadienes as intermediates. In 2011, a shift in carbon source from crude oil to natural gas in the chemical industry caused a production decrease and excess demand. Patents in the last years suggest that butadienes produced by fermenting microorganisms may fill the gap.

BTV07
Engineering industrial acetogenic biocatalysts – a comparative metabolic and genomic analysis
F. R. Bengelsdorf, A. Poehlein, S. Linder, T. Hummel, F. R. Bengelsdorf1, A. Poehlein2, S. Linder1, C. Erz1, T. Hummel1, Metabolic and genomic analysis

Introduction: Hydroxyamino acids (HAs) are important precursors for the production of pharmaceuticals like certain antibiotics and diabetes mellitus drugs and also represent valuable base chemicals for a variety of more sustainable potential industrial applications. However, so far HAs are mainly extracted from natural raw materials in complex and costly processes which hamper the broader application of these compounds. A sustainable alternative is the enzymatic production of HAs via Dioxygenases converting amino acids with α-ketoglutarate (αKG) as electron donor and molecular oxygen yielding the corresponding hydroxyamino acid, succinate and CO2.

Aim of the Merck Research Centre Ruhr funded project is to provide an enzyme cascade for αKG formation in the in vitro hydroxylation of amino acids via dioxygenases with the final goal to construct an *E. coli* based whole cell biocatalyst for the in vivo production of αKG based on lignocellulosic raw materials.

Methods & Materials: The genes encoding the enzymes for pentose conversion to αKG, i.e. sugar dehydrogenase, lactonase, sugar acid dehydratase, 2-keto-3-deoxy sugar acid dehydratase and αKG semialdehyde dehydrogenase, from *C. crescentus* were cloned and recombinantly expressed. The enzymes were purified and characterized at optimal host strain conditions (37 °C, pH 7.5). The active proteins were reconstituted to the entire enzyme cascade and the αKG formation from D-xylose was analyzed. Afterwards, the cascade was applied together with the L-isoleucine dioxygenase from *Bacillus thuringiensis* for the hydroxylation of L-isoleucine and results were analyzed with HPLC.

Results: The enzyme cascade from *C. crescentus* was successfully reconstituted from the recombinant enzymes indicated by the αKG production from D-xylose. All of the single reactions in the cascade were defined to be irreversible and a complete conversion from D-xylose to αKG by the cascade was detected. Besides, the combination of the cascade with the L-isoleucine dioxygenase from *B. thuringiensis* resulted in 44 % conversion from L-isoleucine to Hydroxy-L-isoleucine after 3 hours of incubation.

Conclusion: αKG as cosubstrate for enzymatic hydroxylation of amino acids could successfully be produced from D-xylose using enzyme cascade derived from *C. crescentus*. Optimization of reaction conditions in combination with the dioxygenases is currently under way.

BTV09
Metabolic engineering of Corynebacterium glutamicum for production of astaxanthin
*N. A. Henke1, S. E. A. Heider1, P. Peters-Wendisch1, V. F. Wendisch1
Bielefeld University, Genetics of Prokaryotes/ CeBiTec, Bielefeld, Germany

Corynebacterium glutamicum is a biotechnologically relevant bacterium used for the million-ton-scale production of amino acids. Fermentations with this bacterium are characterized by fast growth and high biomass concentrations. Its biotechnological potential to produce various other high-value products by metabolic engineering has been proven [1]. It was shown that C. glutamicum, as a natural producer of the rare C50 carotenoid deacaprenoxanthin, is a suitable host for production of a range of carotenoids [2]. Astaxanthin is a red cyclic C40 carotenoid with a high anti-oxidant effect. Today, astaxanthin is mainly used as a colorant especially in aquacultures, and the demand for astaxanthin as a nutraceutical and pharmaceutical is increasing. In this work the potential of C. glutamicum to produce astaxanthin was analyzed. In our work the genomic background of a prophage-cured, genome-reduced C. glutamicum was engineered for enhanced production of carotenoids. Optimization of the supply of the precursor isopenyl pyrophosphate (IPP) by chromosomal promoter exchange of ddx, abrogating biosynthesis of the endogenous deacaprenoxanthin by deleting of the endogenous carotenoid genes creD and heterologous expression of the genes creE, creB, creL and creY from Pantoea ananatis yielded a C. glutamicum strain efficiently producing β-carotene [3].

In this work, astaxanthin production was established by metabolic engineering of β-carotene producing platform strains via two approaches. First a combinatorial gene assembly for creW and creZ was performed in order to optimize the ratio of enzyme quantities to improve the total catalytic enzymatic activity of heterologously expressed β-carotene ketolase (CreW) and hydroxylase (CreZ). For statistical coverage, a library with 8,000 transformants was generated and analyzed with respect to carotenoid production. Secondly, alternative creW and creZ genes from natural prokaryotic astaxanthin producers were heterologously expressed in a β-carotene accumulating platform strain to produce canthaxanthin or zeaxanthin, respectively. Co-expression of the most promising combination of creW and creZ resulted in the formation of astaxanthin in the mg/g CDW range in shaking flasks with volumetric productivities comparable to algal or yeast hosts currently used in astaxanthin production.

*1Wendisch (2014). Current Opinion in Biotechnology, doi: 10.1016/j.copbio.2014.05.004

BTV10
Systems metabolic engineering of Corynebacterium glutamicum for the production of bio-based nylon
*J. Becker1, S. Kind1, O. Zelder1, C. Wittmann1
Saarland University, Institute of Systems Biotechnology, Saarbrücken, Germany
1BASF SE, Ludwigshafen, Germany

In light of a globally developing bio-economy for sustainable production of chemicals, materials and fuels, industrial biotechnology is facing tremendous challenges. For many decades, the natural pathway set of various enzymes for the production of amino acids by recombinant biocatalysts was developed and successfully used in the production of high-value products. Therefore, in a first step for the generation of exoenzyme producing G. oxydans, a leaky outer membrane mutant was created by deleting the TolB encoding gene gox1687. 2,3 Permeability of the outer membrane of the AtoB strain was quantified by measuring the alkaline phosphatase activity of a PhoA overproduction strain in the cytoplasmic, periplasmic, and culture supernatant fractions. Up to 46 % of the PhoA activity was localized in the culture supernatant in the TolB mutant, while the PhoA expressing wildtype showed only minimal activity in the supernatant, confirming highly increased permeability of the outer membrane for periplasmic proteins in the TolB mutant. The xynA gene encoding an endo-1,4 β xylosidase from Bacillus subtilis was fused to a pelB signal peptide and expressed in G. oxydans AtoB for periplasmic protein production. Nearly 75 % of the XynA activity was detected in the culture supernatant of the TolB mutant and only minor amounts of endoxylosanase activity was observed in the XynA-expressing G. oxydans wildtype. These results showed that a G. oxydans strain with an increased substrate spectrum was generated that is able to use the renewable polysaccharide xylan as a substrate to produce the high-value chemical xylose.

BTV11
Extracellular targeting of an active endoxylanase by a TolB negative mutant of Gluconobacter oxydans
*K. Kosciow1, P. Schweiger1, U. Deppenmeier1
1University of Bonn, Institute of Microbiology and Biotechnology, Bonn, Germany
2University of Missouri, Department of Biotechnology, Springfield, USA

Gluconobacter oxydans strains have great industrial potential due to their natural ability of incomplete stereo- and regioselective oxidation of many alcohols and monosaccharides. One major limitation preventing the full production potential is the limited substrate spectrum of G. oxydans. Hydrolysis of polysaccharides is not possible because extracellular hydrolases are not encoded in the genome of Gluconobacter species. Therefore, in a first step for the generation of exoenzyme producing G. oxydans, a leaky outer membrane mutant was created by deleting the TolB encoding gene gox1687. 2,3 Permeability of the outer membrane of the AtoB strain was quantified by measuring the alkaline phosphatase activity of a PhoA overproduction strain in the cytoplasmic, periplasmic, and culture supernatant fractions. Up to 46 % of the PhoA activity was localized in the culture supernatant in the TolB mutant, while the PhoA expressing wildtype showed only minimal activity in the supernatant, confirming highly increased permeability of the outer membrane for periplasmic proteins in the TolB mutant. The xynA gene encoding an endo-1,4 β xylosidase from Bacillus subtilis was fused to a pelB signal peptide and expressed in G. oxydans AtoB for periplasmic protein production. Nearly 75 % of the XynA activity was detected in the culture supernatant of the TolB mutant and only minor amounts of endoxylosanase activity was observed in the XynA-expressing G. oxydans wildtype. These results showed that a G. oxydans strain with an increased substrate spectrum was generated that is able to use the renewable polysaccharide xylan as a substrate to produce the high-value chemical xylose.

BTV12
A surprising diversity of solventogenic clostridia
*A. Poehlein1, S. Flitsch2, J. Montoya2, B. Stegmann2, B. Willson3, R. Daniel1
1Georg August University Göttingen, GenOMIC and Applied Microbiology & Göttingen Genomics Laboratory, Göttingen, Germany
2University of Ulm, Institute of Microbiology and Biotechnology, Ulm, Germany
3BBSRC/EPSC SCsynthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, Nottingham, Germany
4Green BioLogics Ltd, Altrington, Germany

The production of solvents such as acetone, ethanol, and butanol (ABE) is one of the oldest industrial fermentation processes and has tremendous potential for chemical industry as these organic compounds are important intermediates for paints, plastics, coatings as well as for polymers. Solventogenic clostridia such as C. acetobutylicum, C. acetoethylicum, C. saccharoperbutylactonactium or C. beijerinckii are able to form ABE from a huge variety of sugar- and starch-based substrates. Various organic compounds such as glucose, fructose, saccharose, xylose, cellulose, and even sorbitol, dulcitol, or inositol can be used. However, the single strains of excellent material properties for broad application sectors. This demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties.

and species differ with respect to the substrate spectrum they are able to use for ABE fermentation.

The genomes of 30 solventogenic clostridia from eight different species were sequenced to extend our knowledge on the biochemistry and physiology of these interesting organisms and for genome comparison with all publically available sequences. Whole genome sequencing was either done by a combined approach using the 454 GS-FLX Titanium XL and the Genome Analyzer II or MiSeq or Illumina technique only. Hybrid de novo assemblies were performed with the Newbler 2.9 software and Illumina only assemblies by the SPAdes 3.5 software, respectively. In some cases remaining gaps were closed by PCR-based techniques and Sanger sequencing of the products.

The genomes of all solventogenic clostridia vary in size from 4.1 Mb for the C. acetobutylicum strains up to 7.2 Mb for some C. beijerinckii strains. Extrachromosomal elements could be identified in C. acetobutylicum, C. roseum, C. aurantibutyricum, and C. saccharoperbutylicum as well as in some of the C. beijerinckii strains, but only in C. acetobutylicum is the so operon, necessary for solvent production, located on the plasmid. A genome comparison of all sequences including the ten publically available genomes revealed a core genome of 638 and a pan genome of 26,944 orthologous groups, respectively. The different species complexes differ in the substrate spectrum they can use for fermentation, but also with respect to the acids and solvents they are able to produce.

Solventogenic clostridia are able to produce solvents from a variety of organic substrates, but genome comparison revealed species-specific capabilities.

Conclusions: Application of large-scale microbiome proteotyping enabled the identification of correlations between the process parameters, process states and the microbial communities and thus, contributed to the understanding of the conversion of biomass into methane. This knowledge could be used to improve monitoring and control of BGPs.

References:
Acetogenic bacteria are able to grow on syngas as sole carbon and energy source. The intermediate product, a tar-free, low-methane raw synthesis gas is required for producing customized fuels from dry lignocellulosic biomass. The bioliq® pilot plant at the KIT covers the complete process chain of the conversion of dry lignocellulosic biomass into syngas. The syngas is then processed in a biorefinery to produce customized fuels.

Since thousands of droplets can be generated and processed within a second, millions of different cells and complex combinations of experimental variables can be tested and characterized per day. To this end, we have established and optimized a droplet microfluidic platform suitable for detection and screening of novel microorganisms producing enzymes of industrial relevance. We have developed a strategy for culturing cells in ~100 pL-droplets, under homogeneous incubation conditions for more than 5 million droplets simultaneously. With this, clonal expansion of single cells can be used as a strategy to increase signal intensity while reducing stochastic noise, and also to screen for biomass and production yields. In particular, we are developing assays for the discovery of novel esterase and lipase producers, isolated from natural samples and metagenomic libraries. Model E. coli and P. pastoris strains that express the enzymes of interest have been used as positive controls. The catalytic activity is detected after precise addition of fluorescent substrates to each droplet in which the cells have been grown. Ongoing work addresses challenges associated with assay optimization and standardization such as selection of ideal fluorescent substrates and reaction conditions in order to maximize the signal window. Droplets containing highly active cells or enzymes can be sorted out and further analyzed at larger scales. Future work aims to expand the platform potential with heuristic experimental design and complementary read-out methods.

BTv16

Enoate reductase whole cell biocatalysis in Synechocystis sp. PCC 6803

*K. Königer1, Á. Gómez Baraibar1, C. Mügge1, F. Hollmann2, M. M. Nowaczyk1, *R. Kourist1*

1Ruhr-Universität Bochum, NG Mikrobielle Biotechnologie, Bochum, Germany
2University of Technology, Delft, Netherlands

Question: Asymmetric reduction of C=C double bonds is a widely applied method in biocatalysis, which leads to the creation of up to two chiral centers. Enoate reductases [E.C.1.3.1.X] have regained interest as they are able to enantiospecifically reduce α,β-unsaturated aldehydes and ketones, acids, esters, nitro compounds and nitriles under mild reaction conditions. However, the in vitro application of these enzymes is limited by the costly supply of the cofactor NADPH. This issue has been addressed by using cofactor regeneration systems [1], artificial electron donors [2] and light-mediated photoredox biocatalysis [3]. Still, natural photosynthesis seems to be the most preferred method to regenerate NADPH. Therefore, we introduced the native enoate reductase YqjM from *Bacillus subtilis* into the genome DNA of the photoautotrophic cyanobacterium *Synechocystis* sp. PCC 6803 with the aim to circumvent the addition of sacrificial electron donors. We investigated the in vivo activity of the heterologously expressed YqjM in *Synechocystis*. A further task was the optimization of whole cell biotransformation regarding illumination, cell density and aeration.

Methods: YqjM was brought into the cyanobacterial genome by heterologous recombination, where it is controlled by a light-inducible promoter. We have previously shown that biocatalysts can efficently be expressed in *Synechocystis* while maintaining their enantioselectivity [4]. The cultivation was carried out under different light intensities. The light-driven whole cell biocatalysis was performed at the desired OD_{580} with several substrates under various reaction conditions. Time samples were taken and analysed by GC-FID.

Results: The biocatalysis was optimized focusing on cell density, illumination and aeration. Interestingly, aeration (5 % CO₂) led to a significant decrease in cell viability upon addition of the substrates. Under optimized conditions, cyanobacterial cells expressing recombinant YqjM catalyzed the asymmetric reduction of prochiral enoates with excellent enantioselectivity (>99 %ee) and conversion (80 %) without the need for cofactor recycling.

Conclusion: Herein, we described the proof-of-principle of whole cell biocatalysis of the recombinant enoate reductase YqjM with regard to substrate consumption, product formation and cell viability.

BEmV02

Development of a self-cleavable protein linker for the purification of fusion proteins

S. Be1, J. Schirmmeister1, M. Göttert1, *S. Zehner1*

1Technische Universität Dresden, Institut für Genetik, Dresden, Germany

Recombinant proteins are often produced as fusion proteins with an affinity tag for fast and easy purification. For functional analysis, the affinity tag has often to be removed by protease treatment after the purification [1, 2]. Here we present a novel method for the removal of the affinity tag from the target protein in a single step protocol, without the use of proteases.

The protein VIC_001052 of the coral pathogen *Vibrio corallilyticus* ATCC-BA4450 possesses a metal ion-inducible auto cleavable (MIIA) domain (formerly DUF1521). Previous experiments have shown that several divalent cations can induce the autocalytic cleavage of the domain at the sequence motif GD[PH]. The cleavage reaction is fast and stable over a large pH and temperature range [3]. The coding sequence of the MIIA domain was cloned in expression vectors to produce MaE and McCherry as MIIA-Strep fusion proteins in *E. coli*. The fusion proteins could be cleaved completely by the addition of calcium or manganese (II) ions within minutes. The autocalytic cleavage was induced in immobilized proteins on different affinity columns. The obtained yield of purified protein after on-column cleavage was similar to conventional methods [4]. A fast single-step purification protocol was established. Our current efforts are directed towards reducing the number of amino acids in the linker (presently 44 amino acids) to a minimum without compromising the autocalytic cleavage activity.

One major challenge of this so called syngas fermentation is the poor solubility of CO and H$_2$ in the fermentation broth. To overcome this limitation one could increase the ka-value for better mass transfer into the broth or increase the pressure in the bioreactor to obtain better solubility of the gases. One of the other hand, almost complete substrate usage can be enabled by recycling of the off gas.

To address the above named strategies a setup of multiple 2 L bioreactors with product analysis and online gas measurement was developed in our lab. With this setup it is possible to investigate ka-values and substrate usage of different reactor set-ups and aeration modes. It may also be possible to obtain more information about kinetic limitations of the metabolism of certain (genetically modified) aceticogenic bacteria since the setup allows complete substrate usage and closing of the carbon balance of the process.

BEMv06 Evolution of ecological diversity in Acidobacteria in German grassland soils

*J. Sikorski, V. Baumgartner, J. Overmann

Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany

Question: Due to their high abundance in soils, Acidobacteria may play a major role in soil ecology. The paucity of isolates of this phylum (~ 40 species) contrasts sharply with the large number (~ 13,000) of detected phylotypes. Therefore new approaches are needed to elucidate the ecological functions and evolution of Acidobacteria.

Methods: Large datasets of V3 16S rRNA Illumina reads generated for 150 German grassland soil samples, were used to identify ~ 4100 distinct descendants. The comparison of gas fermentation to thermochemical conversion routes.

Peatlands are regarded primarily as methanogenic environments but unaffected by successional stages. Microbial community profiling revealed that bacterial community structure was mainly determined by habitat, whereas fungal community structure was influenced by both habitat and successional stage. We identified a small, but statistically significant difference in bacterial community composition between the rhizosphere and bulk soil communities of both successional stages, in contrast endophytic communities were clearly different from their soil counterpart. Further, fungal endosphere community shared relatively more OTUs with rhizosphere soil than bacterial endosphere community. Co-occurrence network analysis revealed habitat and/or successional stage specific microbial groups in this ecosystem. The factors responsible for shaping the plant associated bacterial community were different than fungal community, but the generality of our findings await confirmation from further studies.

BEMv05 Evolution of ecological diversity in Acidobacteria in German grassland soils

*J. Sikorski, V. Baumgartner, J. Overmann

Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany

Question: Due to their high abundance in soils, Acidobacteria may play a major role in soil ecology. The paucity of isolates of this phylum (~ 40 species) contrasts sharply with the large number (~ 13,000) of detected phylotypes. Therefore new approaches are needed to elucidate the ecological functions and evolution of Acidobacteria.

Methods: Large datasets of V3 16S rRNA Illumina reads generated for 150 German grassland soil samples, were used to identify ~ 4100 OTUs of Acidobacteria at 97% full length 16S sequence similarity threshold (along with a maximum likelihood phylogeny). Huismann-OFF-Fresco optimum-response models were calculated using ~ 60 environmental parameters, and mono- and multivariate statistics, network technology, coalescent models on macroevolution, and phylogenetic eigenvector regression were employed in the analysis.

Results: Acidobacteria currently occupy a huge range of ecological niches that could be determined based on the physiological activity for individual OTUs. From a macro-evolutionary perspective, the diversity of Acidobacteria in the population investigated is saturated, with signatures of extinction and a decay in speciation rate over time. The global worldwide population, however, is still expanding. We further determined the relative time points in evolution when specific environmental factors had their largest selective effect on the diversification of Acidobacteria. The life-time of phylogenetic lineages in their ecological niche is probably rather short (at the level of genera) and ends with a substantial ecological divergence of the descendants. As ecological niche space is not unlimited, multiple (re-)occupation of the same ecological niche by phylogenetically distinct descendants appears to occur frequently.

Conclusion: Given appropriate bioinformatic and statistical tools and the availability of environmental data, the high-throughput sequencing of 16S rRNA nevertheless enables a significantly improved insight into the evolution of ecological diversity of a dominant soil bacterial phylum that is otherwise barely accessible to science due to the paucity of cultured representatives.

BEMv05 Eco-systems biology of a rare biosphere member active in cryptic sulfur cycling of a model peatland

University of Vienna, Department of Microbiology and Ecosystem Science, Vienna, Austria

University of Münster, Institute of Landscape Ecology, Münster, Germany

Joint Genome Institute, Walnut Creek, USA

Aalborg University, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg, Denmark

K.AUST, Red Sea Research Center, Thuwal, Saudi Arabia

University of Konstanz, Department of Biology, Konstanz, Germany

Peatlands are regarded primarily as methanogenic environments significantly contributing to global methane emissions. Little attention is given to the fact that disymmetric sulfur reduction is maintained by a cryptic sulfur cycle in these low-sulfate environments, with sulfate reduction rates being comparable to marine surface sediments. To deepen our understanding of sulfate reducers in peatlands, anoxic peat slurries
were supplemented with typical degradation intermediates of organic matter in situ concentrations and either stimulated with low amounts of externally supplied sulfate or incubated under endogenous conditions. Changes in the microbial community were monitored by 16S rRNA gene and -DNA analyses. Isolation and characterization of clones encoding sulfate turnover. OTUs most abundant in the native community (Acidobacteria, Actinobacteria, Alphaproteobacteria, Planctomycetes) showed no significant response to sulfate amendment. In contrast, small networks of natively low abundant bacteria strongly correlated with bulk sulfate turnover under lactate, propionate, and butyrate. Among the responsive OTUs affiliated to recognized sulfate reducers, members of the genera Desulfomonile and Desulfovibrio (Delaproteobacteria) responded specifically to one of these three substrates, while a Desulfopila OTU (Deltaproteobacteria) and a Desulfosporosinus OTU (Firmicutes) were always responsive exhibiting a generalist lifestyle. Interestingly, the Desulfosporosinus OTU markedly increased its 16S rDNA and thus ribosomal content but stayed at low abundance throughout the incubation period. This likely mirrors its ecological strategy also in the natural peat soil. Parallel sequencing of a metagenome enriched by DNA-stable isotope probing allowed almost complete reconstruction of the Desulfosporosinus population pan-genome. Extending this analysis by metatranscriptomics of the individual peat soil slurries linked the increase in ribosomal content of the low-abundance Desulfosporosinus to transcription of genes involved in sulfate reduction and organic substrate degradation. Our results provide first insights into the metabolic activity and genetic makeup of a rare biosphere member actively involved in biogeochemical cycling and control of greenhouse gas production.

Food handlers with poor personal hygiene and inadequate knowledge working in Abattoirs could be potential sources of infections of many public health bacteria and parasites. This study evaluated the frequency and susceptibility profile of bacterial isolates from aprons of meat vendors an Abattoir in Awka, southeastern Nigeria. Randomly collected fresh swabs (100) from aprons of meat vendors were analyzed on different agar using agar diffusion. Of the 100 swab samples collected, 71 bacterial swabs (100) from aprons of meat vendors were analyzed on different messengers and the RNA chaperone Hfq. Here, we show that individual Synechocystis sp. PCC 6803 cells do not respond to a spatiotemporal gradient in light intensity, but rather they directly and accurately sense the position of a light source. We use a range of optical techniques to show that directional light sensing is possible because the spherical cells of Synechocystis work like microscopic lenses. An image of the light source is focused with sub-wavelength resolution on the edge of the cell opposite to the light source. In contrast, the effects of shading due to light absorption or reflection are much smaller than the intensity difference due to the lensing effect. We then used highly-localized laser excitation to show that specific excitation of one side of the cell triggers movement away from the light, indicating that positive phototaxis results from movement away from an image of the light source focused on the opposite side of the cell. In our model for control of positive phototaxis in Synechocystis, the bright focused image of the light source is perceived by photoreceptors in the plasma membrane and/or locally excites pigments in the thylakoid membranes, resulting in a redox signal. This leads then to local inactivation of the motility apparatus. The motility apparatus therefore assemblies at the side of the cell facing the light, resulting in movement towards the light source.

between attractants and repellents, and transduce the signal across the membrane.

Methods: We have determined the first crystal structures of PTPSDs of several characterised MCP receptors. Analysis of these structures, in conjunction with mutagenesis, biophysical and molecular simulation studies, provided an insight into diverse mechanisms of ligand recognition by this protein fold.

Results: PTPSDs of amino acid chemoreceptors likely signal by a piston displacement mechanism. PTPSD fluctuates between the piston (C-terminal helix) ‘up’ and piston ‘down’ states. Binding of an attractant to the distal PAS domain locks it in the closed form, weakening its association with the proximal domain and resulting in the transition of the latter into an open form, concomitant with a downward (towards the membrane) 4-A piston displacement of the C-terminal helix.

Conclusions: Surprisingly, although the fold and mode of ligand binding of PTPSDs are distinctly different from the textbook example of the aspartic acid receptor Tar, our structural analysis suggests that PTPSDs of amino acid chemoreceptors may signal across the membrane by a similar piston displacement mechanism. Examples of PTPSDs with different ligand specificities and multiple mechanisms of signal recognition will be presented and discussed.

CMV02
How a bacterial cell detects the direction of light?
N. Schwegers1, C. Mullineaux2, T. Lenn2, A. Lowe3, M. Meissner3, J. Korvink4,* A. Wilde1
1Institute of Biology III, University Freiburg, Freiburg, Germany
2School of Biological and Chemical Sciences, Queen Mary University of London, London, Great Britain
3Institute for Structural and Molecular Biology, University College London, London, Great Britain
4Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany

The cyanobacterium Synechocystis sp. PCC 6803 exhibits flagellar-independent “switching motility” using type IV pili. In order to use optimal light conditions for photosynthesis, they are able of directed movement towards light. Regulation of phototactic motility involves many different gene products, including various photoreceptors, second messengers and the RNA chaperone Hfq. Here, we show that individual Synechocystis sp. PCC 6803 cells do not respond to a spatiotemporal gradient in light intensity, but rather they directly and accurately sense the position of a light source. We use a range of optical techniques to show that directional light sensing is possible because the spherical cells of Synechocystis work like microscopic lenses. An image of the light source is focused with sub-wavelength resolution on the edge of the cell opposite to the light source. In contrast, the effects of shading due to light absorption or reflection are much smaller than the intensity difference due to the lensing effect. We then used highly-localized laser excitation to show that specific excitation of one side of the cell triggers movement away from the light, indicating that positive phototaxis results from movement away from an image of the light source focused on the opposite side of the cell. In our model for control of positive phototaxis in Synechocystis, the bright focused image of the light source is perceived by photoreceptors in the plasma membrane and/or locally excites pigments in the thylakoid membranes, resulting in a redox signal. This leads then to local inactivation of the motility apparatus. The motility apparatus therefore assembles at the side of the cell facing the light, resulting in movement towards the light source.

CMV03
Better together – a simultaneous tactic and kinetic response of the diatom Seminavis robusta in response to nutrient and pheromone gradients

1*K. G. Bondou1,2, J. Heuschele1, J. Gillard3,4, C. Lembke5, W. Veyremen5, G. Pohler2
2Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Jena, Germany
3Max Planck Institute for Chemical Ecology, Jena, Germany
4Lund University, Department of Biology, Aquatic Ecology Unit, Lund, Sweden
5Ghent University, Laboratory of Protistology and Aquatic Ecology, Department of Biology, Gent, Belgium

California State University, California, USA

Microphytobenthic biofilm (MPB) communities are dynamic species assemblies that contribute to half of the primary production in estuaries.
Within the microphytobenthos, diatoms are key players. These microeukaryotes have a biomineralized silicate-based cell wall and a unique life cycle. During mitosis, the size of their rigid cell wall is reduced and it is only through sexual reproduction of two mating types that size restoration could be accomplished. Here we ask how diatoms respond to essential regulators of growth and reproduction success.

We show the function of signal molecules and nutrients in the structuring of the microphytobenthic environment. We investigated the movement patterns of cells of the benthic diatom *Semina ves robusta* exposed to gradients of the nutrient dissolved silicate acid (dSi) and the sex pheromone, L-diproline in separate experimental set-ups using a video monitoring and modelling approach.

Video track analysis revealed that the attraction of *S. robusta* towards dSi and pheromone sources is mediated by a simultaneous chemotactic and chemokinetic search mechanism. The cells showed a remarkable behavioral adaptation by changing their movement pattern towards signal gradients, thereby increasing their encounter rate with the perceived stimuli.

This behavioral adaptation allows diatoms to rapidly colonize sediments by selectively responding to dSi and pheromone gradients and exploit them. The active foraging and mate search of cells is therefore an important factor on ecosystem structuring. It can influence micro-scale patchiness in biofilm communities, as well as affecting sediment-water dSi fluxes and global biogeochemical cycles.

CMV04

How to analyse motility, chemoreceptors and chemotaxis in hyperthermophilic Archaea

H. Angstmann, M. Ugale, J. Wastl, G. Wanner, R. Rachael, A. Bellack

1University of Regensburg, Institute of Microbiology, Regensburg, Germany
2Friedrich-Alexander Universität, Lehrstuhl für Medizinische Biotechnologie, Erlangen-Nürnberg, Germany
3LMU Munich, Biozentrum, Planegg-Martinsried, Germany
4University of Regensburg, Centre for Electron Microscopy, Regensburg, Germany

Question: Chemotaxis enables microorganisms to sense chemical stimuli in their environment and to direct their movement towards high concentrations of attractants or away from repellents. The structure, function and interaction of the proteins involved in the motility-chemotaxis network has been extensively studied in Bacteria, but data on the archaean system are limited to a very few studies of mostly mesophilic species.

Hence, we aim to analyse the presence and localization of chemoreceptors in the very motile, hyperthermophilic Euryarchaeota Methanocaldococcus villosus, Thermococcus kodakarenensis, and Pyrococcus furiosus and want to identify components or parameters that can be sensed by these organisms.

Methods: The genomes of *M. villosus, T. kodakarenensis*, and *P. furiosus* were searched for genes homologous to bacterial chemoreceptors and chemotaxis genes. Selected (truncated) proteins were expressed recombinantly in *E. coli* and used for generation of polyclonal antibodies. For transmission electron microscopy, cells of the three species were either negatively stained or resin-embedded and ultrathin sectioned either negatively stained or resin-embedded and ultrathin sectioned. For transmission electron microscopy, cells of the three species were either negatively stained or resin-embedded and ultrathin sectioned with without subsequent immuno-labelling [1]. Swimming studies were performed using the temperature gradient-forming device (TGFD) that can be added to every upright phase contrast light microscope and allows analyses of anaerobic organisms at temperatures up to 110 °C [2]. Different media and conditions, e.g. changes in temperature, oxygen concentration or growth phase were tested for their influence on motility and the expression of flagella and chemoreceptors.

Results: *M. villosus* and *T. kodakarenensis* possess five chemoreceptors, four classical transmembrane receptors and one cytoplasmatic receptor whereas no known chemotaxis genes are annotated in *P. furiosus*. The existence of chemoreceptors on protein level was proven in *M. villosus* and *T. kodakarenensis* via Western Blots. In correlation with these data, a complex submembrane structure resembling bacterial chemoreceptor arrays was identified in close proximity to flagella in ultrathin sections of *M. villosus* and *T. kodakarenensis* but not in *P. furiosus*. Different growth conditions like temperature, osmolarity and the concentration of complex organic compounds were found to have an effect on the presence and number of chemoreceptors and flagella and thus the swimming behaviour.

Conclusion: This is the first study to investigate the link between motility, chemoreceptors and chemotaxis in hyperthermophilic Archaea. We suggest *T. kodakarenensis* as a model organism to further analyse the complex network of sensing and movement in Archaea.

References:

CMV05

In situ structure of the archaellial assembly and motor complex

B. Bauma, A. Bellack, R. Reichelt, V. Heinz, P. Chadehury, S. W. Albers, V. Gohr, R. Rachael, W. Kühbrandt

1MP of Biophysics, Department of Structural Biology, Frankfurt a. M., Germany
2University of Regensburg, Department of Microbiology and Archaea Centre, Regensburg, Germany
3University of Regensburg, Centre for Electron Microscopy and Department for Microbiology and Archaea Centre, Regensburg, Germany
4University of Freiburg, Department of Molecular Biology of Archaea, Freiburg, Germany

Since the archaean lineage has split from the phylogenetic tree billions of years ago, archaean have conquered diverse habitats around the globe, ranging from the most extreme to more ambient environments, including the human body. Fundamental to their prolific diversification and ability to invade new habitats is the capability of archaenal cells to move. In the course of evolution, archaean have developed their own propulsion apparatus called the archaellum, which is distinct from bacterial and eukaryotic flagella in terms of molecular composition and function. To understand the molecular mechanism of the archaellum it is essential to study its structure, which in contrast to the bacterial flagellum remains largely unknown.

We employed electron cryo-tomography to investigate the in situ structure and organisation of the archaellum from the hyperthermophilic Euryarchaeon *Pyrococcus furiosus*. We found that most cells assemble a bundle of up to 50 archaella, which are held at one cell pole by a cytoplasmatic protein sheet that resides ~40 nm below the plasma membrane. At the cell surface, the S-layer of *P. furiosus* forms holes of ~18 nm in diameter to accommodate each extruding filament. Using subtomogram averaging, we have determined a structure of the macromolecular motor and assembly complex at the base of each archaellum. We found that the complex consists of a ring-shaped assembly surrounding a central barrel-shaped unit that spans the cytoplasm between plasma membrane and cytoplasmatic sheet. Using a combination of single particle electron microscopy, known X-ray structures, biochemical data and bioinformatics we can now identify the positions of individual protein components within the map in order to build a structural model of the entire machinery. This will provide invaluable and unprecedented insights into the function of this fascinating molecular device.

Question: Motility is a crucial phenomenon among many prokaryotes. The archaenal motility structure, the archaellum, is a unique nano-machine, which shares structural homology with bacterial type IV pili while it functionally resembles bacterial flagella. The motor of the archaellum comprises of FlaX, Flai, and FlaI. Flai forms a 30nm ring structure that acts as a scaffold protein and was shown to interact with the bi-functional motor ATPase Flai and Flai. FlaI is a ReaA/Rad51 family protein, which binds ATP with high affinity but is unable to hydrolyze it. We wanted to understand whether and how ATP binding of Flai is important for its function and its interaction with other archaellum motor complex proteins.

Methods: The crystal structure of Flai was solved at 2.3Å resolution. To illustrate the function of Flai, point mutants were created in the ATP binding site and analyzed for in vitro ATP binding, interaction with motor ATPase Flai and effects in swimming motility. Microscale thermostoresis was used to compare the binding affinity of wild type and mutant Flai with Flai. Pull down experiments using western blot analysis was
performed to isolate the binary FlaX and FlaH complex. Moreover, chemical crosslinking was performed to show the oligomerization of FlaH and single particle analysis was performed in order to visualize the FlaX-FlaH complex.

Results: The crystal structure of FlaH reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP \textit{in vitro}, but ATP binding to FlaH is essential for its interaction with Flai and for archaella assembly. FlaH interacts at the C-terminus of Flai, which was shown to be essential for FlaX ring formation and to mediate interaction with Flai. Single particle analysis reveals that FlaH assembles as a second ring inside the FlaX ring \textit{in vitro}. Collectively these data reveal central structural insight of FlaH function in archaella basal body assembly.

Conclusion: Flai is a dual function ATPase and we have hypothesized that the nucleotide dependent interaction with FlaH might be important for the switch between archaella assembly and rotation, hence FlaH can have a regulatory function in the archaella basal body.

CMV07

The bacterial flagellum of Salmonella – length control and type-III protein export mechanisms of a macromolecular machine

*M. Erhardt*1

1Helmholtz Centre for Infection Research, Braunschweig, Germany

Question: Many bacteria - including Salmonella - use rotation of a helical organelle, the flagellum, for directed movement in various environments. The flagellum is composed of three main parts: a basal body (the engine), a flexible, curved adapter structure (the hook), and a long external filament (the propeller). This sophisticated nanomachine is functionally and structurally related to virulence-associated injectisome systems of pathogenic bacteria. Components of the fla regulon include a specific type-III secretion system at the base of the structures and a mechanism that controls the length of the flagellar hook or injectisome needle, respectively. The type-III export apparatus consists of a cytoplasmic ATPase-cargo delivery system and six integral membrane proteins of unknown stoichiometry and functions. The molecular details of the type-III protein export process and the biological importance of hook length control remain obscure.

Results and Methods: We showed previously that a molecular ruler protein is intermittently secreted throughout assembly of the flagellar hook and by this mechanism controls the length of the hook structure in a stochastic process to a final length of 55 nm. Here, we generated deletions and insertions in the molecular ruler protein that resulted in shortened and elongated hook structures, respectively. Single-cell swimming motility analyses revealed that variations in hook length have a profound effect on motility performance.

In addition, we performed a genetic screen to dissect the minimally essential components of the core type-III export apparatus and characterized the role of the FlitO component in assembly of the flagellar-specific T3SS. We found that most integral-membrane components were essential and all cytoplasmic components were dispensable for export of a reporter protein and that FlitO participates in quality control of export gate assembly.

Conclusions: Our results demonstrate that flagellar hook length has evolved to match the requirements for optimal motility and that the PMF-dependent inner-membrane components constitute the core protein export machine of type-III secretion systems.

CMV08

Identification and characterization of minor pilins and PilY1 proteins involved in type IV pili-dependent motility in Myxococcus xanthus

A. Treuner-Lange, Y.-W. Chang, G. Jensen, L. Sogaard-Andersen1

1Max Planck Institute for Terrestrial Microbiology, Department of Ecophysiology, Marburg, Germany

California Institute of Technology, Division of Biology, Pasadena, USA

Type IV pili (T4P) are versatile, filamentous cell surface structures involved in a variety of processes involving motility, biofilm formation, natural competence and virulence. T4P are highly dynamic and undergo cycles of extension, adhesion and retraction. How these events are accomplished by the T4P machine is not understood. We recently elucidated the architecture of the T4P machine in \textit{M. xanthus} and mapped the 10 core proteins of the T4P machine to this architecture using electron-cryotomography (ECT) in combination with an informative set of mutants and fluorescent fusion proteins. Moreover, we have proposed a detailed model for the overall structure and function of this machine. Briefly, these 10 proteins assemble to form a macromolecular complex that spans from the cytoplasm and over the entire cell envelope to the outer membrane. In addition to the 10 core proteins of the T4P machine, the so-called minor pilins and PilY1 are important for T4P function. The minor pilins are low abundance proteins and have been reported to be present in small amounts in the pilus fiber and have been suggested to prime pilus assembly and/or counteract retraction. PilY1 proteins are described as pilus-associated adhesins and are suggested to function in adhesion and/or anti-retraction. To understand the function of minor pilins and PilY1 in in vitro biology, we identified the corresponding genes in \textit{M. xanthus}. We identified three gene clusters each with four minor pilin genes and one pilY1 gene. The corresponding proteins were named FimbU-PilV-PilW-PilX_1-3, and PilY1_1-3 following the nomenclature of the homologous proteins of \textit{Pseudomonas aeruginosa}.

To analyze the function of the minor pilins of \textit{M. xanthus} we systematically deleted the three \textit{fimbU-pilV-pilW} clusters in the genome and analyzed for T4P-dependent motility and T4P formation in the mutants. Whereas deletion of single \textit{fimbU-pilV-pilW} clusters did not affect T4P-dependent motility lack of two or all three clusters abolished T4P-dependent motility and T4P formation. Moreover, all 10 core components of the T4P machine accumulate at wild-type levels in total cell extracts of the nine-fold mutant. Using ECT on intact cells of the nine-fold mutant, we only detected non-piliated T4PM machines and these empty machines lacked a short periplasmic stem structure that is present in non-piliated T4P machines in wild-type and connects to the inner membrane. We suggest that this short stem functions as a priming complex for T4P assembly and that the minor pilins are part of this complex.

In the case of PilY1 proteins, single deletions did not affect T4P-dependent motility whereas lack of two or all three PilY1 proteins abolished T4P-dependent motility. We are currently analyzing if this defect in T4P-dependent motility is also caused by a defect in T4P assembly. We will report our progress in understanding the function of minor pilins and PilY1 proteins of \textit{M. xanthus}.

EMV01

The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7

1Institute of Biology III, Albert-Ludwig University of Freiburg, Genetics & Experimental Bioinformatics, Freiburg, Germany

2Institute of Biological Sciences, University of Rostock, Plant Physiology Department, Rostock, Germany

3Instituto de Bioquímica Vegetal y Fotossíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain

Glutamine synthetase (GS), a key enzyme in biological nitrogen assimilation, is regulated in multiple ways in response to varying nitrogen sources and levels. Here we show a small regulatory RNA, NsiR4 (nitrogen stress induced RNA 4), which plays an important role in the regulation of GS in cyanobacteria [1]. NsiR4 expression in the unicellular \textit{Synechocystis} sp. PCC 6803 and in the filamentous, nitrogen-fixing \textit{Anabaena} sp. PCC 7120 is stimulated through nitrogen-limitation via NtcA, the global transcriptional regulator of genes involved in nitrogen metabolism. NsiR4 is widely conserved throughout the cyanobacterial phylum, suggesting a conserved function. In \textit{in silico} target prediction, transcriptome profiling upon pulse overexpression and site-directed mutagenesis experiments using a heterologous reporter system showed that NsiR4 interacts with the 5'UTR of \textit{gifA} mRNA, which encodes glutamine synthetase inactivating factor IF7. In \textit{Synechocystis}, we observed an inverse relationship between the levels of NsiR4 and the accumulation of IF7 in vivo. This NsiR4-dependent modulation of \textit{gifA} (IF7) mRNA accumulation influenced the glutamine pool and thus NH\textsubscript{3} assimilation via glutamine synthetase. As a second target, we identified \textit{srr1528}, a hitherto uncharacterized nitrogen-regulated gene. Competition experiments between wild type and an NsiR4 knockout mutant showed that the lack of NsiR4 led to decreased acclimation capabilities of \textit{Synechocystis} towards oscillating nitrogen levels. These results suggest a role for NsiR4 in the regulation of nitrogen metabolism in cyanobacteria, especially for the adaptation to rapid changes in available nitrogen sources and concentrations. NsiR4 is the first identified bacterial sRNA regulating the primary assimilation of a macronutrient.

EMV02
Unprecedented hydrogen production of free-living Epsilonproteobacteria (*Sulfurospirillum spp.*)
*S. Kruse1, T. Goris1, M. Gutsche1, G. Diekert1
Friedrich Schiller University, Applied and Ecological Microbiology, Jena, Germany

Introduction: While the microbial production of hydrogen is well known for a wide range of bacteria and several algae, Epsilonproteobacteria like *Wolinella succinogenes* were assumed to exclusively consume H_2 for catabolic purposes so far. A membrane-bound [NiFe] hydrogenase was shown to be responsible for H_2-oxidation in those bacteria. Here, H_2 production of free-living Epsilonproteobacteria belonging to the *Sulfurospirillum* genus, known for their variable catabolism including pyruvate fermentation and organohalide respiration, is reported for the first time. Therefore, the ecological role of *Sulfurospirillum* spp. as a potential H_2-producing partner in syntrophic communities is discussed.

Objectives: This study focuses on the H_2 production capability of various *Sulfurospirillum* spp. during growth on fermentable substrates.

Methods: H_2 production of *Sulfurospirillum* spp. was measured gas-chromatographically during growth on pyruvate as sole carbon and energy source and hydrogenase transcript levels were compared via quantitative reverse transcriptase (qRT) PCR. Fermentation product formation was measured via HPLC.

Results: Comparative genome analysis revealed the presence of up to five hydrogenases (four [NiFe], one [FeFe]-type) encoded by *Sulfurospirillum* spp. While [FeFe] hydrogenases are in general known to be H_2-evolving hydrogenases, two of the [NiFe] hydrogenases are most likely H_2-producing hydrogenases as well, bearing high similarities to characterized H_2-evolving [NiFe] hydrogenases. Due to its environmentally relevant ability to dechlorinate organohalides, *S. multivorans* was chosen as model organism in this study. Transcript levels of the hydrogenases were compared to already available proteome data and besides the periplasmic H_2-oxidizing MBH, a multi-subunit cytoplasmic membrane-bound [NiFe] hydrogenase similar to the H_2-evolving hydrogenase 4 of *E. coli* was expressed. Fermentation experiments revealed H_2 production during pyruvate fermentation for all tested *Sulfurospirillum* spp., while one non-dechlorinating species, harbouring the additional [FeFe] hydrogenase, showed the highest amount, assuming to be responsible for the higher production.

Conclusion: Unprecedented H_2 production capability of free-living Epsilonproteobacteria is shown here for the first time. Considering the importance of hydrogen in anaerobic ecosystems, *Sulfurospirillum* spp. and other Epsilonproteobacteria might be undiscovered hydrogen producers and thus contribute to the microbial anaerobic food web.

EMV03
Where to dig for exoelectrogens or is there any ecological niche of electroactive microorganisms?
*C. Koch1, F. Harnisch1
Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Leipzig, Germany

The question: The core of microbial electrochemical technologies (METs) is the ability of the electroactive microorganisms, also known as exoelectrogens, to interact with electrodes via extracellular electron transfer (EET), allowing an immediate wiring of electric current flow and microbial metabolism. MET applications range from wastewater treatment to production of chemicals with *Geobacter sulfurreducens* and *Shewanella oneidensis* being the model organisms. Many other microorganisms were reported for being electroactive, but are often only sparsely characterized. As for an industrial application of METs broader understanding of the ecological requirements of these electroactive microorganisms is required, we assessed, if there is any “typical” ecological niche of electroactive microorganisms, or more bluntly speaking: Where to dig for finding new ones?

Methods: The environmental preferences and natural habitat characteristics of 88 electroactive species (bacteria and archaea) described in literature were combined with their physiological as well as EET characteristics. Based on 20 individual descriptors an extensive meta-analysis was performed.

Results: All in all, 43 species displayed anodic, 25 cathodic (13 of them including autotrophic biomass formation) and 17 species both ways of EET within electrochemically correlated genes of some of the investigated parameters, e.g. different electron transfer characteristics (direct vs. mediated) and the preference for soluble or flexible use of soluble and solid electron acceptors, whereas no obvious linkage to any specific habitat was found.

Conclusion: These results strongly indicate that significantly more electroactive species exist in nature as well as in already established strain collections. But current standard cultivation techniques certainly impede the identification of their EET capacities. In the light of specific traits required for industrial application like metabolic functions performed under defined temperature or salinity optima, microbial resource mining (of strain collections as well as natural habitats) based on ecological knowledge bears an enormous potential for future developments of METs.

EMV04
Environmental distribution and enrichment of anaerobic methanotrophs from Italian paddy fields
A. Vaksmaa1, K. Ettwig1, M.S.M. Jetten1, *C. Lüke1
Radboud University, Nijmegen, Netherlands

Rice agriculture is a major source for the greenhouse gas methane. It is produced by anaerobic methanogenic archaea in the bulk soil. However, not all produced methane is emitted to the atmosphere. Methane oxidizing microorganisms act as a bio-filter reducing the emissions substantially. For a long time, research has focused on aerobic methane oxidisers, however, it has become apparent that anaerobic methanotrophy might also play a significant role in flooded rice fields. Most paddy fields are heavily fertilized with nitrate which can be used as alternative electron acceptor. To get insights into the importance of anaerobic oxidation of methane (AOM) in Italian paddy fields, we studied the distribution using 16S rRNA gene amplicon sequencing and qPCR. Methanoperedens-like nitrate reducing archaea and Methylophilobacillus-like nitrite reducing bacteria were both present in the bulk soil as well as in the rice rhizosphere. Nevertheless, the abundance of Methanoperedens-like archaea was an order of magnitude higher than Methylophilobacillus. Soil slurries converted 15N-nitrate to dinitrogen gas and 13C-methane to 12CO_2 thereby confirming the potential for nitrate-dependent AOM (at 17 mmol gDW d^1). Furthermore, the AOM community was enriched using a bioreactor fed with methane and nitrate. After 1.5 years of incubation, the culture was dominated by a Methanoperedens-like archaea (approximately 20 % of total microbial community). After coverage and GC % based binning, the analysis of the metagenome of the enrichment culture revealed furthermore a high abundance of a Methylophilobacillus-like bacterial species and a Chloroflexi species. FISH analysis and qPCR confirmed the successful enrichment of the anaerobic methanotrophs.

EMV05
Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere
*A. Khalifa1
King Faisal University, Biological Sciences, Hofuf, Saudi Arabia

Methods: Rhizosphere sample was collected from a rice paddy field in Anjo, Aichi, Japan. Details of the sampling and enrichment procedure were described previously (Dianou et al., 2012). The ribulose monophosphate carboxylase/oxygenase pathways were determined as described by Maeda et al. (2002). Cellular fatty acids was determined using the Sherlock Microbial Identification (MIDI) system. DNA was isolated and purified as described by Marmur (1961) and DNA G+C content was determined by HPLC according to the method of Katayama-Fujimura et al. (1984). Amplification of the pmMoA gene and nmoX gene was carried out by PCR with primers universal and mmOX206/mmOX886r, respectively. Amplification of the 16S rRNA gene was carried out with primers 27f/1492r. Phylogenetic trees were constructed with the neighbour-joining method.

Results: Description of *Methylomagnum* gen. nov.: Cells are aerobic, Gram-negative, motile rods with a single polar flagellum. Cells possess the typical intracytoplasmic membrane system for gammaproteobacterial methanotrophs (type I) forming bundles of membrane vesicles. Resting stages are observed. Cells utilize only methane or methanol as sole carbon and energy sources. Methane is oxidized via pMMO and C1 compounds are assimilated via the ribulose monophosphate and/or ribulose bisphosphate pathways. Cells are neutrophilic, mesophilic and non-thermotolerant. The major cellular fatty acids are C16:0 and C14:0 and the major respiratory quinone was 18-methyl-ubiquinone-8. The strain belonged to the family *Methylcococcaceae* (Gammaproteobacteria).

The type species is *Methylomagnum ishizawai*.

Description of *Methylomagnum ishizawai* sp. nov.: Exhibits the characteristics as described for the genus. In addition, cells are 2.0-4.0 μm
long and 1.5-2.0 μm wide. Colonies appear white and resting stages are observed. Cells grow optimally at 31-33 °C (range 20-37 °C) and at an optimal pH of 6.8-7.4 (range pH 5.5-9). Cells utilize nitrate and methanol as sole carbon and energy sources, but are sensitive to methanol concentrations higher than 0.05 %. Grows with nitrate, ammonium, methanol as sole carbon and energy sources, but are sensitive to methanol concentrations higher than 0.05 %.

Conclusion: Japanese rice paddy field is a biological resource for description of a novel species. The type strain, RS1D-Pr was isolated from rhizosphere of rice. The DNA G+ C content of the type strain is 64.1 mol %.

EMV06

Nutrient and increasing temperature effects on the microbial community structure and function in streambed sediments

E. Pohlon1, J. Pulver1, J. Marxsen1

1Institute for Animal Ecology, Gießen, Germany

3MPI, Limnology, Schlitz, Germany

Central European streams are affected by multiple stressors as global warming and pollution which act on the structure and activity of microbial communities in streambed sediments. To investigate the effects of increasing temperature and nutrient levels on bacteria, streambed samples from two streams with different pollution levels (low: Breitenbach (Btb) and high: Vollnkirchener Bach (Vkb)) were incubated in the laboratory at three different temperatures (10, 15 or 20 °C) using a perfused core technique. The activity of five extracellular enzymes and the abundance of seven different bacterial groups using CARD-FISH were determined in the beginning and after 2 weeks of incubation. Differences in extracellular enzyme activity and bacterial abundance were more pronounced between the streams than caused by different temperatures. Total bacterial abundance increased significantly with increasing temperature (23 % (15 °C), 28 % (20 °C) for Btb and 11 % (15 °C) 45 % (20 °C) (Vkb) compared with 10 °C) in both streams. The bacterial community structure changed with the temperature. In the Breitenbach Actinobacteria dominated the bacterial community at higher temperatures. In the Vollnkirchener Bach the proportion of Gammaproteobacteria were highest at 20 °C and Archaea increased significantly at higher temperatures. The extracellular enzyme activities were strongly temperature dependent but showed also that nutrient and microbial composition were more important than temperature. This study illustrates that increasing temperatures (5 °C) and higher nutrient levels induce effects on microbial communities and their function in streams.

EMV07

The dark side of the Mushroom Spring microbial mat – life in the shadow of chlorophototrophs

A. V. Thiel1, J. Wood2, M. Olsen3, D. Ward4, D. Bryant2,3

1Tokyo Metropolitan University, Biological Sciences, Hachioji, Tokyo, Japan

3University, Biology, Jena, USA

4University, Soil and Water Conservation, Murcia, Spain

Microbial communities inhabiting the hot spring phototrophic microbial mats in the effluent channels of Octopus Spring and Mushroom Spring within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years (1, 2). In these studies, the emphasis has generally been focused on the phototrophic bacterial populations, i.e., chlorophyll-based phototrophs of the phyla Cyanobacteria and Chloroflexi and the newly discovered phototrophs Chloracidobacterium thermophilum (Acidobacteria) and “Candidatus Thermochlorobacter aerophilum” (Chlorobi). In contrast, the diversity and metabolic functions of the heterotrophic community in the anoxic/microoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the phototrophic microbial mat at Mushroom Spring using metagenomic and rRNA-amplification (Itag) analyses. Members of the oxygen-tolerant, filamentous anoxygenic phototroph Roseiflexus spp. were identified as the dominant populations in the microbial undermat community. The second most abundant organisms were Thermotoga sp., whose predicted predatory lifestyle might contribute to the availability of biological substrates to the heterotrophic community, and which have been hypothesized to constitute a major source of H2 by anaerobic fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. (3, 4). Further key-players are two different members of the phylum Armatimonadetes (former Candidate phylum OP10), Thermocrinis sp., two potentially phototrophic and one heterotrophic member of the Chloroflexi, one member of the Atribacteria (former Candidate phylum OP9), a sulfate-reducing member of the genus Thermodesulfovibrio, a Planctomycetes member, a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the former Candidate phylum OP8, Arminiacinetes. Archaea were not detected in abundant numbers in the Itag analysis, and no metagenome bin representing an Archaeon was recovered from the metagenome.

Highly similar Synechococcus sp. variants in these mats were shown to represent ecological species populations with specific ecological adaptations (5-7). A similar microdiversity and existence of putative ecotypes is suggested by this study for members of the undermat community, and in particular for Roseiflexus sp., the most dominant member of the Chloroflexi and overall species in the undermat.

EMV08

Bacteria dominate the short-term assimilation of plant-derived N in soil

R. Starke1,2, R. Kermer2, L. Ullmann-Zeuner2, I. T. Baldwin3, J. Seifert2, F. Bastida1, M. von Bergen1, N. Jehmlich1

1Helmholtz Centre for Environmental Research – UFZ, Proteomics, Leipzig, Germany

3University, Animal Science, Hohenheim, Germany

2University, Biology, Jena, USA

University, Soil and Water Conservation, Murcia, Spain

Fungi dominate the degradation and assimilation of plant-derived polymeric organic C [1]. Both antagonistic and synergistic relations of fungi to bacteria have been reported [2, 3] but it was generally assumed that bacteria feed on low molecular weight compounds released by the fungal breakdown of complex polymers. In comparison to the well-understood cycling of inorganic N [4], only little is known about the assimilation of organic N in soil. For the first time, we characterize the bacterial and fungal populations involved in the cycling of 15N-labeled plants using amplicon sequencing (16S and 18S rDNA), metaproteomics and protein-SIP. Copiotrophic behaviour was revealed for Rhizobiales belonging to Proteobacteria, Actinomycetales belonging to Actinobacteria and Chlorococcales belonging to Cyanobacteria as these phylotypes immediately incorporated N from the added plant tissue. Otherwise, the fungal Saccharomycetales and the bacterial Enterobacteriales, Pseudomonadales, Sphingomonadales and Xanthomonadales displayed oligotrophic 15N-assimilation as incorporation of plant-derived N was reported during the later stages of short-term decomposition. Our study unveiled that, in contrast to the dominance of fungi in the degradation of complex compounds and bacteria feeding on fungi-released low molecular weight compounds, mostly bacteria were involved in the short-term assimilation of plant-derived N in soil.

EMV09
A novel central carbon assimilation pathway in the marine Alphaproteobacterium Erythrobacter sp. NAP-1
1M. Benndorf-Gättert, D. Peter2, J. Zarzycki1, T. J. Erb1
1Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
2Universität Bonn, Institute of Molecular Physiology and Biotechnology, Bonn, Germany

Question: Many carbon sources in the environment, such as fatty acids, alcohols, esters, waxes, alkane, polyhydroxylalkanoates, and C1-compounds are initially converted into the central metabolite acetyl-CoA. Acetyl-CoA is then transformed into biomass through anaerobic or assimilation. For more than fifty years, the glyoxylate cycle of Escherichia coli has been the only known acetyl-CoA assimilation pathway. Recently, however, we discovered the ethylmalonyl-CoA pathway (1) and the methylaspartate cycle (2) that operate in environmentally and ecologically highly relevant microorganisms, such as Haloarchaea, soil-born Streptomycetes, and plant-associated, as well as aquatic alphaproteobacteria. Here, we report on a novel acetyl-CoA assimilation strategy that operates in the marine organism Erythrobacter sp. NAP-1 and that essentially differs from all other acetyl-CoA assimilation strategies described so far. This novel central metabolic pathway seems to be specifically adopted to the lifestyle of Erythrobacter sp. NAP-1 in a carbon- and energy-limited environment.

Methods: Bioinformatics was used to identify the pathway reaction sequence. Enzyme activities were developed to test and quantify the proposed reactions in vitro and in vivo. Key enzymes of the proposed pathway were expressed and biochemically investigated. Erythrobacter sp. NAP-1 was cultivated under different growth conditions to confirm the functioning of the proposed novel acetate assimilation pathway by cell extract assays and proteomics.

Results: A new propionyl-CoA synthase (1) that possesses an unusual carboxylation activity was demonstrated as key enzyme of the proposed pathway. Other enzymes involved in the proposed novel acetyl-CoA assimilation pathway were demonstrated by enzyme measurements in cell extracts and validated by proteomics.

Conclusions: Erythrobacter sp. NAP-1 uses a completely novel pathway for acetyl-CoA assimilation that features an unusual CO2-fixation reaction, which allows for the assimilation of acetyl-CoA and efficiently saves ATP. This study extends our knowledge beyond the E. coli “textbook” example of acetyl-CoA assimilation by describing (yet) another acetyl-CoA assimilation strategy that seems to enable the specific adaption of the central carbon metabolism of a microorganism to its environmental niche.

(1) Erb et al. PNAS 2007
(2) Khimyakova et al. Nat Biotech 2011
(3) Alter & Fuchs Journal of Biological Chemistry 2002

EMV10
Biological significance of glucosinolate break-down products on soil microbiome
*M. Siebers1, S. Thies1, F. Kovacic1, K.-E. Jaeger2, P. Dörmann1
1University of Bonn, Institute of Molecular Physiology and Biotechnology of Plants, Bonn, Germany
2Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

Glucosinolates (GSLs) are a group of secondary metabolites in plants of the Brassicaceae order. The GSLs and the hydrolytic enzymes, the myrosinases, constitute a natural plant defense system against diverse pathogens due to their allelopathic properties. Potential negative long-term effects of the highly bioactive break-down products on beneficial soil microorganisms have not been studied sufficiently. However, this would be worthwhile with regards to a sustainable agricultural use of Brassicaceae-dominated producing areas for the subsequent cultivation of different crops, especially legumes. In order to address this issue a combination of approaches was used to systematically characterize the changes in the soil microbiome. Bioassays were based on analyzing growth suppression of selected pathogenic and beneficial soil fungi by GSLs and their hydrolys products. The results obtained revealed that GSL and its derivatives do not specifically target pathogenic fungi, but also have detrimental effects on beneficial fungi. Lipid and RNA analyses were carried out to systematically characterize GSL derived changes of the soil community structure. To this end, soil of a selected test site (organic farming) was analyzed after exposure to GSLs utilizing quadrupole time of flight mass spectrometry and gas chromatography to provide lipid fingerprints. Signature lipid biomarker (SLB) analysis used in determining changes in community structure of soil microorganisms revealed significant changes after exposure to GSLs.

These changes in SLBs are accompanied by changes in different enzyme activities in soil extracts. Here, increase of relative activities for 20, 4 and 10 folds for esterases, phospholipases and proteases, respectively, compared to the control samples were determined. Information obtained by 16S metagenomic analyses of soil samples exposed to a 4-week-GSLs application revealed a tremendous reduction of fungal and bacterial diversity. This shift was accompanied by a massive reduction in biological diversity concerning bacteria and especially fungi. After 4 weeks of incubation, a certain yeast of the genus Trichosporon accounted for over 98% of the total fungal biomass found in the test soil. Similar results were obtained concerning the bacterial community. Specific bacteria, which were found to be associated to the root microbiota of Brassicaceae, became more abundant, while in general the biological diversity decreased profoundly during incubation.

Conclusively, a time-dependent shift in microbial community structure, and significantly decreased levels of fungal biomass due to application of GSL breakdown products were detected. The project thus revealed unprecedented negative effects of GSLs on the soil microbial biodiversity, which has an impact on growth and germination of other crop plants e.g. Fabaceae.

EMV11
Metabolic labor united – complete nitrification by a single microorganism
*S. Lücke1, M. A. H. van Kessel1, D. R. Speil2, M. Albertsen3, P. P. H. Niessen4, H. J. M. Op den Camp5, B. Kartal6, M. S. M. Jetten6
1Radboud University, Microbiology, Nijmegen, Netherlands
2Aalborg University, Department of Chemistry and Bioscience, Aalborg, Denmark

Nitrification, the step-wise oxidation of ammonia to nitrate, is a process catalyzed by two physiologically distinct clades of microorganisms. First, ammonia-oxidizing bacteria and archaea convert ammonia to nitrite, which subsequently is oxidized to nitrate by nitrite-oxidizing bacteria. This division of labor was already described by Winogradsky in 1890 and is a generally accepted characteristic of the biogeochemical nitrogen cycle. Even though the existence of a single organism capable of catalyzing complete nitrification was not reported to date, this reaction is energetically feasible and was postulated to occur under conditions selecting for microorganisms with lower growth rates, but higher growth yields than canonical ammonia and nitrite-oxidizing bacteria (Costa et al., 2006). Thus, these organisms could have a competitive advantage in biofilms and other microbial aggregates growing at low substrate concentrations. In this study, we enriched for microorganisms responsible for nitrogen transformations in an ammonium-oxidizing biofilm, which was sampled from the anaerobic compartment of a biofilter connected to a recirculating aquaculture system. This enrichment culture contained two Nitrospira species that had all genes required for ammonia and nitrite oxidation in their genomes. Batch incubation experiments indicated that these Nitrospira species indeed formed nitrate from the aerobic oxidation of ammonia, and FISH-MAR confirmed their ability to use the energy derived from ammonia and nitrite oxidation for carbon fixation. Their ammonia monooxygenase (AMO) enzymes were phylogenetically distinct from canonical AMOs, thus rendering recent horizontal gene transfer from unknown ammonia-oxidizing microorganisms unlikely. Instead, their AMO subunit A displayed highest similarities to the “unusual” particulate methane monooxygenase from Crenothrix polyspora, thus shedding new light onto the function of this largely uncharacterized sequence group. Our results show by the recognition of a novel amoA type that a whole group of ammonia-oxidizing microorganisms was previously overlooked and thus will lead to a better understanding on the environmental abundance and distribution of this functional group. Furthermore, the discovery of the long-sought-after comammox process will change our perception of the nitrogen cycle.

EMV12
Microbial communities in extremely oligotrophic sediments of the South Pacific Gyre – Do they eat phages?
*F. Preuss1, L. Moskwa1, H. Cypionka1, B. Engelen1
1Universität Oldenburg; Institut für Chemie und Biologie des Meeres, AG Paläomikrobiologie, Oldenburg, Germany

Microbial communities in deep subsurface sediments are limited by energy and electron donor availability. In the extreme oligotrophic sediments of the South Pacific Gyre (SPG) the viral biomass represents a
EMV13

Regulatory network of *Dinoroseobacter shibae* DFL12 for the adaptation to low oxygen tension

*M. Ebert1, E. Härtig1, D. Jahn1
1Technical University Braunschweig, Institute for Microbiology, Braunschweig, Germany

Question: *Dinoroseobacter shibae* DFL12 is capable of performing nitrate respiration and subsequent denitrification under anaerobic conditions. *D. shibae* possesses genes encoding several homologs of the dissimilatory nitrate respiration (Dnr) regulator (DnrD, DnrE and DnrF) and one gene encoding afumarinatrinrepressor (Fnr) homolog (FnrL). What is their role within the fine-tuned regulatory network guiding the adaptation to low oxygen tension?

Methods: We generated knockout mutants of the *dnrD, dnrE, dnrF* and *fnrL* regulator genes and performed shift experiments from aerobic to anaerobic growth conditions in the presence of 25 mM KN03. Samples for RNA preparation and subsequent DNA array hybridization and RNA Sequencing were taken before the shift and after 30 and 60 min of anaerobiosis. Furthermore, DnrF was recombantly produced and purified as a His-tagged fusion protein under anaerobic conditions. To study hemin binding UV/Vis and electron paramagnetic resonance (EPR) spectroscopy was performed. DNA binding of the anaerobically purified DnrF was analyzed using electro mobility shift assays (EMSA).

Results: Using transcriptome analysis the regulons of *DnrD, DnrE, DnrF* and *FnrL* were determined. The genes encoding proteins involved in denitrification processes were found upregulated under anaerobic conditions. The periplasmatic dissimilatory nitrate reductase (Nap) was found expressed even under aerobic conditions. A repression by DnrD, DnrE and DnrF was found under aerobic and anaerobic conditions. The anaerobic expression of the *nit* and *nor* operon was induced by FnrL and fine-tuned by DnrD. The *nos* operon was anaerobically activated by DnrD and FnrL combined with a fine modulation of DnrF. Moreover genes involved in electron transport like the cytochrome *bc*, and NADH dehydrogenase are regulated by FnrL. The promoter region of the *nap* operon was used for EMSA to study binding of DnrF. A *K*ₐ of 3.45 nM by addition of 4 nM DNA was determined. The conserved binding motif (TTGA-Nᵥ-₉-CTAA) was identified and the specificity of DnrF binding was shown in competition experiments. This binding site was found additionally within promoter regions of other Dnr target genes we identified by transcriptome analysis. Furthermore, we used anaerobically produced and purified DnrF regulator protein for biochemical characterization. UV/Vis spectroscopy the addition of hemin to DnrF resulted in a typical absorption spectrum, which indicates specific hemin coordination. Exposure of the DnrF/hemin complex to NO blue shifted the UV/Vis spectrum indicating a possible NO sensing mechanism for DnrF.

Conclusion: The Crp/Fnr family members FnrL, DnrD, DnrE and DnrF form a fine-tuned regulatory network and mediate the anaerobic expression of denitrification genes. Specific binding of DnrF to DNA was shown. The coordination of hemin to DnrF indicates a possible NO signal perception mechanism.

EMV14

Diversity and function of bacterial communities in sublittoral marine surface sediments

*D. Probandt1, A. Soeren2, M. Holtappels3, K. Knittel1, R. Amann1
1Max Planck Institute for Marine Microbiology, Molecular Ecology, Bremen, Germany
2Max Planck Institute for Marine Microbiology, Biogeochemistry, Bremen, Germany
3Alfred Wegener Institute, Helmholtz Centre for Marine and Polar Research, Benthic-Pelagic Processes, Bremerhaven, Germany

The benthic bacterial community in sublittoral sediments is persistently supplied with water column-derived organic material and oxygen. A concept for the breakdown of algal biomass in the water column has been proposed and specialized *Bacteroidetes* and *Gammaproteobacteria* have been identified as main mineralizers [1] but only little is known about benthic-pelagic coupling and microbes involved in degradation processes in sublittoral sediments.

Here, we studied temporal and lateral changes (7 sites) of the microbial community structure in permeable surface sediments by Illumina tag sequencing of the 16S rRNA gene and CARD-FISH. Further, functions of dominant populations were addressed by metagenomics.

The bacterial communities in permeable surface sediments differ significantly from overlaying bottom waters (ANOSIM *R*=0.98, *p*<0.005) and exhibit a greater evenness. In contrast to the water column, which is dominated by the SAR11 clade, actinobacterial *Candidatus* *Actinomarina spp.* and flavobacterial NS5, NS7 and NS9 groups, dominant benthic bacterial groups were gammaproteobacterial *Xanthomonadales* and *Chromatiidae*, deltaproteobacterial *Sandaracinaceae* and the acidobacterial group *Sva0725*. No significant differences between subsampled depth layers of the first two centimeters were observed. The bacterial diversity varied greatly between sites with highest values observed for two sampling sites furthest offshore. The portion of shared OTU₀.₀₅ ranged from 11% to 29% across all samples. Despite their great variability, the bacterial communities differed significantly between permeable and non-permeable sites (ANOSIM *R*=0.4973, *p*=0.001) and the orders *Campylobacteriales* and *Desulfovibrionales* were identified as characteristic for non-permeable sediments. Although less pronounced than in the water column, seasonal changes in the bacterial community were observed. The OTU₀.₀₅ richness and evenness was highest in winter and lowest over the summer while absolute cell numbers were three times higher in summer compared to following winter (*5*×10⁸ and 1.3×10⁸ cells/mL). Only 17% of OTU₀.₀₅ were shared between all sampling points. CARD-FISH showed high abundances of *Holophaga* (15% of total cells), *Planctomycetes* (19%), *Blastopirellula* (4%), *Phycisphaeraceae* (5%) and *Sandaracinaceae* (5%), for investigated sediments of the German Bight. Additionally, first insights from metagenomes will be presented and discussed in the context of degradation of complex organic substrates, in particular of polysaccharides.

This study shows that oxic sublittoral surface sediments harbor a distinctively different community than the water column despite its close coupling. Such communities undergo temporal and lateral influences but are dominantly shaped by the sediments physical nature.

EMV15

A targeted mutation system is active in the filamentous *N₂*-fixing cyanobacteria *Trichodesmium erythraeum*

*U. Pfreundt1, W. R. Hess1
1Institute for Biology III, AG Hess, Freiburg, Germany

Bloom of the dinitrogen-fixing marine cyanobacterium *Trichodesmium erythraeum* considerably contribute to new nitrogen inputs into tropical and subtropical oceans. Intriguingly, only 60% of the *Trichodesmium erythraeum* IMS101 genome sequence codes for protein, compared with ~85% in other sequenced cyanobacterial genomes.

Using primary transcriptome sequencing, we demonstrated recently that *T. erythraeum* has the highest percentage of transcription start sites yielding non-coding RNAs of any bacterium examined to date (Pfreundt et al., 2014). Up to 86% of the intergenic sequence space is transcribed into RNA in culture and its sequence is highly conserved in metagenomic
datasets of Trichodesmium (Walworth et al., 2015). Adding another detail to this exceptional genome architecture, we provided evidence for the sequential splicing of a group II trintron (nested introns) interrupting a coding cyanobacterial protein-coding gene (Pfreundt and Hess, 2015). Thus, this is the only trintron known to interrupt a protein coding gene in bacteria, raising the question about possible special adaptations of the Trichodesmium genome to mobile genetic elements.

This idea is also in line with our finding of a highly transcribed retroelement (a Diversity Generating Retroelement, DGR) that serves as a template for the targeted mutation of at least 12 different genes by mutagenic homing (Pfreundt et al., 2014). This is of special interest in view of the generally high genome stability of Trichodesmium species all over the world’s oceans. Using individually picked Trichodesmium colonies from the Gulf of Mexico and amplicon sequencing, we have generated first evidence that some of the putative target genes are indeed highly diverse even within a few individual Trichodesmium colonies, indicating high mutation rates at these genomic sites. While there is no functional annotation for these genes, a role in viral defense, sensing of diverse molecules, or cell-to-cell interactions can be imagined.

EMV16

Low wind speed induces strong bacterial community changes in the sea surface microlayer of a wind-wave system

J. Rahlff, M. Ribas Ribas, C. Stolle, H.-A. Giebel, T. Brinkhoff, D. Hodapp, O. Wurl

1 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Wilhelmshaven, Germany
2 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Oldenburg, Germany

Covering two-thirds of the Earth’s surface, the sea surface microlayer (SML) forms the boundary layer between the atmosphere and the underlying oceanic water mass (ULW). The SML evokes our interest due to its unique physicochemical and biological properties that differ from deeper waters. Its atmospheric proximity makes the SML a controlling zone for climate-related gas exchange processes and comprises a vast microbial ecosystem. The bacterioneuston, i.e. the bacterial community within the SML, inhabits a harsh environment dominated by wave action, turbulences by wind, upwelling and advection as well as increased UV radiation. Calm wind has been identified as a driver for the formation of distinct bacterial populations within the SML, but knowledge about effects on the species level and a mechanistic explanation of how the wind speed affects the neustonic habitat is still scarce. Experiments at the Heidelberg Small-Scale Air-Sea Interaction Facility (Aeolotron) filled with sea water from the Atlantic Ocean allowed us to study the bacterioneuston under controlled wind speed ranging from very calm to stormy conditions as well as three different pCO2 levels (600-630, 740-900 and 900-1200 ppm). We used 16S rDNA fingerprinting analysis, i.e. Denaturing Gradient Gel Electrophoresis, for bacterial community analysis and flow cytometry to determine the bacterial abundance in the SML and the ULW. The results show that bacterial numbers in the SML were up to twice as high as in the ULW below a wind speed threshold of 5.5 m s⁻¹. Highest enrichment was observed at high pCO2 levels. Additionally, the wind speed also affected the bacterioneuston diversity causing increasingly different bacterial communities to lie between SML and ULW, both of which were generally dominated by members of the Alpha- and Gamma proteobacteria. At low but not at high wind speed we identified abundant SML-specific bacteria e.g. belonging to the Alteromonadaceae. In contrast, a member of the class Flavobacteria (Bacteriodetes) was absent from the SML at low wind speed and could be found in the ULW at high wind speed. Ongoing work aims to investigate whether our identified wind speed threshold of 5.5 m s⁻¹ holds also true for natural bacterioneuston communities, which were sampled in the central Baltic Sea during summer 2015.

FBV01

Intracellular and potential extracellular roles of the Ustilago maydis Acyl-CoA-binding protein Acb1

I. Jungmann, S. Reissmann, K. Rahmann

Max Planck Institute for Terrestrial Microbiology, Organismic Interactions, Marburg, Germany

Conventionally secreted effectors play a crucial role during the biotrophic interaction between the smut fungus *Ustilago maydis* and its host plant *Zea mays*. In the last decade it has been established that proteins without a signal peptide can also be targeted to the outside of the cell in an ER/Golgi independent manner. Many of these unconventionally secreted proteins have been shown to be ‘moonlighting’ proteins with an extracellular function distinct from their intracellular function. One candidate for an unconventionally secreted protein in *Ustilago maydis* is the UmAcb1 protein, previously detected in the apoplastic fluid of infected maize leaves. UmAcb1 is a homolog to the Acyl-CoA binding protein of Dicystostelium discoideum (AcbA), for which intracellular functions as Acyl-CoA shuttle protein and Acyl-CoA pool former are described. In addition, AcbA is conventionally secreted as full-length protein and extracellularly processed into a small peptide (SDF-2) which triggers terminal spine differentiation upon interaction with a membrane receptor.

In our work we could show that *U. maydis* Acb1 can be secreted and processed into an SDF-2 like peptide. This peptide was able to trigger terminal spine differentiation in *D. discoideum*. When acb1 is deleted in a solenohemogenic strain virulence is unaltered, however, when acb1 is deleted in compatible haploid strains, these mutants are unable to mate and cause disease. At present, we are trying to establish whether the absence of disease symptoms is linked to the intra- or extracellular function of Acb1.

FBV02

Soil amoeba impose predatory selection pressure on environmentally acquired pathogenic fungi

S. Novohradská, I. Viediernková, F. Hillmann

1 Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany
2 Institute of Microbiology, University of Trier, Trier, Germany
3 Max Planck Institute for Terrestrial Microbiology, Organismic Interactions, Marburg, Germany
4 Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany
5 Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany

Opportunistic systemic fungal infections (mycoses) are frequent threats of severely immunocompromised patients. They are manifested as an acute pneumonia, fungemia or in worst cases as a life-threatening progressive dissemination.

Some fungal pathogens, like *Candida albicans*, are present as a commensal of the mucous membranes; however, the number of cases, where *Candida sp.* acts as opportunistic nosocomial pathogen is rapidly increasing. Other yeasts and also filamentous fungi, like *Aspergillus fumigatus*, are acquired from environmental sources. In their natural environment, fungi are daily exposed to the selection pressure from the side of their predators, such as soil amoebae. Amoebae are professional phagocytes that are abundant in the nature, grazing on the many bacteria, yeasts and filamentous fungi. Their role as agents to control terrestrial microflora is significant. We hypothesize, that parts of the multifactorial virulence potential of some fungi have emerged during the co-evolution with soil inhabitants, as a result of long-term interaction with predatory amoebae. With all their enormous biodiversity, *Dicystostelium discoideum* has become a leading model organism for pathogen-host interactions and presents a powerful tool for investigating the evolutionary origin of virulence. During *in vitro* confrontations with the spores of *A. fumigatus*, phagocytic interactions between both organisms showed similarities to *A. fumigatus* encounters with macrophages. While white, naked conidia of *pksP* mutant were rapidly ingested by *D. discoideum*, uptake of those covered with the green pigment DHN-melanin was drastically reduced. Beside the phagocytic interactions, both amoeba and fungus secrete cross-inhibitory compounds, which suppressed the fungal growth or induced amoeba aggregation with subsequent cell lysis, respectively. Using LC-MS analysis we identified gliotoxin, a non-ribosomal peptide with immunosuppressive properties, as the major amoebicidal metabolite of *A. fumigatus*. On the side of the predatory amoeba, we are currently working on the identification of an antifungal metabolite.

We have recently extended our infection model to a natural isolate of the abundant soil amoeba *Protostelium mycophaga*, which has not been studied in detail but lives exclusively fungivorous. Our results indicate a broad food range within the fungal kingdom and we have further observed the ability of several yeast species to undergo reversible phenotypic switching to escape the phagocytosis by invasive growth. This

phenomenon was specific to amoeba predation and therefore might represent an adaptive trait of yeasts acquired in the environment.

FBV03

Molecular background of virulence in human pathogenic Mucoralean fungi

G. Nagy, M. Hassan2, D. Kumar1, A. Grace Leo Vaz1, E. Bartha1, C. Vágvölgyi1, K. Voigt1, T. Papp1, I Csémet1,2

1University of Szeged, Department of Microbiology, Szeged, Hungary
2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Freiburg, Germany
3Hans Knöll Institute and Friedrich Schiller University, Jena, Germany
4Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany

Background: Members of Mucoromycotina (formerly zygomycetes) have great biotechnological and industrial importance, e.g. in the production of organic acids (lactic acid), unsaturated fatty acids and carotenoids, and oral fermented food (soy sauce or tempeh). On the other hand, several species are important as opportunistic human pathogens, which can cause frequently fatal systemic infections in immunocompromised patients. In the recent years, the number of patients with zygomycoses has significantly increased.

Question: Little is known about virulence factors and genes playing role in survival of human pathogenic zygomycetes within the host.

Methods: In this study, our goal is the functional characterization of selected genes of *Mucor circinelloides* and *Lichtheimia corymbifera*, which may have effect on virulence potential of these fungi. Genes of *L. corymbifera* up and down regulated during interaction with macrophages were studied. HMG-CoA reductase mutants of *M. circinelloides* isolated previously were also involved in the study.

Results: Several genes (involved in iron transport, encoding hydrophobic surface and heat stress proteins, etc.) were cloned and disrupted in *L. corymbifera*. The interaction of *Lichtheimia* and *M. circinelloides* mutants with macrophages is still in progress.

Expected results: Our results will greatly contribute to knowledge of the virulence of *Mucor* and *Lichtheimia*. Exploration of the role of the potential virulence factors in the infections would help to find new therapeutic targets against pathogenic fungi. The applied comparative approach could reveal whether there are any differences and/or similarities in the pathogenicity and defensive ability of different zygomycetic species.

Acknowledgements: This research was supported by the grants OTKA NN106394 and TET_12_DE-1-2013-0009. T.P. is a grantee of J. Bolyai Scientific Scholarship of the Hungarian Academy of Sciences. A.C. is supported by the Hungarian Academy of Sciences Postdoctoral Research Programme (Postdoc-16, 45.0.080).

FBV04

Parasitella parasitica, an experimental laboratory system for studying horizontal gene transfer

*J. Wöstemeyer1, B. Burmeister1, S. Ellenberger2, E. Schulz2, J. Wetzel1, K. Birke1, L. Siegmund1, A. van Burgeler1

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany
2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany

The *Mucor*-related zygomycete *Parasitella parasitica* is a parasite of various mucoralean fungi that has developed characteristics pointing towards an endosymbiotic relationship. During infection, host and parasite undergo fusion, thus leading to the transfer of organelles including nuclei. Looking at the morphology of infection structures, the transfer of nuclei and, consequently, of genetic information from the parasite to the host is highly favoured. However, the opposite direction, gene transfer from hosts into the parasite is not completely impossible. Parasexual gene transfer from the parasite into one of its hosts, *Absidia glauca*, has been proven by complementation of host auxotrophic mutants following infection with prototrophic parasites. Transfer rates range between 10⁻² and 10⁻⁴. For several of these so-called para-recombinants, DNA analyses have recently been performed (1).

In order to find the putatively rare parasexual events in the parasite, supplemented by DNA coming from the host, we isolated a mutant of *P. parasitica*, auxotrophic for adenine. This mutant has a reddish phenotype, as expected for fungal mutants defective in either *ade1* or *ade2*. A single para-recombinant among 10⁵ spores has been isolated. The transfer rate is thus 10⁻⁴ to 10⁻⁶ times lower than for the normal direction. At the evolutionary scale, the reverse direction of gene transfer has recently been supported by the appearance of a rRNA repeat unit, strongly resembling the rDNA of the *A. glauca* (+) mating type in the genome of a (+) mating type strain of *P. parasitica*. This mating type attribution matches with the infection behaviour: (+) strains of *P. parasitica* exclusively infect (-) strains of *A. glauca*. Host/parasite combinations belonging to identical mating types never form infection structures and, consequently, never undergo fusion.

We also analysed the behaviour of mitochondria during infection. Until now, we can not provide evidence for transfer of complete organelles or defined parts of the chondriome in laboratory experiments, but by analysing the mtDNA sequences of *P. parasitica* (2) and *A. glauca* (unpublished), we see ample indications for sharing mobile mtDNA elements between the organisms.

The physiology of communication between host and parasite strongly resembles the sexual recognition principles, based precursors and derivatives of trisporic acid (3) and has recently been reviewed.

1Burmester et al. (2013) Microbiology 159, 1639-1648
2Ellenberger et al. (2014) Genome Announcements 2
3Wöstemeyer et al. (2016) The Mycota 13 ed, Chapter 10

FBV05

Redox regulation of hypoxic response in Aspergillus fumigatus

*E. Shekhova1, T. Krüger1, J. Macheleidt1, O. Knieweyer1, A. A. Brakhage1

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany

The mould *Aspergillus fumigatus* can cause life-threatening invasive infections in immunocompromised patients. In the site of infection the fungus faces many environmental stress such as a dramatic drop in oxygen concentration. The ability to tolerate severely hypoxic environments represents an important virulence trait of *A. fumigatus*. Currently, many reports suggest that adaptation to hypoxia may be regulated by elevated production of ROS. In this project we aim to gain more insights into the mechanism of how *A. fumigatus* maintains redox homeostasis during exposure to low oxygen levels. In particular, we want to reveal proteins that are specifically modified and thus can be responsible for hypoxic adaptation. Our results confirmed increased amounts of intracellular reactive oxygen intermediates in *A. fumigatus* exposed to low oxygen levels. Moreover, by applying gel-free proteomics approach we could identify proteins, which get reversibly oxidized by ROS after shifting oxygen content in the culture from 20 % to 0.2 %. For instance, proteins with a putative role in cellular copper ion homeostasis, assembly of respiratory chain complex IV and oxidative stress regulation were modified in one hour of hypoxic cultivation. Further investigation of biological functions of reversibly oxidized proteins will help us to elucidate essential pathways involved in sensing hypoxia by *A. fumigatus*.

FBV06

Post-transcriptional regulation impacts on iron metabolism regulation in Candida glabrata

*F. Gerwien1, F. Hille1, S. Brunke1, J. Linde2, L. Kasper1, B. Hube1,2,4

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular Pathogenicity Mechanisms, Jena, Germany
2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Systems Biology and Bioinformatics, Jena, Germany
3Friedrich Schiller University, Jena, Germany
4Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany

The iron status is of key importance for all fungal species and plays a particularly important role in *C. albicans*. *C. glabrata* is an opportunist yeast that is frequently isolated from the site of infection. *C. glabrata* has a higher tolerance for iron deprivation than *C. albicans*, indicating that an iron regulation mechanism is present in the fungus. Since *C. glabrata* is also an important pathogen in immunocompromised patients, the understanding of iron metabolism in this yeast is essential for the development of new therapeutic strategies.

Question: Iron is a trace element essential for many cellular processes but also harbors a toxic potential when present in excess. Due to this dual role and to prevent microbial growth of invading pathogens the host restricts iron availability during infection. Thus, successful pathogens such as the fungus *Candida glabrata* must have developed effective strategies to obtain iron to prevail in the host, which have to be tightly controlled. Although well characterized in the related non-pathogenic yeast *Saccharomyces cerevisiae* and the human pathogen *Candida albicans*, regulation of iron metabolism has not been studied in detail in *C. glabrata*. Interestingly, *S. cerevisiae* and *C. albicans* differ greatly in their iron regulation strategies. The aim of this project is to elaborate the regulation of iron homeostasis in *C. glabrata* and to identify potential unique strategies present in *C. glabrata*.

Methods: To identify potential iron regulators in *C. glabrata*, we searched for orthologs of genes relevant for iron metabolism in *S. cerevisiae* or *C. albicans*. Deletion mutants were constructed and growth assays under stress and iron limitation were carried out. Further, expression analyses...
using qRT-PCR and microarrays were performed to elucidate the role of the selected genes in the regulation of iron metabolism and to identify their target genes.

Results: Our data suggest that Af1 is the main iron regulator in C. glabrata inducing iron uptake (FTRI, FE3, SIT1) and iron recycling genes (HMX1) under iron limiting conditions. An af1Δ mutant depicts a severe iron dependent growth defect and susceptibility against oxidative stress, high pH, high metal and cell membrane stress. Importantly, our data point to a post-transcriptional degradation of iron consumption pathway related gene products under iron limitation, such as mRNAs from ACO1, CTA1 and HEM15, modulated by the potential RNA-binding protein Tis11. These results match with observations made in S. cerevisiae, but not in C. albicans [1,2]. In contrast, SeF1, the main iron uptake initiator in C. albicans, harbors no such function in S. cerevisiae. However, we observed a distinct iron-related role of SEF1 in C. glabrata, related to glutamate biosynthesis, in particular the regulation of ACO1, IDH2 and IDH4.

Conclusion: Taken together, these results indicate an iron-regulation system for C. glabrata closely resembling S. cerevisiae with Af1 being the iron regulated sensory function. This is the first description for a pathogenic species utilizing this particular setting of regulation. However, the involvement of SEF1 indicates an evolutionary intermediate step to the SEF1 dependent regulation system of the pathogen C. albicans. Thereby, C. glabrata has evolved a unique system for the regulation of iron metabolism.

2Wells et al. 2015. Mol. Microbiol., 95(6), 1036-1051.

FBV07

A glimpse into the role of the fungal rhodopsins CarO and OpsA in Fusarium fujikuroi

U. Terpitz, *A. Adam*, *J. García-Martínez*, *M. Brunk*, *J. Avalos*
Julius Maximilians University, Biotechnology and Biophysics, Würzburg, Germany

*Université de Seville, Genetics, Seville, Spain

Question: In filamentous fungi green light is sensed by fungal rhodopsins, a family of membrane-stationary photoreceptors which exhibit a highly conserved, heptahelical structure. The central chromophore all-trans-retinal is covalently bound to the protein via a protonated Schiff-base. Depending on the class of fungal rhodopsins the conformational change of retinal from all-trans to 13-cis upon light activation may either mediate proton-pumping or sensory function. While the research in bacterial rhodopsins has a long history, in contrast, the information about fungal rhodopsins is sparse and their biological function is almost unknown. In this work, we aim to gain more insights into the role of rhodopsins and their importance for fungi.

Methods: For our investigation we chose the rice pathogen *Fusarium fujikuroi*. This filamentous ascomycete contains two rhodopsin-encoding genes, carO (Prado et al., 2004) and opsA (Estrada & Avalos, 2009). The carO gene is linked to and co-regulated with genes coding for enzymes for retinal synthesis, whose expression is strongly induced by light. Also the opsA gene is upregulated by light. We fused CarO and OpsA to fluorescent proteins and expressed the fusion constructs in *F. fujikuroi* mycelia (endogenous promoter) and mammalian cells (CMV-promoter) and analyzed them by confocal laser scanning microscopy (cLSM) and patch-clamp techniques, respectively (García-Martínez et al., 2015). In addition, we analyzed the germination of rhodopsin-deficient mutant *F. fujikuroi* strains and performed rice plant infection experiments.

Results: We observed that in light-exposed mycelia CarO and OpsA are mainly expressed in conidia but to some extend also in growing hyphae. The rhodopsins are located in the cytoplasm membrane but also in the membranes of inner organelles. CarO is a very efficient proton pump and it becomes even more active when chloride in the extracellular solution is substituted by gluconate or acetate. In contrast, OpsA does not provide any net charge transfer under those conditions which is in accordance with observations in the related fungal rhodopsin nop-1 from *Neurospora crassa*. Software-assisted, video-microscopic analysis of conidia germination revealed that the conidia of the CarO-deficient strain germinate more slowly in light than the one from the CarO-expressing strain. In contrast, we did not observe such distinct phenotype in the OpsA strains.

Conclusion: In plant tissue green light is highly accessible and, in accordance, fungal rhodopsins are found in many phyto-associated fungi. Rhodopsins are involved in the regulation of the conidia germination and, by that, may also play a role in the regulation of the plant-fungus interaction. Besides that, as efficient proton-pump, CarO could also contribute to the maintenance of the trans-membrane proton-gradient.

FBV08

Regulatory networks of the gibberellin cluster in Fusarium fujikuroi

E.-M. Niehaus, *L. Rindermann*, *B. Tudyinský*
Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany

The filamentous fungus *Fusarium fujikuroi* is known to produce a variety of structurally diverse enzymes, metabolites, coenzymes and gibberellins (GAs), pigments and mycotoxins. The GAs are a virulence factor of its producer and causer of the so-called ‘Bakanae’ (foolish seeding) disease but otherwise they are also commonly used in agri-, horti- and viticulture as plant growth regulators. Thus, the understanding of the regulation of the GAs is of great biotechnological interest.

During the past decade of years, we identified a complex regulation network for GA biosynthetic genes. They are repressed by high amounts of nitrogen and were the first secondary metabolites for which a direct dependency on the GATA-type transcription factor AreA was shown. Recently, we revealed that a second GATA-type transcription factor, AreB, is also essential for expression of the GA genes. Besides these two transcription factors the fungal-specific Velvet complex is also involved in the regulation of the GA cluster. Deletion of FvVe1 and the putative methyltransferase FLael1 led to downregulation of the respective biosynthetic genes while overexpression of FLael1 resulted in significant upregulation. Furthermore chromatin modification, e.g. deletion of the histone deacetylase FHD1, strongly affects GA gene expression and production. In addition, the active histone mark H3K9Ac (acetylation of lysine 9 at histone 3) at the GA cluster is enriched under nitrogen-limiting conditions and this is consistent with gene expression of this cluster. This study will give an overview of the complex regulation of the GA cluster.

FBV09

Coordinated process in polarized growth of the filamentous fungus Aspergillus nidulans

N. Takeishi, *A. Bergs*, *Y. Ishitsuka*, *G. U. Niehaus*
Karlsruhe Institute of Technology, Institute of Applied Physics, Karlsruhe, Germany

*Université de Seville, Genetics, Seville, Spain

The highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in *Aspergillus nidulans* and studied the dynamics and regulation. Comparison of actin marker revealed that high concentrations of Lifeact reduced the actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. In addition, Ca2+ gradient oscillation was visualized at hyphal tips using the Ca2+ sensor, cameleon. The frequency of this oscillation correlated with that of actin cable disassembly and microtubules reaching hyphal tips. Our results provide new insight into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

FBV10

Role of the autophagy-related gene Smatg12 in fruiting-body development of the filamentous ascomycete Soraria macrospora

S. Pöggeler, *B. Herzog*, *A. Werner*
Georg-August-Universität Göttingen, Genetik Eukaryotischer Mikroorganismen, Göttingen, Germany

In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation conditions and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane autophagosomes engulfing cellular
under different light conditions (“always conidia”, “always sclerotia”). However, the inability to form certain reproductive structures such as conidia as the major source of inoculum or sclerotia as prerequisite for sexual recombination is expected to decrease the overall fitness of the pathogen, and thus, it is questionable why “blind” strains are found in the field. In fact, the “blind” phenotype may be accompanied by reduced virulence, as shown for the “always conidia” phenotype of strains T4 and 1750 that is caused by single nucleotide polymorphisms (SNPs) in the VELVET gene bcv1. The identification of bcltf1 (Light-responsive Transcription Factor) and bckdm1 (Histone Demethylase 1) as new virulence-associated genes by random mutagenesis, further supports our hypothesis of an interrelationship between light signaling and virulence.

FBV13
Why some like it on the rocks – recurring stresses select for organisms with manifold protective pigments
R. Breitenbach1,2, *N. Knabe1, P. Dementyeva1, A. Gorbushina1
1 Federal Institute for Materials Research and Testing, 4.0 Materials and Environment, Berlin, Germany
2Max Planck Institute for Chemical Ecology, Jena, Germany

Microcolonial fungi (MCF) are the most stress-resistant eukaryotes known to date. These ascomycetes are able to colonize bare rock surfaces and have evolved mechanisms to cope with multiple stresses like high solar irradiation, temperature extremes, low water activity and scarce nutrient availability. They are ubiquitous in terrestrial ecosystems like weathered rocks and material surfaces. Black fungi are an interesting object to study mechanisms of stress resistance and to perform applied research to prevent material colonization and biodeterioration.

Pigments, like melanin and carotenoids, have been proven to contribute to the unique robustness of MFCs. We study how these pigments ameliorate oxidative stress responses - one of the most significant environmental challenges encountered by MCF - using the model rock fungus *Anidulafinga petricola* (Chaetothyriales) strain A95. This non-pathogenic fungus possesses all characteristic features of MCF, including meristematic growth, melanised cell-walls and extensive secondary metabolite production.

The melanin knockout mutants ASDH and APKS were compared concerning physiology, stress resistance to H2O2 and UV radiation, TEM of the cell wall and analysis of the extracellular polysaccharides (EPS), to elucidate mechanisms of cell wall maturation. Deletion of the polyketide synthase type I in K. petricola (APKS) leads to a complete loss of melanin, showing the carotenoids which are normally hidden beneath the melanin. Colonies of scytalone dehydratase mutants (ASDH) appear darker than APKS strains because of the incomplete disruption of the melanin synthesis pathway.

In comparison to the wild type strain, treatment with the oxidative agent H2O2 (up to 30 mM) did not show any dose-dependent growth inhibition in any melanin mutant strain. Analysis of the extracellular polysaccharide content showed an increased development of EPS in the melanin mutants which is also proven by TEM.

FBV14
Identification of novel factors involved in dimorphism and pathogenicity of *Zymoseptoria tritici*
A. Yemelina1, A. Brauchler2, S. Jacob1, K. Andresen1, A. Schüffler1, A. J. Foster1, E. Thines1,
1 Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), BBFW, Mainz, Germany
2Kaiserslautern, Germany

Introduction/objective: *Zymoseptoria tritici* (teleomorph: *Mycosphaerella graminicola*, syn. Septoria tritici) is the causal agent of the Septoria leaf blotch disease of wheat. Septoria wheat diseases have increased in incidence over the last few decades, which may be seen as a result of an increased emergence of strains evolving fungicide resistance. Especially *Z. tritici* has been referred to as the most destructive foliar pathogen of wheat in Europe. *Z. tritici* is considered to be a dimorphic plant pathogen displaying environmentally regulated morphogenetic transition between yeast-like and hyphal growth. Considering the infection mode of *Z. tritici*, the switching to hyphal growth is essential for pathogenicity allowing the fungus the host invasion through natural openings like stomata. In order to understand the molecular mechanism behind dimorphic transition and thus to identify novel pathogenicity associated genes, a forward genetics approach was applied.

Methods and results: *Agrobacterium tumefaciens*-mediated transformation (ATMT) method was used in order to generate a mutant
library by insertional mutagenesis including more than 8000 random mutants, which were screened for the ability/deficiency to perform a dimorphic switch upon nutrient-poor environment. In our screening 10 dimorphic switch deficient random mutants could be identified, 9 of which exhibited a yeast-like mode of growth and one mutant predominantly growing filamentously, producing a high amount of mycelium under different incubation conditions. Within this study four insertion mutants could be characterized in detail. Three of them were non-pathogenic and one mutant exhibited a drastically impaired virulence within infection assays on whole host plants. Moreover further phenotypical investigations on macroscopic and microscopic level revealed different pleiotropic effects. Using the genome walking approach the T-DNA integration sites could be recovered and the disrupted genomic loci of corresponding mutants were identified and validated within reverse genetics experiments. Finally a transcriptome analysis by RNA-Seq was performed in order to examine the transcriptional reprogramming during dimorphic switch.

Conclusion: With this study we present four novel and functionally characterized genes, which are involved in the dimorphic switch of the fungal plant pathogen *Z. tritici*. Exploring transcriptome data with respect to differences in gene expression under switch-inducing condition unveils new insights to precisely analyze the dimorphism related processes in *Z. tritici*.

FBV16

Towards making *Agrocybe aegerita* a modern model basidiomycete for mushroom formation

R. Herzog1,2, I. M. Solovyeva1,2, D. K. Gupta2,3, R. Sharma2,3, M. Rühi1, M. Thines1, P. F. Henricke1,2

1Goethe University Frankfurt/Senckenberg Gesellschaft für Naturforschung, Junior Research Group Genetics and Genomics of Fungi, Frankfurt a. M., Germany
2Goethe University Frankfurt/Senckenberg Biodiversity and Climate Research Centre (BIK-F), Frankfurt a. M., Germany
3LOEWE Excellence Cluster for Integrative Fungal Research (IPF), Frankfurt a. M., Germany
4Justus Liebig University Gießen, Institute of Food Chemistry and Food Biotechnology, Gießen, Germany

Introduction: Model basidiomycete-based fundamental research in the field of edible mushroom production aims at raising mushroom yield and quality by optimising strains and breeding strategies [1]. Currently, mushroom formation-related aspects can only be studied in depth with a few well-established model mushrooms, all having a number of major individual upsides but also certain considerable downsides [2].

Question: Hence, the commercially cultivated edible mushroom *Agrocybe aegerita* is suggested to become a modern model basidiomycete mostly combining the individual advantages from the present models.

Methods: A short ‘text-book’ basidiomycete life cycle involving dikaryotic and monokaryotic fruiting as well as asexual sporulation on agar media plus a good accessibility for molecular genetics were considered as must-haves of suitable standard strains for the future model mushroom.

Results: According to these criteria, a set of standard strains was selected for establishing *A. aegerita* as a model basidiomycete suitable to investigate mushroom formation by molecular genetics. This set is comprised of a parental dikaryon, *A. aegerita* AAE-3, and a set of standard monokaryons, generated from single basidiospores harvested from AAE-3 fruiting bodies. Each of these monokaryons exhibits one of the known degrees of monokaryotic fruiting and each of them is mating compatible with at least one sibling monokaryon. With the whole-genome of the parental dikaryon AAE-3 sequenced and in *silico* annotated, we were able to design a first tool to enable molecular genetics with *A. aegerita*. In the course of this, we have also been able to successfully establish an *A. aegerita* transformation protocol, using protoplasts originating from asexual monokaryotic spores. As a result, we were able to artificially express a dominant selection marker in one of the standard monokaryons derived from *A. aegerita* AAE-3.

Conclusions: Making use of the selected set of standard strains, the genome sequence of the strain *A. aegerita* AAE-3, our *A. aegerita* transformation protocol and our first *A. aegerita* molecular genetics tools, the prerequisites are met for the establishment of *A. aegerita* as a modern model mushroom.

CRASP11 was cloned, recombinantly expressed in E. coli and purified. Binding of recombinant CRASP11 to the human plasma proteins and complement regulators, Factor H, Factor H-like protein 1 (FHL-1), Factor H related protein 1 (CFHR1), C4 binding protein (C4BP) and plasminogen was shown by ELISA. Each of these human complement regulators bound to candida CRASP11 in a dose dependent manner. CRASP11-bound plasminogen was activated by uPA and newly generated plasmin cleaved a synthetic substrate, as well as natural substrates: C3b, fibrinogen and vitronectin. CRASP11-bound Factor H retained cofactor activity for complement Factor I mediated cleavage of C3b. CRASP11 was localized on the surface of C. albicans using a new specific antiserum. Specificity of this antiserum was confirmed as it did not detect the fungal protein on the surface of a candida CRASP11 knock-out strain. This CRASP11 knock-out strain recruited the soluble human complement regulators Factor H and plasminogen with lower intensity. However, binding of Factor H and plasminogen was restored in the corresponding C. albicans CRASP11-revertant strain. The CRASP11 knock-out strain, when challenged with complement active human serum had more competent C3b deposited on its surface, as compared to the wild-type and the CRASP11-revertant strain. The enhanced opsonization of the knock-out strain correlated with the increased phagocytosis by human neutrophil granulocytes.

Conclusion: Taken together, CRASP11 is a novel candida immune evasion protein that binds four soluble human complement regulators. CRASP11 contributes to complement evasion of C. albicans as the CRASP11 knock-out strain was more susceptible for complement damage. CRASP11 recruits human complement regulators to the surface of C. albicans and these regulators block activation of the human complement system. Thus, CRASP11 limits C3b-deposition on the cell surface (opsonization) and also phagocytosis of the fungal cells. Thereby, CRASP11 is a new fungal immune evasion protein that protects C. albicans from host innate immune attack at several levels.

IVB/02

Candida albicans modulates the immune response of human blood monocytes

E. A. H. Jo, L. Halder, S. Lorkowski, P. F. Zipfel, C. Skerka

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Infection Biology, Jena, Germany
2Friedrich Schiller University, Institute of Nutrition, Jena, Germany

The human pathogenic yeast *Candida albicans* is a dimorphic fungus, which can cause superficial as well as systemic infections. *C. albicans* inhibits host innate immune reactions by recruiting host complement inhibitors, such as factor H or FHL-1 to the surface. Thereby the host regulators reduce complement opsonisation of the fungus by dissociating the C3 convertase and inhibiting the subsequent recruitment of immune cells. Whether factor H on the Candida surface also influences the response of immune cells is still unknown. Upon incubation in normal complement active human serum *C. albicans* is immediately opsonized with human complement protein C3b and induces a strong inflammatory response in monocytes as measured by the induction of IL-1b and IL-6, but not IL-10. However, plasma purified factor H bound to the surface of *C. albicans* prior to incubation with the monocytes substantially inhibited the pro-inflammatory response of monocytes. This inhibitory function of factor H on monocytes was confirmed when factor H bound to apoptotic human cells had the same effect and did not induce inflammation. Moreover, factor H recruited via PRL to microbeads also inhibited IL-1b and IL-6 and clearly induced the anti-inflammatory cytokine IL-10. This regulatory activity of factor H on the surfaces was dependent on active human serum, indicating that not factor H alone is mediating the inhibitory effect. Indeed, when C3b was transformed by factor H together with factor I to iC3b, the same inhibitory effect on monocytes was observed. Altogether the results demonstrate that factor H is recruited via PRL to the Candida surface to generate iC3b, which by itself acts anti-inflammatory. This new function of factor H mediated iC3b explains why *C. albicans* and many other pathogenic human factor H to their surfaces. Notably the newly identified iC3b function is relevant in many human diseases like atypical hemolytic uremic syndrome or age related macular degeneration, which are characterized by reduced factor H functions on self surfaces due to genetic mutations.

IVB/03

The killing of macrophages by *Corynebacterium ulcerans*

E. Hacker, L. Ott, J. Schulze-Lührmann, A. Lührmann, V. Wiesmann, T. Wittenberg, A. Burkovski

1Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Erlangen, Germany
2Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Erlangen, Germany
3Fraunhofer Institut für Integrierte Schaltungen IIS, Erlangen, Germany

Corynebacterium ulcerans is a pathogenic species of the genus *Corynebacterium* and closely related to the human pathogen *Corynebacterium diphtheriae* and the animal pathogen *Corynebacterium pseudotuberculosis*. *C. ulcerans* is mainly associated with mastitis in cattle, non-human primates and other animals and is also known as commensal in various domestic and wild animals. However, during the last decade, human infections associated with *C. ulcerans* appear to be increasing in various countries and can most often be ascribed to zoonotic transmission. Toxicogenic *C. ulcerans* harbor lysogenic β-corynephages coding for diphtheria toxin and can cause respiratory diphtheria-like illness. However, also non-toxigenic strains can cause disease symptoms in humans, indicating that there are additional factors contributing to virulence of this bacterium. Despite rising numbers of infections and potentially fatal outcomes, data on the molecular basis of pathogenicity are scarce. In this study, *C. ulcerans* 809, isolated from a fatal case of human infection and BR-AD22, isolated from an asymptomatic dog, were characterized in respect to their interaction with human macrophages as important part of the innate immune system in order to get deeper insight into the pathogenicity of this emerging pathogen. THP-1 cells were infected with *C. ulcerans* and the uptake and intracellular survival of the bacteria was analyzed by counting colony forming units. Furthermore, Lysotracker staining and fluorescence microscopy was carried out to investigate co-localization of bacteria with acidic compartments. The reaction of the host cell to the bacterial infection was investigated measuring cytokine levels by ELISA and NF-κB activation with the reporter cell line THP1-Blue™. Through 7-AAD staining and FACS analysis as well as LDH release measurement, detrimental effects of *C. ulcerans* on host cells were analyzed. *C. ulcerans* strains were able to multiply within macrophages at least 8 hours post-infection and survive at least 20 hours. Uptake of the bacteria leads to delay of phagolysosome maturation which might be an effective mechanism for immune evasion and spreading of *C. ulcerans* within the body supporting the establishment and progress of infections. Upon bacterial infection, the host cells produce high amounts of IL-6 and G-CSF and NF-κB is activated. Furthermore, *C. ulcerans* induces a lytic cell death in THP-1 macrophages as deduced from cytotoxicity measurements and FACS analyses.

In summary, the data presented here indicate a high infectious potential of this emerging pathogen.
controls, allowing the identification of infection-specific fungal antigens. To identify fungal biomarkers in urine we used two approaches: (1) liquid mass spectrometry (LC-MS) and (2) ELISA/western blotting. **Results:** We have developed methods to sample urine from exposed and infected animals throughout the course of infection. In combination with in vivo imaging of bioluminescent fungi, this set up allows collection of samples from defined stages of infection. Sample preparation has been successfully optimized to allow detection of fungal proteins in murine urine by both LC-MS and by ELISA / western blotting. **Conclusion:** We have successfully established a workflow for the analysis of mouse urine. Experiments using urine from infected animals are currently under way to determine which fungal antigens are secreted in urine and whether they might provide suitable targets for novel diagnostic tools.

IBV05

The extracellular adherence protein (Eap) of *Staphylococcus aureus* affects proliferation and migration of eukaryotic cells by altering the adhesion and morphological properties of the host cell

1. J. Eisenbeis1, H. Peisker2, C. Backes1, E. C. Schwarz3, M. Herrmann1
2. M. Bischoff1

1University of Saarland, Institute of Medical Microbiology and Hygiene, Homburg, Germany
2University of Saarland, Biophysics, Homburg, Germany

The clinically important human pathogen *Staphylococcus aureus* is equipped with a large arsenal of virulence factors promoting/facilitating attachment to various host cell structures, and to modulate the immune response of the host. One of these factors is the extracellular adherence protein Eap, a member of the “secretable expanded repertoire adhesive molecules” (SERAM) protein family that possess adhesive and immune modulatory properties. We have previously shown that Eap impairs wound healing by interfering with host defense and repair mechanisms, and that this secreted protein abates cell proliferation and migration of keratinocytes and endothelial cells.

Here we report that Eap affects the proliferation and migration capacities of eukaryotic cells by altering the cell morphology and adhesive properties. By challenging non-confluent HaCaT cell cultures with Eap, a profound reduction in cell proliferation and migration was observed, accompanied with alterations in cell morphology. Eap-treated HaCaT cells changed their appearance from an oblong to trapezoid form with normally three to five distinct filopodia to a fried-egg like morphology with numerous lamellipodia like excrescences but lacking clear filopodial structures. These changes in morphology were accompanied by decreases in cell volume and cell stiffness. The Eap-challenge, on the other hand, significantly increased the adhesive properties of the cell towards its substratum. Similar effects were observed with endothelial and cancer cells, respectively, indicating that these Eap-induced effects are likely to occur with a broad range of eukaryotic cell types. Our data suggest that Eap might interfere with host cell migration and proliferation by impairing filopodia protrusion and by enhancing the cell-substratum adhesion.

IBV06

Quantitative proteomics reveals the dynamics of protein phosphorylation in human bronchial epithelial cells during internalization, phagosomal escape and intracellular replication of *Staphylococcus aureus*

1. E. Richter1, M. Hanns1, K. Venta1, R. Nöller1, M. Fraunholz1, J. Mostertz1, F. Hochgraf1
2. University of Greifswald, ZIK Functional Genomics / Junior Research Group Pathoproteomics, Greifswald, Germany
3. University of Würzburg, Department of Microbiology, Würzburg, Germany

Internalization of *Staphylococcus aureus* by non-professional phagocyte cells is a major suspected cause of persistent and difficult-to-treat infections including pneumonia. In this study, we established an infection model with 16HBE14o- human bronchial epithelial cells and demonstrate internalization, escape from phagosomal clearance and intracellular replication of *S. aureus* HG001 within the first four hours post infection. We use quantitative phosphoproteomics to identify characteristic signaling networks in the host at different stages of the infection. Whereas we found only minor changes in the abundance of proteins, the infection was accompanied by highly dynamic alterations in phosphorylation events, primarily in proteins that are associated with pathways of cytoskeleton dynamics, cell-cell and cell-matrix contacts, vesicle trafficking, autophagy as well as GTPase signalling. Analyses of host protein kinases by kinase-substrate mapping, immunoblotting of activity-regulatory sites and prediction algorithms highlight known and novel host kinases with putative critical roles in *S. aureus* infection-accompanied signaling including FAK, PKA, PKC and CDK. Targeted pharmacological inhibition of these kinases resulted in a significant reduction of intracellular *S. aureus* cells. The current study constitutes a valuable resource for a better understanding of the infection-relevant molecular pathomechanisms of airway cells and for the development of novel host-centric anti-infective strategies in *S. aureus* infections.

IBV07

The cystic fibrosis lower airways microbial metagenome

1. M. Roson Mosada1, P. Chouvarine1, M. Dorda1, S. Hedfeld1, S. Mielke1, A. Schulz1, L. Wiehöhn1, B. Tümmler1
2. Medizinische Hochschule Hannover, Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany

Chronic airway infections determine most morbidity in people with cystic fibrosis (CF). Here we present unbiased quantitative data about the frequency and abundance of DNA viruses, archaea, bacteria, molds and fungi in CF lower airways. Induced sputa were collected on several occasions from children, adolescents and adults with CF. Deep sputum metagenome sequencing identified on average about ten DNA viruses or fungi and several hundred bacterial taxa. The metagenome of a CF patient was typically found to be made up of an individual signature of multiple lowly abundant few disease-associated factors such as *Pseudomonas aeruginosa* and *Staphylococcus aureus* as major components. Anaerobes are characteristic inhabitants of the upper and lower airways of healthy non-CF humans. In our cohort of CF patients the proportion of anaerobes in the microbial metagenome decreased with age. The viral community consisted primarily of phages, a few human pathogens, primarily herpes virus and adenovirus, and rare cases of viruses infecting non-mammalian eukaryotic hosts. Dominant species in the mycobio were Aspergillus species and Saccharomyces including Candida sp. consistent with current knowledge of CF mycology. Whole metagenome analysis resolved the microbial signature of the individual patient. The spectrum ranged from a normal flora via an intermediate stage when the normal community is perturbed by *Haemophilus influenzae* or *S. aureus* to a final stage of a low-diversity community dominated by *P. aeruginosa*. This shift from a normal highly diverse metagenome indistinguishable from that of a healthy subject to the CF-typical end-stage of an almost pure culture of *P. aeruginosa* was correlated in our patient cohort with disease severity, but not with age. Thanks to the high accuracy of sequencing-by-ligation in the color space of 99.94 % we could resolve the clonal diversity of *S. aureus* and *P. aeruginosa* in CF airways metagenomes. The *S. aureus* and *P. aeruginosa* populations were composed of one major and numerous minor clone types. The rare clones constitute a low copy genetic resource which could rapidly expand as a response to habitat alterations such as antimicrobial chemotherapy or invasion of novel microbes. Results were obtained with a novel in-house software pipeline of filtration and normalization techniques necessary for accurate quantification of microbial organisms in metagenome samples.

IBV08

Clinical *Streptococcus pneumoniae* isolates from patients with pneumococcal hemolytic urticarial syndrome efficiently control host innate immune attack

1. C. Meinel1, E. Hörhold2, G. Sparta3, S. Hammerschmidt4, P. F. Zipfel5,6
2. Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Department Infection Biology, Jena, Germany
3. Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Associated Group Network Modeling, Jena, Germany
4. University Hospital, Center for Sepsis Control and Care, Jena, Germany
5. University Children’s Hospital, Nephrology Unit, Zurich, Switzerland
6. Ernst Moritz Arndt University, Department Genetics of Microorganisms, Greifswald, Germany

Friedrich Schiller University, Jena, Germany

Question: *Streptococcus pneumoniae* is an important human respiratory pathogen that is also associated with thrombotic microangiopathy and hemolytic uremic syndrome (HUS). In this study we characterized two clinical *S. pneumoniae* isolates derived from young patients with pneumococcal HUS. In order to elucidate how these bacteria overcome the human complement attack and contribute to pathogenesis we characterized their complement and innate immune evasion in detail.
Methods: ELISA, Flow cytometry, SDS-PAGE/Western Blot, Cytotoxicity assay

Results: The two clinical pneumococcal strains bound several complement regulators from human serum, including Factor H, FH1, CFIR1 and plasminogen. Both clinical isolates recruited the human complement regulator Factor H efficiently to their surface and bound Factor H more prominently as the virulent reference strain D39. Factor H bound to the pneumococcal surface retained its complement inhibitory activity and contributed to enhanced complement resistance of the two clinical strains. When challenged with complement active human serum, less C3b was deposited on the surface of the clinical isolates as compared to the reference strain D39. In addition also degradation and inactivation of C3b to iC3b was more efficient. Thus, the clinical isolates efficiently control complement by exploiting the human plasma regulator Factor H at their surface.

Expression levels of the pneumococcal Factor H binding proteins PspC and Tuf were analyzed. PspC surface levels of the clinical strains were two times higher than in D39 explaining the efficient Factor H recruitment. A new PspC variant for clinical isolate B and a rare PspC variant for isolate A were revealed by sequence analysis. In addition, plasminogen which was bound to the surface of the clinical isolates was still converted to the active plasmin and cleaved the synthetic substrate S-2251 and the natural substrates Fibrinogen and C3b. Thus, plasminogen binding supports pneumococcal immune evasion and in addition plasmin reduces the viability and surface attachment of human endothelial cells.

Conclusion: By recruiting high amounts of Factor H to their surface the two clinical S. pneumoniae isolates effectively control complement activation as they enhance C3b inactivation and reduce opsonization. Thereby, the pathogenic bacteria are more resistant to host complement attack. Furthermore, the clinical isolates exploit the human plasmin to inhibit complement activity and also to damage human endothelial cells. Concluding from these results, we hypothesize that plasmin mediated damage of human endothelial cells promotes cell retraction and exposure of the underlying extracellular matrix, thereby generating a prothrombotic environment that favors coagulation, leading to thrombus formation, thrombocytopenia, hemolytic anemia and ultimately to renal injury, the key features of HUS.

IBV09
The biochemical RNA landscape of a cell revealed by Grad-seq

1. Universität Würzburg, Institut für Molekulare Infektionsbiologie, Würzburg, Germany
2. Universität Greifswald, Institut für Mikrobiologie, Greifswald, Germany
3. Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany

High-throughput sequencing can rapidly profile the expression of theoretically all RNA molecules in any given organism but the primary sequence of these transcripts is a poor predictor of cellular function. This has been particularly evident for the regulatory small RNAs of bacteria which dramatically vary in length and sequence within and between organisms.

Here, we establish a new method (gradient profiling by sequencing: Grad-seq) to partition the full ensemble of cellular RNAs based on their biochemical behavior. Our approach enabled us to draw an RNA landscape of the model pathogen Salmonella Typhimurium, identifying clusters functionally related noncoding RNAs irrespective of their primary sequence. The map revealed a previously unnoticed class of transcripts that commonly interact with the osmoregulatory protein ProQ in Salmonella enterica. We show that ProQ is a conserved abundant global RNA-binding protein with a wide range of targets, including a new class of ProQ-associated small RNAs that are highly structured, and mRNAs from many cellular pathways. By its ability to describe a functional RNA landscape based on expressed cellular transcripts irrespective of their primary sequence, our generic gradient profiling approach promises to aid the discovery of major functional RNA classes and RNA-binding proteins in many organisms.

IBV10
The RNA chaperone Hfq mediates post-transcriptional regulation of adhesins in the enteropathogen Yersinia enterocolitica

T. Krokoschke, S. Krokoschke, H. Bouabé, O. Rossier

Max von Pettenkofer-Institut, Munich, Germany

Question: Bacterial infections are initiated by molecular interactions between host cells and bacterial surface molecules, named adhesins. The proper deployment of adhesins, i.e. their expression or repression under specific cues, is crucial for colonization and survival within the host. In Enterobacteriaceae, the RNA chaperone Hfq mediates the interaction of many small non-coding RNAs (sRNA) with their target mRNAs, thereby modulating transcript stability and translation. This post-transcriptional control is believed to help bacteria adapt quickly to changing environmental conditions. We previously demonstrated that Hfq impacts growth, metabolism as well as stress resistance of the gastrointestinal pathogen Y. enterocolitica [1]. Moreover, we investigated whether Hfq and the conserved sRNA CyaR mediate post-transcriptional repression ofompX. Moreover, we revealed the role of Hfq in the expression of surface pathogenicity factors such as the non-fimbrial adhesins Aid, YadA and InvA and the Myf fimbriae.

Methods: Immunoblotting and translational fusions with GFP were used to monitor protein production and gene expression. Bacterial fluorescence was measured by flow cytometry. Translocation of a type III secretion effector into mouse splenocytes was measured using a reporter fusion with beta-lactamase.

Results: Using immunoblotting and bacterial strains carrying translational fusions with GFP we demonstrated that Hfq inhibited the production of Aid, the Aid-like protein OmpX and the MyfA pilin post-transcriptionally, whereas it promoted production of the two major autotransporter adhesins YadA and InvA. Upon overexpression of the sRNA CyaR, expression ofompX was inhibited in a wild-type but not in an hfq-negative strain, suggesting that Hfq potentiates the CyaR-dependent post-transcriptional repression ofompX expression. While protein secretion in vitro was not affected, hfq mutants exhibited decreased protein translocation by the type III secretion system into host cells, consistent with decreased production of YadA and InvA. The influence of Hfq on YadA resulted from a complex interplay of transcriptional, post-transcriptional and likely post-translational effects. Finally, Hfq regulated invA by modulating the expression of the transcriptional regulators rovA, phoP and ompR.

Conclusion: Taken together, our results suggest that Hfq is a global coordinator of bacterial surface virulence determinants in Y. enterocolitica. Therefore, this conserved protein constitutes an attractive target for developing new antimicrobial strategies.

IBV11
RNA modifications – a novel virulence factor in pathogenic Candida species

B. Böttcher, B. Morgner, P. Sarin, S. Allert, I. Jacobsen, H. Drexler, S. Leidelt, B. Hube, S. Brunke

1. Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Microbial Pathogenicity Mechanisms, Jena, Germany
2. Max Planck Institute for Molecular Biomedicine, Max Planck Research Group for RNA Biology, Münster, Germany
3. University of Münster, Cells-in-Motion Cluster of Excellence, Münster, Germany
4. Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Research Group Microbial Immunology, Jena, Germany
5. Max Planck Institute for Molecular Biomedicine, Bioanalytical Mass Spectrometry Unit, Münster, Germany
6. Friedrich Schiller University, Jena, Germany
7. University Hospital Jena, Research and Treatment Center for Septis Control and Care (CSCC), Jena, Germany

The human fungal pathogens Candida albicans and Candida dubliniensis are closely related sister species, but strongly differ in their clinical prevalence and their virulence. Focusing on genetic differences, we aimed to identify factors that contribute to their specific virulence profiles. These factors were then analyzed in vitro and in vivo settings to answer the question: Which genes are important for species-specific pathogenicity-related traits?
To identify novel virulence factors of C. albicans, a library of C. albicans DNA fragments integrated into the C. dubliniensis genome [1] was screened under various conditions. Under nitrogen deprivation, integration of C. albicans HMA1 significantly altered the growth phenotype of C. dubliniensis.

For detailed phenotypic characterizations, HMA1 orthologs were deleted in C. albicans and C. dubliniensis. These included in vitro tests under stress and morphology-related conditions and ex vivo assays to determine adherence to and invasion of oral epithelial cells. Virulence was determined by infection of embryonated chicken eggs. To elucidate the molecular function of Hma1, tRNA was measured using quantitative liquid chromatography mass spectrometry analysis.

Hma1 (Hypermodified Adenine) was identified as a novel determinant of fungal growth morphology: Genomic integration of C. albicans HMA1 into C. dubliniensis inhibited C. dubliniensis-specific pseudoohyphae and chlamydosporation formation on SLAD agar and phenocopied the yeast-only morphology of C. albicans on this medium. This nitrogen-starvation induced phenotype was linked to nutrient-controlled pathways, as a C. albicans hma1Δ mutant displayed higher resistance against the TOR pathway antagonists, rapamycin and caffeine. The C. albicans hma1Δ mutant also exhibited diminished hyphal length, a phenotype that was not observed for C. dubliniensis. Hma1Δ mutants. Moreover, C. albicans hma1Δ formed shorter hyphae on oral epithelial cells with concordantly decreased invasion. These virulence-associated attributes of C. albicans hma1Δ were confirmed by significantly lower mortality after infection of embryonated chicken eggs. Hma1 encodes a tRNA thronyclcarbamoyladenosine dehydratase, and a dramatic reduction in the type of overhang. In a dose-dependent manner, Eap also reduced NFκB activity.

The clinically important human pathogen Staphylococcus aureus is equipped with a number of virulence factors allowing it to modulate or circumvent the immune responses of the host. One of these factors is the extracellular adherence protein Eap, a member of the “secretable expanded repertoire adhesive molecules” (SERAM) protein family that possesses adhesive and immune modulatory properties. We and others have previously shown that Eap interferes with the host innate immune system by reducing NFB activation in leukocytes, decreasing neutrophil extravasation, and blocking neutrophil serine protease activity.

Here we report that Eap also provides exonuclide activity: Incubation of double-stranded DNA with Eap in the Ca2+ containing cell culture medium RPMI 1640 led to a rapid degradation of linearized plasmid DNA and PCR-amplified DNA fragments, respectively. Atomic force microscopy confirmed that Eap binds to and degrades linearized DNA in a time-dependent manner, while circular DNA did not interact with Eap and remained un degraded. Eap binding preferentially occurred to the termini of the double-stranded polynucleotide chains of DNA and was not affected by the type of overhang. In a dose-dependent manner, Eap also inhibited/prevented formation of bacteria-killing “neutrophil extracellular traps” (NETs), which represent the entire chromatin content of neutrophils that becomes ejected by incubation of cells with various agonists. These data indicate that Eap, via its DNase-associated activity, appears to express another immune-evading function by degrading NETs and thereby destroying an effective anti-microbial mechanism of the host.

1B12

The extracellular adherence protein (Eap) of Staphylococcus aureus exhibits DNase activity

*H. Peisker1, J. Eisenbeis1, M. Saffarzadeh1, M. Herrmann1

1University of Saarland, Institute of Medical Microbiology and Hygiene, Homburg, Germany

2Justus Liebig University, Biochemistry, Giessen, Germany

The clinically important human pathogen Staphylococcus aureus is equipped with a number of virulence factors allowing it to modulate or circumvent the immune responses of the host. One of these factors is the extracellular adherence protein Eap, a member of the “secretable expanded repertoire adhesive molecules” (SERAM) protein family that possesses adhesive and immune modulatory properties. We and others have previously shown that Eap interferes with the host innate immune system by reducing NFκB activation in leukocytes, decreasing neutrophil extravasation, and blocking neutrophil serine protease activity.

Here we report that Eap also provides exonuclease activity: Incubation of double-stranded DNA with Eap in the Ca2+ containing cell culture medium RPMI 1640 led to a rapid degradation of linearized plasmid DNA and PCR-amplified DNA fragments, respectively. Atomic force microscopy confirmed that Eap binds to and degrades linearized DNA in a time-dependent manner, while circular DNA did not interact with Eap and remained un degraded. Eap binding preferentially occurred to the termini of the double-stranded polynucleotide chains of DNA and was not affected by the type of overhang. In a dose-dependent manner, Eap also inhibited/prevented formation of bacteria-killing “neutrophil extracellular traps” (NETs), which represent the entire chromatin content of neutrophils that becomes ejected by incubation of cells with various agonists. These data indicate that Eap, via its DNase-associated activity, appears to express another immune-evading function by degrading NETs and thereby destroying an effective anti-microbial mechanism of the host.

1B13

The phospholipases of A. baumannii – role in interbacterial competition and pathogenicity

*J. Stahl1, B. Averhoff1

1Goethe University Frankfurt, Molecular Microbiology and Bioenergetics, Frankfurt a. M., Germany

Question: Acinetobacter baumannii is an emerging threat in hospital environments due to its increasing resistance to antibiotics. Even though knowledge with respect virulence mechanisms and survival of A. baumannii in the human host is scarce. Phospholipases are known to contribute to interbacterial competition and have been identified as virulence factors in different pathogenic bacteria. Phospholipases are implicated in the specific destruction of endosomal or phagosomal membranes, which release the bacterium into the nutrient rich host cell cytoplasm. This together with the identification of potential phospholipase C and D genes in the genome of A. baumannii led to the suggestion that phospholipases might contribute to the survival and metabolic adaptation of A. baumannii to the human host.

Methods: To analyze the role of phospholipases in metabolic adaptation and virulence of A. baumannii ATCC19606 we developed a marker-less mutagenesis system. A set of different phospholipase C and D mutants was generated and analyzed in E. coli killing assays, in a Galleria mellonella infection model as well as in invasion of A549 lung epithelial cells.

Results: Here we present the development of a highly efficient markerless mutagenesis system for A. baumannii using a suicide plasmid encoding for 1500 bp of the up- and down-stream region of the target gene as well as for a kanamycin resistance for positive selection and the levansucrase form Bacillus subtilis for negative selection. With this technique we generated a whole set of phospholipase single, double and triple mutants. The bacterial competition assays and Galleria mellonella infection studies revealed that the A. baumannii phospholipases are not crucial for interbacterial competition but play an important role in infection of G. mellonella. Furthermore we tested the effect of phospholipases on invasion of human lung epithelial cells, showing that all of the tested phospholipases are necessary for full invasion efficiency.

Conclusions: The phospholipases of A. baumannii ATCC19606 are not essential for interbacterial competition, but function as specific tools to target eukaryotic cells.

1B14

Flotillin controls the assembly of protein complexes related to staphylococcal virulence

*B. Miclieh-Süß1, J. Schneider1, D. Lopez2,3

1Institute for Molecular Infection Biology / Center for Infectious disease Research (IMIB/ZINK) University of Würzburg, Würzburg, Germany

2University of Basel, Biozentrum, Basel, Switzerland

3Spanish National Center for Biotechnology (CNB), Madrid, Germany

Bacteria organize membrane related-signaling and transport processes in discrete membrane microdomains, similar to Eukaryotic lipid rafts. These membrane rafts are constituted by specific type of lipids and carry a specific subset of membrane proteins. Flotillin is a chaperone protein that exclusively localize in lipid rafts and acts by facilitating protein-protein interaction within the rafts. Whilst most of research has been carried out in the model organism Bacillus subtilis [1-7], the presence of flotillin is widely detected in bacteria and Archaea. In this work, we have extended our research to explore the existence of bacterial lipid rafts to other bacterial species, like Staphylococcus aureus. S. aureus is human pathogen with a huge impact on the global health system by causing hard-to-treat acute and chronic infections. To mediate virulence S. aureus delivers a plethora of virulence factors and toxins to its host via different protein secretion machineries. Here we show that flotillin plays an important role in facilitating the oligomerization and stabilization of these protein secretion machineries that eventually develop an infection. Altogether, we will provide evidence that the organization of functional membrane microdomains in S. aureus is important for the correct functionality and stability of membrane-bound protein megacomplexes that are necessary to develop an infection process.

IBV/15

Structure of the bacterial cell division determinant GpsB and its interaction with penicillin binding proteins

J. Rismondo1, R. Cleverley2, H. Lane3, S. Grischhammer1, A. Stiegl1, L. Möller2, G. Mannholt2, R. Lewis1, S. Halbedel1

1 Robert Koch Institute, FGI1 - Division of Enteropathogenic bacteria and Legionella, Wernigerode, Germany
2 Newcastle University, Institute for Cell and Molecular Biosciences, Newcastle upon Tyne, Great Britain
3 University of Göttingen, Institute of Microbiology, Göttingen, Germany

DivIVA proteins are curvature-sensitive membrane binding proteins essential for cell division, growth or virulence of Firmicutes and Actinobacteria. Firmicutes contain a second DivIVA protein, named GpsB. GpsB is implicated in the coordination of cell wall biosynthesis in Bacillus subtilis and essential for septal ring closure in Streptococcus pneumoniae (1, 2). While DivIVA of L. monocytogenes is indispensable for cell division and virulence (3, 4), listerial GpsB was so far uncharacterized. L. monocytogenes GpsB was found to be an oligomeric membrane binding protein and its deletion conferred pronounced growth defects to L. monocytogenes. AbgO mutants were prone to cell lysis, impaired in cell wall biosynthesis and formed extremely long filaments, when combined with a AdivIVA deletion. Bacterial two hybrid and biochemical experiments revealed that GpsB binds penicillin binding protein PBP A1. The structures of the N- and C-terminal domain of GpsB were solved independently and support a hexameric arrangement of the full-length protein. Genetic experiments were used to map the interaction site with PBP A1 to a conserved surface stretch of the N-terminal GpsB domain and showed that PBP A1 binding and hexamer formation are important for GpsB function. Deletion of phaI Partially suppressed the gpsB phenotype, but PBP A1 became non-functional in the absence of GpsB, which indicates that GpsB may restrict PBP A1 and simultaneously is required for its activity. Interestingly, attenuation of L. monocytogenes virulence upon gpsB deletion in an animal infection experiment is as strong as upon the deletion of known virulence factors (5). This further strengthens the idea that DivIVA/GpsB proteins might be useful targets for novel chemotherapeutics.

IBV/16

Identification of a pneumococcal enzyme essential for anchoring of lipoteichoic acid to the bacterial cell surface

* N. Heß1, F. Waldow2, T. Kohler1, P. Radon1, N. Gisch1, S. Hammerschmidt1
1 Interfaculty institute for genetics and functional genomics, Genetics of microorganisms, Greifswald, Germany
2 Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Division of Bioanalytical Chemistry, Borstel, Germany

Typical structures of Gram-positive cell walls are wall teichoic acids and lipoteichoic acids (LTA). These surface associated glycolipopolymers are highly diverse, often species- and sometimes even strain-specific. The role of LTA in cell morphology and division, regulation of autolysis and adhesion to host cells is e.g. well characterized for Streptococcus pneumoniae, while the role of LTA remains elusive. Teichoic acids of Streptococcus pneumoniae (pneumococci) are unique in several aspects. First, pneumococcal LTA (pLTa) and LTA (pLTA) are identical in their complex repeating unit structures3, suggesting a common biosynthesis pathway. Second, pneumococcal teichoic acids are highly decorated with phosphorylcholine (P-Chol), which bind non-covalently choline-binding proteins (CBPs) to the surface and are essential for bacterial growth2. Based on the in silico analysis of the S. pneumoniae R6 genome, putative enzymes involved in the biosynthetic pathway of teichoic acids have been proposed. Inactivation of spIL62, a gene in strain D39 encoding an enzyme with homology to O-antigen ligases from different Gram-negative bacteria, demonstrated the involvement of this enzyme in pLTA anchoring to the surface of pneumococci. Chemical analysis of the cell wall of mutant D39∆psIL62 indicated a total loss of pLTA compared to the isogenic wild-type. The phenotypic characterization of the mutant revealed an impact on growth in complex and chemically defined medium, a decrease in the P-Chol content of the cell wall and an increased autolytic activity. Alterations in cell morphology of pneumococcal wild-type and mutants were illustrated by fluorescence, scanning electron and transmission electron microscopy. Furthermore, quantification of selected teichoic acid associated CBPs and capsule was investigated by flow cytometry. Finally, the effect of loss of function of SPD_1672 on phagocytosis was analyzed using human monocytes (THP-1-cells). In summary, we present here the identification of an enzyme involved in cell surface anchoring of pLTA. Furthermore, we performed a phenotypic and functional characterization of pneumococci deficient in pLTA and indicate for the first time that the lack of pLTA impairs growth but not per se viability of these human pathogens.

1 Fischer W. et al. (1993) Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoic acid (C polysaccharide).
2 Gisch, N. et al. (2013) Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunological potency.
3 Rane L. et al. (1940) Nutritional requirements of the pneumococci. 1. Growth factors for types

IBSV/01

Dual proteome analysis towards understanding neutrophil interaction with Aspergillus fumigatus

* I. Shopova1, T. Krüger1, O. Kniemeyer1, A. Brakhage1
1 Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany

The opportunistic filamentous fungus Aspergillus fumigatus is a major cause of high morbidity and mortality rates in immunocompromised hosts. Neutrophils orchestrate the front-line defense against fungal “intruders” and deploy various strategies for immune clearance such as: degranulation, phagocytosis, formation of reactive oxygen species (ROS) and -nitrogen intermediates (RNI) as well as neutrophil extracellular trap (NET) formation. We found that neither ROS, nor RNI are direct mediators of fungal killing due to the strong upregulation of the fungal ROS/RNI efficient detoxifying systems (catalase, superoxide dismutase, flavohemoproteins) regulated by the transcription factors Afyap1, AfSkn7. These factors were dispensable for fungal virulence in infection mouse models.

We demonstrated that NETs occur both in vitro and in vivo but exhibit only fungistatic effects. Dual transcriptome efforts resulted in high coverage of the fungal transcriptome and low coverage of the human transcriptome. Thus, the key signalling networks remain to be elucidated. We therefore conducted a simultaneous dual proteome study of the activation of human neutrophils by A. fumigatus CEAC10 hyphae without prior separation of the two organisms at a time point of NET formation. We developed a protocol for parallel extraction and enrichment of both NETs covering hyphae and secreted proteins during NET formation. Besides a lysis-based approach for the cellular fraction consisting of hyphae entrapped in NETs, secreted proteins were enriched by C4 solid-phase extraction of the supernatant fraction. Using a multiplexed isobaric labelling approach and TiO2 phosphopeptide enrichment combined with nLC-MS/MS analysis, we were able to identify and quantify 273 differentially regulated proteins of 856 proteins in total on the fungal side and 298 differentially regulated proteins of 1950 proteins in total on the host side compared to NET controls induced with PMA and hyphae grown alone.

We showed that neutrophils trigger higher expression of fungal signal transduction proteins from the GPCR-CAMP and CaA axis as well as Ste-20 tyrosine kinase. Neutrophil activities repressed proteins of the 60S ribosome and proteins responsible for siderophore-and-ergosterol biosynthesis. Fungal Afyap1 dependent and independent heat-shock and ROS response was generally repressed. Antifungal NETs were highly enriched in core and alternative histones with changed stoichiometry and contained in higher abundance the core histones.

We showed that neutrophils target fungal signal transduction proteins from the GPCR-CAMP and CaA axis as well as Ste-20 tyrosine kinase. Neutrophil activities repressed proteins of the 60S ribosome and proteins responsible for siderophore-and-ergosterol biosynthesis. Fungal Afyap1 dependent and independent heat-shock and ROS response was generally repressed. Antifungal NETs were highly enriched in core and alternative histones with changed stoichiometry and contained in higher abundance the core histones.

We showed that neutrophils trigger higher expression of fungal signal transduction proteins from the GPCR-CAMP and CaA axis as well as Ste-20 tyrosine kinase. Neutrophil activities repressed proteins of the 60S ribosome and proteins responsible for siderophore-and-ergosterol biosynthesis. Fungal Afyap1 dependent and independent heat-shock and ROS response was generally repressed. Antifungal NETs were highly enriched in core and alternative histones with changed stoichiometry and contained in higher abundance the core histones.
IbSV02
Real-time imaging of the bacillithiol redox potential in the human pathogen Staphylococcus aureus using a novel genetically encoded redox biosensor

V. L. Vu, M. Harm*, T. T. H. Nguyen, M. Miller*, J. Pane-Farre, F. Hochgrafé, H. Antelmann

1 Freie Universität Berlin, Institut für Biologie-Mikrobiologie, Berlin, Germany
2 Ernst Moritz Arndt University of Greifswald, Junior Research Group Pathoproteomics, Greifswald, Germany
3 Ernst Moritz Arndt University of Greifswald, Institute for Microbiology, Greifswald, Germany

Question: Bacillithiol (Cys-GlcN-Malate; BSH) is the major thiol-redox buffer of Bacillus subtilis and Staphylococcus aureus. Under oxidative stress, BSH forms mixed disulfides with proteins, termed as S-bacillithiolation which functions as thiol-protection and redox-control mechanism [1]. Two glutaredoxin-like enzymes YphP (BrxB) and YqiW (BxB) were characterized as bacilliredoxins in the reduction of BSH-mixed protein disulfides [2]. In eukaryotes, glutaredoxin-fused roGFP2 biosensors have been applied for dynamic live-imaging of the glutathione redox potential. Here we have constructed the first genetically encoded bacilliredoxin-fused redox biosensor for dynamic live-imaging of the BSH redox potential in S. aureus.

Methods: The bacilliredoxin (Brx) of S. aureus was fused to roGFP2 and purified as His-tagged fusion protein from E. coli cells to analyse the response to BSOB, ROS and antibiotics in vitro. In addition, S. aureus COL and USA300 cells expressing BrxB-roGFP2 fusions were used for live-imaging of the BSH redox potential in vivo using microplate reader measurements and confocal laser scanning microscopy as well as infection assays using THP-1 macrophage cell lines.

Results: The purified Brx-roGFP2 biosensor showed a specific and rapid response to levels basillithiol disulfide (BSBD) in vitro which required the active-site Cys of Brx. Dynamic live-imaging revealed fast and dynamic responses of the Brx-roGFP2 biosensor in S. aureus cells under hypochlorite and H2O2 stress and constitutive oxidation of the probe in the bshA mutants of the MRSA COL and USA300 isolates. Furthermore, we found that the Brx-roGFP2 expression level and the dynamic range are higher in S. aureus COL compared to the USA300 strain. Using confocal laser scanning micropscopy, the changes in the BSH redox potential in S. aureus were visualized. Infection experiments of THP-1 macrophages with S. aureus COL revealed the specific oxidation of the biosensor inside the macrophages as measured by flow-cytometry. Notably, Brx-roGFP2 expressed in S. aureus USA300 and COL was 80–90 % oxidized during the phagocytosis assays.

Conclusion: Our studies demonstrate that this novel Brx-roGFP2 biosensor catalyzes specific equilibration between the BSH and roGFP2 redox couples and can be used for live imaging of the BSH redox potential in S. aureus.

IbSV03
Prognostic model of urinary tract infections

1 Technical University Braunschweig, Metabolicom Discoveries GmbH, Institute for Microbiology, Braunschweig, Germany
2 Technical University Braunschweig, Institute for Microbiology, Braunschweig, Germany
3 Metabolicom Discoveries GmbH, Potsdam, Germany

Urinary tract infections (UTIs) are considered to be the most common bacterial infection and are responsible for 155,000 cases per year in Germany alone, making it one of the biggest health concerns today. Escherichia coli still remains most common infecting organism in patients with uncomplicated UTI, although other pathogens include genera: Aerococci, Proteus, Staphylococci, Pseudomonas, Enterococci and Klebsiella. Postitive culture combined with patients’ symptoms has been a gold standard for diagnosis. Collection of the contaminated urine and misinterpretation of asymptomatic bacteriuria remain pitfalls in clinical diagnosis which often results in patients’ unnecessary antibiotic exposure and overtreatment indicating that novel methods and approaches are much needed. To overcome some of the clinical bottlenecks, prognostic models play a major role in recent years and are frequently being used to estimate an outcome of patients with a disease or health condition. Here, we compared metabolic urine profile of 92 subjects of whom 44 were diagnosed with UTI and 48 subjects with no signs of an infection. Single Strand Conformation Polymorphism (SSCP) analysis has been applied to the urine analysis to get insights into microbial communities present. Non-targeted LC-MS based analysis of patients’ urine provided high quality mass spectral data which was used for prognostic modeling in the training set. Despite different UTI causing pathogens, all UTI patients were characterized by a significantly higher concentrations of putative metabolites heneicosanoyl-glycerol-3-phospho-(1‘-glycerol), benzothiazole and 2,2,6,6-tetramethyl-4-piperidone. To the best of our knowledge this is the first in vivo study in which statistical model was successful in infection prognosis on a randomized and labelled sample set with the help of UPLC-MS-based urine metabolomics.

IbSV04
Sorting of Vancomycin BODIPY FL labeled Staphylococcus aureus from infection experiments – fast and easy enrichment of S. aureus isolates for analysis by mass spectrometry

1 University Medicine Greifswald, Functional Genomics, Greifswald, Germany
2 University Medicine Greifswald, ZIK-FunGene Junior Research Group ‘Applied Proteomics’, Greifswald, Germany
3 University of Groningen, Medical Microbiology, Groningen, Netherlands

In host-pathogen infection experiments comprehensive proteomic analyses require the enrichment of the internalized bacteria to avoid interference with prevailing host proteins. Green fluorescent protein (GFP) labeling of S. aureus allows such separation of the microorganism from host cells after infection experiments. However, such labeling of bacterial isolates depends on the ability for genetic manipulation of the respective strains. Specific labeling of S. aureus with low molecular weight compounds such as vancomycin would avoid the need for such genetic manipulation and allow effective analysis of clinical isolates.

S. aureus HG001 was stained either during in vitro cultivation or in cell lysates of previously infected epithelial cells with the commercially available glycopeptide antibiotic vancomycin conjugated to BODIPY FL (VMB) at sub-inhibitory concentrations of vancomycin. Labeled cells were subsequently either counted in a Guava easyCyte flow cytometer or sorted with a FACS Aria ILu cell sorter and collected on a membrane filter device. Afterwards, bacteria were digested on-filter with trypsin and subjected to mass spectrometry to elucidate the influence of VMB on the proteome level. In addition, we infected human bronchial epithelial S9 cells with S. aureus HG001 or clinical S. aureus isolates to prove the usability of VMB labeling. Furthermore, we established a staining protocol employing VMB for tracing intracellular bacteria by fluorescence microscopy. In initial experiments the VMB concentration which resulted in the highest fluorescence intensity was determined. At sub-inhibitory concentration of 0.2 μg/ml VMB we found only a few unspecified proteome changes in labeled bacteria compared to non-labeled bacteria. Moreover, cell sorting provoked stronger changes compared to the staining. Having tested the suitability of VMB labeling for proteomics, we first used this dye for counting labeled S. aureus HG001 by flow cytometry - a method faster and more reliable than counting colony forming units. We counted a pure bacterial culture as well as bacteria recovered from lysed human cell lines and obtained comparable results to a S. aureus HG001 strain which continuously expresses plasmid-encoded GFP. Also bacterial enrichment by cell sorting was possible due to a clear separation of labeled bacteria compared to non-labeled bacteria. Moreover, cell sorting allowed effective analysis of clinical isolates.
Predicting compositions of microbial communities from stoichiometric models with applications for the biogas process

*S. Koch1, D. Benndorf2, U. Reichel1, S. Klarm1
1Max Planck Institute for Dynamics of Complex Technical Systems, Analysis and Redesign of Biological Networks, Magdeburg, Germany
2Otto von Guericke University, Magdeburg, Germany
3Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany

Question: Microbial communities play a major role in ecology, medicine and various industrial processes. In order to investigate relevant interactions and to identify factors that influence the community we used stoichiometric metabolic models of a three-species biogas producing community.

Methods: We first constructed and validated stoichiometric models of the core metabolism of Desulfovibrio vulgaris, Methanococcus maripaludis and Methanosarcina Barkeri, representing acetogenes and methanogenesis. These models were then assembled to community models. The community was simulated by applying the previously described concept of balanced growth [1] assuming an equal growth rate for all organisms. For predicting community compositions we propose a novel hierarchical optimization approach: first, similar to other studies, a maximization of the specific community growth rate is performed. This, however, often leads to a wide range of optimal community compositions. Therefore, in a second optimization step we also demand that all organisms must grow with maximum biomass yield (optimal substrate usage) reducing the range of predicted optimal community compositions.

Results: Simulating two-species as well as three-species communities using the representative organisms we gained several important insights. First, using our new optimization approach, we obtained predictions for optimal community compositions for different substrates which agree well with measured data. Second, we found that the ATP maintenance coefficient influences significantly the predicted community composition, especially for small specific growth rates. Third, we observed that maximum specific methane production rates are reached i) under high specific community growth rates, and ii) if at least one of the organisms converts its substrate(s) with suboptimal biomass yield. On the other hand, the maximum methane yield is obtained at low community growth rates and, again, when one of the organisms converts its substrates with suboptimal biomass yield. Apparently, maximum values for these key process parameters of biogas plants can only be reached if some species in the process waste substrate and energy. However, this would be accompanied by lower biomass yields negatively affecting the volumetric productivity. Finally, simulating the three-species community clarifies exchangeability and essentiality of the methanogens in case of alternative substrate usage and competition scenarios.

Conclusions: In summary, our study presents new methods for stoichiometric modeling of microbial communities in general and provides valuable insights in interdependencies of bacterial species involved in the biogas process.

Anatomy of the bacitracin resistance network in Bacillus subtilis

J. Radeck1,2, S. Gebhard3, P. Orchard1, M. Kirchner1, S. Bauer1, A. Grünberger1, I. Steffens1, D. Binder2, T. Drepper2, W. Wiechert1, D. Kohlheyer1
1Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Microscale Bioengineering, Jülich, Germany
2Technische Universität, Institut für Mikrobiologie, München, Germany
3University of Bath, Milner Centre for Evolution, Department of Biology and Biochemistry, Bath, Great Britain

In this contribution, we introduce for the first time the concept of “Bacterial phase diagrams” (BPDs). Similar to chemical phase diagrams, BPDs can be used to predict the state/behaviour of microbial gene expression (e.g. homogeneous or heterogeneous gene expression) at certain environmental conditions. In order to determine single-cell responses, novel picoliter bioreactor cultivation platforms were used [2,3]. We demonstrate the concept for T7-RNA-Polymerase based EYFP production in E. coli BL21(DE3) [4], one of the most prominent expression strains in biotechnology. It generates a non-gradual and partially inhomogeneous induction behavior over a bacterial population. Depending on the inducing (here IPTG) and repressor concentration (here glucose), the expression behavior can be manipulated. Especially for low amounts of inducer molecules, an inhomogeneous all-or-nothing expression response can be observed. Here we present the manipulation of expression response, by means of varying inductive and repressive components. Latest results, potential application and ongoing research directions will be shown. Our results show that the concept of “bacterial phase diagrams” has the potential to predict bacterial behaviour in gene-expression. This paves the way for an improved understanding of cell-to-cell heterogeneity and could lead to novel strategies of controlling microbial bioprocesses.

Transcriptional, proteomic and metabolic networks of the Fur regulated iron metabolism of Clostridium difficile

*M. Berges1, A. Michel2, M. Burghartz2, D. Jahn3
1Technical University Braunschweig, Institut für Mikrobiologie und BRICS, Braunschweig, Germany
2Max Planck Institute for Dynamics of Complex Technical Systems, Analysis and Redesign of Biological Networks, Magdeburg, Germany
3Otto von Guericke University, Magdeburg, Germany

Clostridium difficile is known as a human pathogen causing diarrhea among patients in hospitals and health care units in Germany. C. difficile is a strict anaerobic, Gram-positive bacterium which is able to form spores in an unfavorable environment. In contrast to its clinical importance, almost nothing is known about the gene regulatory networks employed by the bacterium during host colonization and infection. C. difficile is confronted with iron-limitation during the infection process, therefore complex iron-uptake and iron-regulation systems are essential. Our group is particularly interested in elucidation of C. difficile iron homeostasis. For that purpose we used a combined genetic and molecular systems biology approach. The presence of multiple iron-uptake systems in C. difficile illustrates the importance of iron acquisition for colitrophic growth and the ability of the bacterium to adapt to both iron-overloaded and iron-
restricted environments. In order to measure the iron homeostasis in *C. difficile* a fur mutant using a group II intron based technology was constructed. Subsequently, compared growth experiments of the wild type and the fur mutant displayed a clear growth deficiency of the fur mutant. To define *C. difficile* and Fur regulation, a transcriptomic, proteomic and metabolomic approaches were applied. Results displayed that iron transporters are highly upregulated in the fur mutant strain compared to wild type. Interestingly, the butanone metabolism was strictly downregulated, indicating a Fur and iron dependent mechanism. Further studies will be employed to determine the role of Fur in iron homeostasis in *C. difficile*. This systems biology approach will contribute to a better understanding of the role of iron in the infection cycle of *C. difficile*.

MCV01

Architectural transitions in *Vibrio cholerae* biofilms at single-cell resolution

K. Drescher1, J. Dunkel1, C. Nadell1, S. van Teeffelen2, I. Grnja1, N. Wingreen3, H. Stone2, B. Bassler4

1Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
2Massachusetts Institute of Technology, Mathematics, Boston, USA
3Institut Pasteur, Microbiology, Paris, France
4Princeton University, Molecular Biology, Princeton, USA

Many bacterial species colonize surfaces and form dense three-dimensional structures, known as biofilms. They are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in *Vibrio cholerae* biofilms at different stages of development, including colonies that range in size from 2 to 4500 cells. From these data, we extracted the precise cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of *V. cholerae* biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm development that will prove invaluable in understanding the mechanisms underlying biofilm formation.

MCV02

Spatial segregation in *Bacillus subtilis* biofilm allows the emergence of growth yield strategists

E. Mhatre1, B. Bartels1, Á. T. Kovács1

1Friedrich Schiller University of Jena, Institute of Microbiology, Terrestrial Biofilms Group, Jena, Germany

Every living population aims to achieve a maximum fitness in terms of reproduction, survival and optimal use of resources in the environment. Bacterial populations are no exception. It is theoretically predicted that clonal lineages within a population show heterogeneous tradeoff between growth rate and growth yield strategy. When resources are abundant, maximizing growth rate favors the population level fitness. However, in nutrient limiting and spatially structured environment, slow growing but higher yield strategists manifest in the population.

To study experimentally the emergence and prominence of certain growth strategists in a biofilm environment that is both nutrient limiting as well as spatially arranged, *Bacillus subtilis* population was evolved in an emulsion based droplet regime. Each bacillus was enclosed in a separate droplet during the selection process and thus, competition between the lineages was minimized. After 48 hours when cells in the droplets grew into aggregates, emulsion was disrupted and the culture was transferred to a new emulsion system with an appropriate dilution that enables confinement of only one cell in a droplet. Following 40 such transfers (~ 350 generations), cell types with delayed growth but higher yield were obtained. When the selected yield strategist strain was competed with the ancestor in a well-mixed environment, it is easily outcompeted by the fast growing competitor. Spatially structured environment like droplets enabled it to grow steadily and ultimately reach higher yield than the ancestor in the same emulsion. Interestingly, biofilm progression shows the early abundance of the fast growing ancestor strain after 24 hours followed by the emergence of yield strategists in the biofilms. These experiments showed that indeed the yield strategist cells appear in the biofilm delayed compared to the ancestors but eventually have increase in biomass confirming that this is an ecologically beneficial strategy in biofilms and other spatially arranged natural environments.

MCV03

SiaABCD coordinates cellular aggregation and virulence of *Pseudomonas aeruginosa* in response to environmental conditions

B. Colley1, Y. Dedeker1, M. Carnell1, W. H. Poh1, S. Klebeberg2,3, S. A. Rice1,4, *S. J. Kjelleberg*1

1University of New South Wales, Centre for Marine Bio-Innovation, Sydney, Australia
2University of Stuttgart, Institute of Technical Biochemistry, Stuttgart, Germany
3University of New South Wales, Biomedical Image Facility, Sydney, Australia
4Nanyang Technological University, Singapore Centre for Environmental Life Sciences, Singapore

Question: We recently identified the c-di-GMP dependent signaling pathway SiaABCD to regulate macroscopic cell aggregation of *Pseudomonas aeruginosa* in response to the non-natural surfactant SDS. The present study was conducted as we anticipated SiaABCD to have a more general role in regulating phenotypic traits in this organism.

Methods: Gene regulation was studied using transcriptional reporter assays, quantitative PCR (qPCR), and surface plasmon resonance (SPR). To visualize and quantify aggregation in response to various conditions, we used photo imaging analysis, scanning electron microscopy (SEM), and a crystal violet staining method. To explore the impact on virulence, we used a macrophage based phagocytosis assay.

Results: We provide compelling evidence that the *cupA* fimbrial genes represent a novel target for RsmA by direct binding and decreasing mRNA stability. Further, we show that the RsmA antagonist *rsmZ* is regulated in a Sia/D dependent manner during surfactant exposure. We also reveal that the recently reported cellular aggregation during growth with glucose is SiaABCD dependent. Finally, we show that aggregation directly influences phagocytosis of cells by macrophages indicating a possible role for SiaABCD in persistence during host infection.

Conclusion: From these data we conclude that the SiaABCD pathway interconnects the c-di-GMP and RsmA networks to reciprocally coordinate cell aggregation and virulence in response to various external stimuli by shifting the equilibrium in favor of either component.

MCV04

Formation and integrity of multicellular aggregates in *Staphylococcus aureus*

C. Wermser1, D. Lopez1,2

1Universität Würzburg, Zentrum für Infektionsforschung, Würzburg, Germany
2National Centre for Biotechnology (CNB), Microbial Biotechnology, Madrid, Spain

Multicellular communities or biofilms that can be formed by many bacterial species are the predominant mode of microbial life. The opportunistic pathogen *Staphylococcus aureus* is conventionally used as a model to study biofilm formation because it frequently develops biofilm-associated chronic infections in hospital settings. Biofilm formation has been traditionally studied in *S. aureus* using submerged polystyrene surfaces. Using this approach, extensive knowledge has been generated regarding the complex pathways and regulators involved in the process of biofilm formation as well as the enormous variability for surface colonization that exists between strains.

Recently, our lab has developed an alternative *in vitro* approach to study biofilm formation under conditions as they are found in chronic infections of bones, joints and soft tissues. We propose a macrocolony biofilm-like developmental model in which the microbial community grows on a solid surface and it allows us to dissect biological processes related to the architecture of the community, such as microbial evolution or bacterial cell differentiation. Using this new approach, we aimed to identify the group of genes that play a role in maintaining the architecture of the macrocolony to further address the biological significance of these genes in these particular growing conditions. To do this, we screened a genome-wide transposon library and we selected the mutants that showed significant morphological alterations. Moreover, deletion mutants of these genes were generated and phenotypically compared to the screened transposon mutants. This suite of genes was identified, functionally classified and several genes were selected to investigate their role in maintaining the architecture of these multicellular communities. Three of these genes, previously unknown to participate in biofilm formation will be presented and the underlying genetic mechanisms will be discussed. These genetic mechanisms provided us with important insight in the signaling processes that are involved in multicellular development and the
nutritional requirements for *S. aureus* to form these structured multicellular communities. Overall, our work represents an important contribution to the current understanding of biofilm formation in *S. aureus* and it generates an alternative developmental assay to study biofilm formation in laboratory conditions.

2. Feg PD, Endres JL, Yajjala VK et al. A genetic resource for rapid and comprehensive phenotype screening of nonpathogenic *Staphylococcus aureus* genes. mBio 2013;4:e0057-12.

MCV05

Viability of *Deinococcus geothermalis* in biofilms during desiccation

*J. Frösler*1, H.-C. Flemming1, J. Wingender1

1University of Duitsb-Essen, Chemistry, Essen, Germany

Desiccation is a stressor for microbial life resulting in changes of membrane fluidity, protein conformation, and increased generation of harmful radicals [1]. Biofilms offer a lifestyle in which bacteria embedded in extracellular polymeric substances (EPS) can overcome environmental stress, including periods of desiccation [2].

This study investigates the effects of desiccation on the viability of *Deinococcus geothermalis*. We hypothesized that the organism is more tolerant to desiccation when present in a biofilm rather than as planktonic cells. Biofilms of *D. geothermalis* were generated on membranes placed on solid agar media after incubation for 2 days at 45 °C, confluent multilayer biofilms formed at the solid-air interface. In order to compare biofilms and planktonic bacteria, cells grown in liquid culture were deposited on membranes. Biofilms and membrane-deposited planktonic cells were desiccated, either in ambient air or in a desiccator resulting in reduced relative humidity, and incubated under the same conditions at room temperature for up to 3 months. At defined time points, the cells were recovered and analyzed for viability in terms of culturability, membrane integrity, and ATP levels.

The presence of 16S RNA remained unaffected by desiccation in both life forms. Biofilms were less susceptible to reduced relative humidity than planktonic cells. Both biofilms and planktonic cells exhibited declining plate counts accompanied by stable total cell counts, suggesting that a part of the population entered a viable but non-culturable state as a response to desiccation. Proteins and polysaccharides were identified in the EPS of *D. geothermalis*. These compounds may be hygroscopic and store water during dehydration. It seems that the composition, distribution, and spatial arrangement of the EPS within the biofilm matrix contributed to an increased tolerance of *D. geothermalis* to desiccation.

MCV06

Biofilms as a protective niche for non-halophilic sulfur cycling bacteria at groundwater springs in the Dead Sea

*D. Kanaparthi*1,2, C. Siebert1,2, R. Merz1,2, T. Luenders1,2

1Institute of Ground Water Ecology, Neuherberg, Germany

2Helmholtz-Zentrum für Umweltforschung – UFZ, Department Catchment Hydrology, Halle / Saale, Germany

The Dead Sea is one of the most hypersaline aquatic environments on earth with salt concentrations reaching up to 34 %. A recent study had reported extensive biofilm formation on Dead Sea sediments, especially connected to subsurface groundwater discharge. These biofilms harbor a very diverse bacterial community with several bacterial groups involved in sulfur cycling. These observations came as surprise, as the community composition of these biofilms is not characteristic to hyper saline environments and sulfate reducing bacteria reported as abundant in the biofilms (e.g. *Desulfobulbusae*) are not known to be halo-tolerant. In the present study we endeavored to understand if formation of biofilms conferred halotolerance to non-halophilic bacteria. Our study employs a cultivation based approach with emphasis on sulfate-oxidizing and sulfate-reducing biofilm bacteria. Growth of a different isolates both as biofilm and free cells at different salt concentrations was determined. The isolate FV2 belonging to genus *Exiguobacterium* (neither sulfate reducing nor sulfide oxidising) showed extensive biofilm formation. Further characterization of this bacterium showed a continuous decrease of growth rates of suspended cells till 16 % salt concentration. No growth of free cells was observed at salt concentrations above 16 %. However when grown in biofilms, good growth was observed up to 32 % salt, with optimal biofilm formation observed at 12 %. The other isolates SODS18 (a sulfide oxidizing bacterium) and sulfate-reducing *Desulfobulbusae* showed no growth either as biofilms or as free cells above 5 and 2.5 % salt concentrations respectively. However when grown along with FV2 biofilms these isolates showed good growth till 20 % salt. Based on these results we hypothesize that in the Dead Sea biofilm community, few microorganisms play an important role as halophilic biofilm engineers (e.g., FV2), while several other organisms which are not intrinsically halotolerant but involved in Sulphur cycling can overcome salt stress by inhabiting these biofilms. To date all the studies focused on understanding microbial halo-tolerance considered this phenomenon to be an intrinsic property of a cell, to the best of our knowledge we present first evidence that halo-tolerance could also be attained by symbiotic associations at community level.

MCV07

Onics in metal resistant Streptomyces

*J. Kraule*1, B. Bank*2, J. Spörer*2, J. Overmann2, E. Kothe*1

1Friedrich Schiller University Jena, Institute of Microbiology – Microbial Communication, Jena, Germany

2Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany

The highly diverse and variable genetic predispositions of *Streptomyces* including their ability to form exospores makes them well suited for survival in soils in high abundances — even under extreme conditions like metal stress. High metal loads prevail especially in areas influenced by mining activities, where mineral oxidation leads to the release of bioavailable metals at strongly acidic pH. Understanding the heavy metal resistance mechanisms of these adapted *Streptomyces* strains will help to establish effective bioremediation strategies.

The strains investigated were isolated from the former uranium mining area at Ronneburg, Germany. While one strain is resistant to a range of different metal ions, the other specifically copes with nickel loads up to 130 mM nickel in minimal media. Both have been shown to possess different metal resistance mechanisms including intracellular sequestration, release of siderophores and biomineralization.

With regard to future use in proteomic and transcriptomic studies, we obtained the genome sequences for two strains isolated from the metal contaminated area. *S. acidicasiae* E13 and *S. mirabilis* P16B-1 were sequenced by long-read real time sequencing and data was supplemented with short-read next-generation sequencing to increase sequence coverage. These investigations generated two high-quality draft genomes, which were annotated furthermore. This genome information together with predicting bioinformatic analyses was then used to identify proteins by gel- and MS-based proteome studies comparing normal and metal stressed conditions. The study was used to identify genes involved in metal resistance and metal regulation on a molecular level. From these, we were able to identify several interesting genes and gene clusters that have to be further analysed.

MCV08

Metagenomic analysis of an acidophilic (pH 3.5) and microaerophilic enrichment culture dominated by iron oxidising strains of the genus *Sideroxydans*

*M. Mühlung*1, A. Poehlein*2, A. Drechsel*1, M. Völtel*2, R. Daniel*1, M. Schloßmann*1

1Technical University Bergakademie Freiberg, Institute of Biological Sciences, Freiberg, Germany

2Georg August University Göttingen, Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Göttingen, Germany

The bacterial community in samples from a pilot plant for the treatment of acid mine drainage (AMD) water from the lignite mining district in Lusatia (East Germany) has been shown to be dominated by two groups of acidophilic iron oxidizers: the novel putative genus "Ferrovum" and a group considered to comprise *Gallionella*-like strains (Heinzel et al., 2009). The family *Gallionellaceae* had previously only been known to consist of the microaerophilic and neutrophilic iron oxidizers *Gallionella* and *Sideroxydans*. Isolation of these acidophilic strains has, in contrast to "Ferrovum", so far proven impossible. We therefore employed a metagenomics approach to obtain access to their genetic information. To increase coverage of microaerophilic iron oxidising strains, we combined
this approach with their prior enrichment at acidic pH (3.5) using the gradient tube technique originally proposed by Kucera and Wolfe (1957). 16S rRNA-based analysis of the bacterial diversity using both sequence analysis of a clone library (Sanger) and of 16S-tags (Illumina) indicated the presence of presumably three distinct Gallionellaceae strains in the enrichment culture that are closely related to the neutrophilic iron oxidizer Sideroxydans lithotrophicus ES-1. The availability of the complete genome of strain ES-1 now permits the detailed comparison of the metabolic capacity of neutrophilic and acidophilic members of the same genus and, thus, the detection of biochemical features that have been acquired by the acidophilic strains to support life under acidic conditions. For a start, the genome data of the acidophilic iron oxidising strains indicate the presence of a urease encoding gene cluster which is absent in the genome of *S. lithotrophicus* ES-1. The role of urease in pH homeostasis has originally been shown for the gastric pathogen *Helicobacter pylori*, but has also been suggested for the acidophilic iron oxidiser “*Ferrosum*” strain JA12 (Ullrich et al., submitted). Additionally, the presence of predicted K/H antiporters that are thought to prevent H\(^+\) influx via formation of a reversed (inside positive) membrane potential (Baker-Austin & Dopson, 2007), seem also to be pronounced in the acidophilic strains.

MCV09 The social amoeba and its opponents – a source of novel small molecules

P. Stallforth, M. Klapper', R. Barnett', R. Herbst', S. Götze'

1Leibniz Institute for Natural Product Research and Infection Biology

2Hans Knöll Institute, Chemistry of Microbial Communication, Jena, Germany

The social amoeba Dictyostelium discoideum represents one of the earliest branches of the common ancestor of all eukaryotes thus rendering it an ideal model organism in studying general eukaryotic cellular mechanisms. Differentiation and multicellularity in this amoeba, however, have evolved in a setting where *D. discoideum* is surrounded by mutualistic and pathogenic bacteria, as well as predators. Only in light of this ecological context, can a deep understanding of the fundamental molecular communication and signalling processes be gained.

We investigate the interaction between the social amoeba *Dictyostelium discoideum* and other dictyostelids as well as environmental bacteria. We are interested in determining signalling and effector molecules involved in these interspecies interactions. This will allow us both to understand underlying signalling processes, as well as enable us to discover new natural products that would not be produced in the absence of the required environmental cues.

MCV10 Microbial invasion into drinking water-related bacterial communities

N. Hahn, E. Hernandez Sanabria', O. Thas', N. Boon'

1Ghent University, Laboratory of Microbial Ecology and Technology, Ghent, Belgium

2Ghent University, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent, Belgium

Using microbes for water treatment has a long history. Yet, the underlying processes of their performance are largely unknown. Water pollution and the rising drinking water demand make it necessary to close the Urban Water Cycle (UWC), i.e., water-to-wastewater-to-water cycle, in a sustainable and cost-efficient way. This can be achieved by development and implementation of the Microbial Resource Management & Engineering (MRME) strategy to control and steer microbial communities in water treatment. Microbial communities usually face environmental changes, e.g., temperature and nutrient stress, and by other microbes that invade/leave the resident community.

Working on the drinking water side of the UWC, we hypothesize a link between microbial community co-evolution in an engineered system and invasion by potential pathogens. Therefore, we want to elucidate the relation between community structure and its invasibility by a fecal drinking water contaminant.

To this end, screening of more than 20 sand filter isolates from drinking water plants for growth yielded 10 strains to compose defined bacterial communities. We then developed a model to challenge these synthetic communities with a GFP-expressing *E. coli* invader strain, and to monitor the response to this perturbation over time via turbidity measurement (OD\(_{600}\)) and flow cytometry (FCM). In this invasion model system an initially even resident community first co-evolves over four generations, and afterwards the subsequent generations are challenged with the invader to follow-up on the correlation of community evolution and invasibility over time.

We observed that invasibility increased during co-evolution of the initially even resident community over time. Additionally, the invader strain had a negative effect on the growth of the synthetic community. Assuming that a shift in community evenness occurs over time, this observation is consistent with previous findings that uneven communities are easier invaded (1).

Within the framework of MRME we therefore conclude that this relation indicates that the evenness of microbial communities involved in drinking water treatment should be monitored with view to invasion, e.g., by waterborne pathogens. Further research will include biofilm assays to provide more detailed information on invasion, and the impact on community diversity will be investigated by a comprehensive approach using a powerful experimental design, microcosms, FCM, and molecular techniques (e.g., qPCR, Illumina sequencing). Finally, we aim to apply this systematic approach to an undefined microbial community in a pilot reactor build for the treatment of used water to water that is hygienically safe.

MCV11 *Staphylococcus schleiferi* volatiles inhibit quorum sensing controlled phenotypes in Gram-negative bacteria

M. C. Lenfack, S. Rao Ravella*, S. Schulz*, P. Piechulla*

1University of Rostock, Biochemistry, Rostock, Germany

2Technical University of Braunschweig, Braunschweig, Germany

Bacteria release distinct volatile organic compounds (mVCs) which are often a source of structurally unique and/or new bioactive compounds [1, 2]. When analysing the VOC emission of *Staphylococcus schleiferi* DSMZ 4807 using GC/MS, we found more than 30 compounds including carboxylic acids, alcohol and ketones. Among the ketones were 3-(phénylamino)butan-2-one (schleiferon A) and (Z)-3-(phenethylamino)butan-2-one (schleiferon B) of the structures were elucidated by NMR. They were new compounds which have never been reported to be produced by any organism. To get some insight into the possible biological function of these compounds the volatiles of *S. schleiferi* DSMZ 4807 were tested on several Gram-negative bacteria, e.g. *Vibrio harveyi*, *Serratia marcescens*. The growth of these bacteria were not affected, while interestingly co-cultivation of *S. schleiferi* with *Serratia marcescens* V11649 and *Vibrio harveyi* DSMZ 6904, reduced production of prodigiosin and bioluminescence up to 60 %, respectively. The volatiles of *Staphylococcus warneri* CCM2730 (a *scheiferon* non-producer) did not inhibit the prodigiosin synthesis and bioluminescence of these two Gram-negative bacteria. Prodigiosin and bioluminescence are known to be controlled by quorum sensing/quorum quenching, which is a cell-to-cell communication system used by some bacteria to coordinate e.g. production of virulent factors and antibiotics, biofilm formation and bioluminescence [3, 4]. In order to find out whether the compounds schleiferon A and B function as quorum quenchers for prodigiosin synthesis and bioluminescence, we applied different concentrations of synthetic schleiferon A and B to bacterial cultures of *S. marcescens* and *V. harveyi*. We observed inhibition of the prodigiosin accumulation and bioluminescence in a concentration dependent manner, while growth of the bacteria was not affected. We conclude that schleiferon A and B inhibit quorum sensing controlled phenotypes in Gram-negative bacteria.

MCV12
Ultrafast alignment and analysis of metagenomic DNA sequence data from the Tyrolean Iceman using MALT
A. Herbig1, F. Maixner1, K. J. Bos2, B. Buchfink2, A. Zink2, J. Krause2, D. H. Huson3
1Max Planck Institute for the Science of Human History, Jena, Germany
2University of Wisconsin, Madison, USA
3Leibniz-Institut für Gewässerökologie und Binnenfischerei, Stechlin, Germany

Question: Modern next generation sequencing technologies have lead to the production of vast amounts of DNA sequence data from metagenomic samples, which permits the study of complex microbial communities in unprecedented detail. For these analyses high-throughput computational methods are needed that allow for an extremely fast processing of sequencing data while retaining a high level of sensitivity and precision.

Methods & Results: We present MALT (MEGAN Alignment Tool), a program for the fast alignment of DNA sequencing reads to a database of all microbial reference genomes available on GenBank. MALT is able to process hundreds of millions of reads within a few hours, thus permitting the analysis of a whole metagenome sequencing run within a single day. Its tight integration with the metagenome analysis software MEGAN (Huson et al., 2011) allows for an assignment of single reads to different taxonomic levels with a precision that facilitates the identification and quantification of specific bacterial species or strains. In addition, MEGAN provides a variety of methods for more detailed analysis and visualization of the data. Performed in a comparative manner, this approach can be employed for studying the dynamics of microbial communities over time, or from different habitats or hosts. The method is particularly well suited to investigations of the human microbiome, which is comprised not only of a large number of commensals, but potentially also pathogens that have evolved with their human host. To gain insights into these evolutionary relationships, the field of paleogenetics aims to study ancient DNA extracted from archaeological remains.

In this context we demonstrate MALT by its application to the environment sequences using MEGAN 4. Genome Research 21, 1552-1560 (2011).

Conclusion: With MALT we present a fast metagenomic DNA sequencing read aligner integrating a taxonomic binning algorithm for in-depth analyses of ancient and modern microbial communities.

MCV13
Auxotrophy and intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model community
S. L. Garcia1, M. Buc1, K. McMahon2, H.-P. Grossart3, A. Eiler4
1Uppsala University, Uppsala, Sweden
2University of Wisconsin, Madison, USA
3Leibniz-Institut für Gewässerökologie und Binnenfischerei, Stechlin, Germany

Microorganisms are usually studied either in highly complex natural communities or in isolation as monoclonal model populations that we manage to grow in the laboratory. However, we uncovered the biology of some of the most common and yet-uncultured bacteria in freshwater environments using a dilution-mixed-culture from Lake Grosse Fuckschale. From a single shotgun metagenome of a freshwater mixed culture of low complexity, we recovered four high-quality metagenome-assembled genomes (MAGs) for metabolic reconstruction. This analysis revealed the metabolic interconnectedness and niche partitioning of these naturally dominant bacteria. In particular, vitamin- and amino acid biosynthetic pathways were distributed unequally with a member of Crenarchaeota most likely being the sole producer of vitamin B12 in the mixed culture. Using coverage-based partitioning of the genes recovered from a single MAG intrapopulation metabolic complementarity was revealed pointing to ‘social’ interactions for the common good of populations dominating freshwater plankton. As such, our study highlights the power of mixed cultures to extract naturally occurring ‘interactomes’ and to overcome our inability to isolate and grow the microbes dominating in nature.
Questions: Are proteins with virulence factors involved in the symbiotic interaction of two partner bacteria? Is it possible to assess a metabolic coupling between the two partners?

Methods: In order to elucidate the role of the corresponding proteins in the symbiotic interaction between the two partner bacteria, recombinant proteins were expressed in *E. coli* and used to produce antibodies for immunogold labelling and high resolution fluorescence microscopy for intracellular localization. The possibility of metabolic coupling between the two partner bacteria was assessed by nanoSIMS, magnetic capture and transcriptome analyses.

Results: The proteins encoded by the three symbiosis genes are transported across the cell envelope of the epibiont into the central bacterium. Cag 1919 contains a RTX domain which is typically found in Gram-negative pathogenic bacteria and was localized in condensed areas of the cell wall of the central bacterium. Cag 0614 and Cag 0616 represent the largest open reading frames (110418 and 61938 bp) known among prokaryotes and are transported across the cell envelope of the epibiont and are localized in the cytoplasm of the central bacterium. The epibiont provides metabolites to the central partner bacterium depending on the external nitrogen source and exogenous carbon substrates. The central bacterium, though not phototrophic, assimilates metabolically inactive in the dark and transcribed a variety of transporters.

Conclusions: The unexpected transfer of virulence factor-like proteins strongly suggests an involvement in the tight symbiotic interaction. There is also a metabolic coupling between the two partner bacteria which depends on the physiological activity of the epibiont.

MCV16 Global and local patterns of bacterial communities associated with peatland bryophytes

* A. Kiss1, A. T. Teve1, M. Winkel1, T. Hájek3
* M. M. Svenning2, D. Wagner1, S. Liebner1
1GFZ German Centre for Geosciences, Helmholtz Centre Potsdam, Germany
2Section 4.5 Geomicrobiology, Potsdam, Germany
3University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic

Introduction: Northern peatlands are pristine ecosystems that act as important global carbon stocks in which C- and N-cycles are driven by microbial communities. Furthermore, they act as critical ecosystem services in the local environment and act as crucial indicators for global change. These ecosystems are of major interest to understand the biogeographical distribution of bacterial communities, as climate change affects the productivity and the composition of these microorganisms. Here, we aimed to elucidate the importance of environmental parameters shaping the microbial communities associated with peatland bryophytes.

Methods: In a systematic approach, we sampled mosses and references from 26 sites at 4 different locations: Svalbard (High Arctic, Spitsbergen), Samoylov (Arctic, Siberia), Neiden (Subarctic, Norway) and Miers (High Arctic, Nova Belgica). The sample sites represent two different ecosystem types: neutral brown moss sites (Svalbard) and acidic brown moss sites (Miers). The sample sites were analyzed using a custom amplicon sequencing protocol and a systems biology approach to analyze the combined data set.

Results: A more comprehensive sampling design is lacking which includes brown mosses and aims at elucidating the influence of environmental parameters shaping the moss-associated bacterial (MAB) community at a global scale.

Conclusion: Microbial hub taxa link host and abiotic factors to plant microbiome variation.

* M. Agler1, J. Ruhe1, S. Kroll1, E. Kemen1
1Max Planck Institute for Plant Breeding Research, Plant-Microbe Interactions, Cologne, Germany

Question: Microbiomes critically affect the physiology and performance of plant hosts and are thus subject to selection along with the host genome. Thus, evolution and ecology of plants can only be understood in a holistic context that includes microbes that colonize the phyllosphere. A variety of factors influence host microbial community structures, but little is known about how these factors act on the microbial community and especially what role microbe-microbe interaction dynamics play.

Methods: We addressed this knowledge gap by simultaneously studying three major groups of *Arabidopsis thaliana* symbionts (bacteria, fungi, and oomycetes) using a custom amplicon sequencing protocol and a systems biology approach to analyze the combined data set. We combined samples of wild *A. thaliana* populations and field plantings to evaluate effects of location, sampling time and host genotype and isolated phyllosphere microbes to confirm findings in the lab with successive host colonization experiments.

Results: First, we confirmed previous results showing that abiotic factors and host genotype affect plant colonization. We then uncovered a network on inter-kingdom microbe-microbe interactions that affect community structure. A few taxa, which we term microbial ‘hubs’ were especially interactive in the phyllosphere. In planta lab experiments supported field observations and proved an important mechanism whereby host and abiotic factors control colonization by hubs, which in turn transmit effects to the microbial community, resulting in observed correlations. Importantly, in our experiments with hub microbes including the obligate biotrophic oomycete pathogen *Albugo*, the basidiomycete yeast fungus *Dioszegia*, and the bacteria *Caulobacter*, we found evidence for direct interaction between the hubs in addition to direct effects on the larger microbial communities. Specifically, while *Albugo* generally caused decreased bacterial alpha diversity and stabilized beta diversity compared to uninfected plants, *Dioszegia* inhibited *Caulobacter* growth and promoted *Albugo* virulence.

Conclusion: Our results demonstrate the importance of hubs in host microbiome structuring and in turn the importance of the microbiome on hub fitness. Thus, both plants and microbial hubs are organisms with hologenomes and we hypothesize that the microbial community represents a location of indirect interaction and competition between host and these influential microbes. Thus, the identification of microbial ‘hubs’ has crucial implications for plant-pathogen and microbe-microbe research and opens new entry points for ecosystem management and future targeted biocontrol.

MCV18 Transcriptional profiling during in planta development of the corn smut fungus

* D. Laure1, A. Müller1, N. Ludwig1, G. Schweizer1, F. Haass2, A. Jarosz3, J. Altmüller1, S. Rensing4, R. Kahmann1
1Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
2Philips University, Marburg, Germany
3Cologne Center for Genomics (CCG), Cologne, Germany

Ustilago maydis is the causative agent of corn smut disease. After penetrating the plant epidermis, the fungus grows as branching mycelium and induces tumors in colonized tissues. The fungal hyphae grow initially intracellularly but at later stages, i.e., during tumor formation, they form huge aggregates in apoplastic caves. Within these aggregates maturation of teliospores takes place. The transcriptional changes during the *in planta* development of this strictly biotrophic fungus are not well documented.

We performed RNAseq based transcriptional profiling of *Ustilago maydis* during seedling infection. The analyzed developmental stages range from plant penetration to induction of tumors and spore maturation. More than half of the 6700 *Ustilago maydis* genes are differentially expressed throughout the life cycle. The most highly expressed genes encode secreted effector proteins, which are needed to establish the biotrophic interaction between fungus and host plant. We categorized the 320
putative effector genes according to their expression profiles and were able to differentiate the following categories: on early and off at later stages; off early and on at later stages; on throughout the life cycle; on throughout the life cycle with expression peak during tumor formation. Our data demonstrates that each developmental stage of *Ustilago maydis* is characterized by an effector cocktail in part explaining the large number of specific effectors found in this organism.

MCV19

Acclimatization of arbuscular mycorrhizal fungal genes leads to increased stress tolerance of their host plants

P. Franken1, B. V. Cuong1

1Leibniz-Institut für Gemüse und Zierpflanzenbau, Erfurt, Germany

Arbuscular mycorrhizal (AM) fungal strains differ in their abilities to provide their host plants with mineral nutrients and to confer resistance to root pathogens and tolerance to abiotic stress. For example, mycorrhizal plants perform much better on sites contaminated with heavy metals (HMs) compared to their non-mycorrhizal counterparts. Numerous studies showed that taxonomically-related AM fungal strains differ in their capacity to confer HM tolerance to plants and can even loose this character, if propagated under HM-free conditions. The current study compiles the following hypotheses: (1) AM fungi can acclimatize to HM stress over a few generations. (2) This acclimatization process can be monitored on molecular level. (3) Acclimatized strains show increased abilities to confer heavy metal tolerance to plants. *Rhizosphagus irregularis* DAOM-197198 was chosen as model AM fungal strain and propagated in root organ cultures in the presence of moderate Zn or Pb concentrations. After five generations, cultures were tested at increased HM concentration for hyphal and spore development and for the expression of a set of HM-regulated genes. The results confirmed the first hypothesis: AM fungi can acclimatize to HM stress. Hyphal density or the number of spores was higher, if the strains grow in the presence of HMs compared to the non-acclimatized control strains. The AM fungal gene expression patterns reflect also the process of acclimatization. RNA of particular genes accumulated earlier or to increased amounts in the acclimatized strain confirming the second hypothesis. In order to test the third hypothesis, the final generation of newly developing spores from the acclimatized and from the non-acclimatized strain was used for inoculating maize plants in pot cultures, treated with high amounts of Zn and Pb. At harvest, plants inoculated with an acclimatized strain formed higher biomasses and showed increased uptake of phosphate and lower amounts of HMs in their shoots compared to plants colonized by the non-acclimatized strain. We propose that this process of acclimatization accompanied by monitoring RNA accumulation of particular genes can be transferred to a commercial directed inoculum production process with quality control adapted to particular customer needs.

MCV20

The tripartite symbiosis of *Piriformospora indica*, its endobacterial, and plants

P. S. P. Gloeae1, J. Imm1, H. Guo2, J. Albudi2, H. Haghibi1, N. Kumar2, M. Hardt1, M. Rothballer1, J. Blom2, A. Goesmann2, P. Kaempfer1, A. Hartmann3, K.-H. Kogel1

1Justus-Liebig-Universität Gießen, Institut für Angewandte Mikrobiologie, Gießen, Germany
2Justus-Liebig-Universität Gießen, Institut für Phytopathologie, Gießen, Germany
3Helmholtz Zentrum München, Abteilung Mikroben-Pflanzen Interaktion, Neuherberg, Germany
4Helmholtz Zentrum München, Abteilung Mikroben-Pflanzen Interaktion, Neuherberg, Germany
5Justus-Liebig-Universität Gießen, Bioinformatik und Systembiologie, Gießen, Germany

The plant growth-promoting fungus *Piriformospora indica* harbors an endobacterium which is frequently detected in low abundance in hypha and spores of fungal lab cultures by fluorescence in situ hybridization and quantitative PCR. Sharma et al. (2008) isolated and identified the endobacterium as *Rhizobium radiobacter* (formerly: *Agrobacterium tumefaciens*). While the endobacterium can grow in pure culture (strain *RrF4*) it has not been possible to cue the fungal host. Thus, the role of the endobacterium in these tripartite symbioses with plants is still unclear. In contrast to other fungal endobacteria, the genome of strain *RrF4* is not reduced in size. Instead, it shows a high degree of similarity to the genome of the plant pathogenic *A. tumefaciens* strain CS8, except vibrant differences in the tumor-inducing (pTi) and accessor (pAtI) plasmid, explaining the loss of pathogenicity. Similar to its fungal host, *RrF4* shows plant growth promotion and induced systemic resistance against fungal and bacterial pathogens. Quantitative real-time PCR data confirmed the proliferation of *RrF4* in roots of axially grown barley, wheat and Arabidopsis plants over the time of incubation. The root colonization patterns of *RrF4* and its host *P. indica* were compared by the application of GUS and GFP-tagged *RrF4* cells combined with light, confocal laser scanning, scanning and transmission electron microscopy (Glaeser et al. 2015). We showed that *RrF4* colonizes the rhizodermis and cortex tissue of the root hair zone in a similar manner as its fungal host. But, unlike its fungal host, *RrF4* is able to penetrate through the endodermis into the root stele as known for many other plant growth promoting bacteria. Thus, these data, along with the finding that the abundance of endobacterial cells strongly increased during the tripartite symbioses, suggest that *RrF4* seems to contribute to the beneficial activity that *P. indica* exerts on plants.

MCV21

What it takes to be a giant gut bacterium – metabolic flexibility and diei lifestyle of *Epulopiscium*

D. Kamanda Ngugi1, M. Sou2, M. Vinu1, M. Cahill1, U. Stingl1

1King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, Saudi Arabia
2University of California, Santa Cruz, CA, USA

Epulopiscium fishelsoni and related bacteria are a large, morphologically diverse group of intestinal symbionts found exclusively in the guts of herbivorous surgeonfishes. Though they are phylogenetically related to *Clostridia*, many of their biological traits including size (up to 600 μm), possession of an unusual mode of reproduction and being highly polyplody are to date only atypical to *Epulopiscium*. Yet a basic understanding of their metabolism is still lacking to the extent that it is currently unknown how such gigantic bacteria manage their carbon and energy pools especially given the differential constraints imposed by their size. Although it is understood that the reproduction of *Epulopiscium* follows a daily rhythm that is intertwined with the feeding behavior of its host, which feeds during the day and rests at night, their role in the mobilization of low-value algal biomass and significance in gut fermentative processes is still obscure. To fill this knowledge gap, we reconstructed the metabolism of different *Epulopiscium* cell morphotypes from single cells and population genomes obtained from three different surgeonfishes. Additionally, temporal profiles of gene expression were obtained by mapping metatranscriptomics datasets derived from the *Epulopiscium*-rich stomach of *Ancistrus sohal* over time against the reconstructed genomes. For the first time, these datasets demonstrate that *Epulopiscium* (1) have the capacity to efficiently turnover algal biomass, albeit with each genotype specialized to degrade different polymers, and (2) play a major role in the nitrogen economy of the host. Reflecting these potential is the additional evidence based on temporal profiles of transcripts involved in the *in situ* turnover of candidate polysaccharides. For instance *Epulopiscium* appear to initially utilize freely available low-molecular weight organic carbon (glycerol and citrate) coupled with sodium-dependent enzymatic pathways in a manner that facilitates the regeneration of reducing equivalents and elevates the net ATP pools but switch to glucose-based fermentation in the afternoon, when cells are actively dividing. Copy numbers of important genes also increase several folds over the course of the day consistent with the assumption that polyploidy serves to redistribute key enzymes throughout the cells thereby facilitating cellular activities and diminishing diffusional constraints. Thus, while the cells appear to be constrained — both energetically and at the level of metabolite transport across the extensive cellular space — they have adaptive mechanisms that help to compensate in addition to the canonical fermentative pathways. The metabolic versatility of *Epulopiscium* and the significance of this diei lifestyle will also be discussed in detail during the presentation.
MCV22
Surface modifications of Escherichia coli influence digestion and digestion of the ciliate Tetrahymena pyriformis
*L. Siegmund1, N. Carl1, J. Wüstemeyer1
1Friedrich Schiller University Jena, Chair of General Microbiology and Microbe Genetics, Jena, Germany

Endosymbiosis is a common phenomenon in nature, also and especially in single-celled organisms (Görtz, 2010). A logical and mandatory prerequisite for establishment of endosymbiotic relationships in protozoa is evading digestion by food bacteria. Recently, it has been shown that a non-pathogenic strain of Escherichia coli K12 is able to evade digestion by Tetrahymena pyriformis and additionally escapes from food vacuoles, resulting in persistence in the cytoplasm of the host (Siegmund et al., 2013). To shed some light on possible factors involved in evading digestion and even escaping from food vacuoles of the potential host, we chemically modified the surface of a transformant strain of E. coli by covalently binding different substances to the surface by means of carbodiimide. We observed the effects on ingestion and digestion of T. pyriformis. The fate of the bacteria was followed by fluorescence microscopy, since the transformant strain expresses DsRed, a red fluorescing protein of the jellyfish Discosoma. Depending on the coupled substance, the ciliates' ingestion rates either decreased (e.g. different amino acids) or increased (e.g. endoporter, an artificially designed hydrophobic oligopeptide). This clearly indicates a recognition site on an actin cytoskeleton region acting prior to ingestion. Comparable results were found by obtaining chemically modified microparticles based on bovine serum albumin (Dürichen et al., submitted). Further, by decreasing of fluorescence intensity, the digestive process was followed. Bacteria covered with substances that enhance hydrophobicity of the surface were not completely digested in every case, even surviving bacteria in fecal pellets were observed. By binding additional substances, double feeding experiments and appropriate staining techniques, some surface alterations of bacterial cells are identified that enable food bacteria to evade digestion or even to escape food vacuoles and, in consequence, allow persistence in the host's cytoplasm. These findings probably improve our understanding of mechanistic prerequisites for establishing endosymbiosis.

MCV23
Evidence of terpene degradation by pine weevil (Hylobius abietis) microbiota and its effect on host fitness
*A. Berasategui1, A. Schmidt2, J. Gershenson1, M. Kaltenpoth2
1Max Planck Institute for Chemical Ecology, Biochemistry, Jena, Germany
2University, Johannes Gutenberg, Mainz, Germany

Nutritional mutualisms between insects and microorganisms are not restricted to the synthesis and provision of essential amino acids or vitamins but also encompass the degradation of noxious compounds in the gut community to that of other beetles exploiting similar and different phytophagous species. We are interested in studying whether the pine weevil’s gut microbiota is involved in the degradation of terpenoids, a form of conifer chemical defense, and gain high interests. Beneficial plant associated microorganisms can contribute to crucial ecosystem services in agricultural landscapes, including plant growth promotion (PGP) and biological control. We investigated the PGP activities of the two strains on the germination and growth of different plant species in growth chamber. Finally, we studied the biological control activity of the two strains against S. sclerotiorum under both growth chamber and field conditions.

Results: The abundant colonization of young lettuce seedling (2 or 3 days old) by both strains demonstrated Streptomyces’ capability to interact with the host from early stages of seed germination and root development, and the two strains were detected also on two-week-old roots. On average, after six weeks of growth, we recovered >2×10⁴ CFU/g dry weight (DW) from the rhizosphere and >10⁵ CFU/g DW from the root inner tissues. Plant-strain specific PGP activity was observed; e.g., S. cyaneus ZEA17I promoted the growth of lamb lettuce but not that of tomato. When they were applied to S. sclerotiorum inoculated substrate in growth chamber, S. exfoliatus FT05W and S. cyaneus ZEA17I viability and persistence in the rhizosphere and in surface sterilized lettuce root tissues. Additionally, we investigated the PGP activities of the two strains on the germination and growth of different plant species in growth chamber. Finally, we studied the biological control activity of the two strains against S. sclerotiorum under both growth chamber and field conditions.

Conclusion: Our results indicated the promising potentials of Streptomyces for exploitation in agro-ecosystem applications. Further studies will provide additional knowledge to understand the mechanism of Streptomyces mediated biocontrol and PGP.

NPV01
Biosynthesis of the 6-pentylsalicylate building block in the antibiotic micacidocin
*H. Kage1, M. Net1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Junior Research Group Secondary Metabolism of Predatory Bacteria, Jena, Germany

The hybrid polyketide synthase/non-ribosomal synthetase MicC initiates the biosynthesis of the antibiotic micacidocin. Our previous work confirmed that the polyketide synthase module of MicC acts as a 6-pentylsalicylate synthase (6-PSAS) (1, 2). Further analysis of the 6-PSAS was carried out with site-
directed mutagenesis. This analysis indicated that a β-ketoreductase domain from MicC is crucial for the formation of 6-pentylsalicylate. To determine the exact timing of β-ketoreductase activity, we interrupted 6-pentylsalicylate biosynthesis by chemical chain termination (3). High resolution mass spectrometry analysis of the off-loaded intermediates revealed that the selective β-ketoreductase directly takes place after the second elongation step of the linear polypeptide intermediate (4). These results show that the investigated 6-PSAS follows the same logic as the previously characterized 6-methylsalicylate synthase (5), thereby establishing a unified paradigm for the biosynthetic mechanism of these proteins.

NPV02

NP25 of Ceriporiopsis subvermispora exemplifies the model for the most conserved basidiomycete peptide synthetase

*E. Brandenburger1,2, M. Gressler3, R. Leonhardt4, G. Lackner5, M. Brock6, D. Hoffmeister2,6

1John Innes Centre, Molecular Microbiology, Norwich, Great Britain
2Leibniz Institute for Natural Product Research and Infection Biology NPV02
3Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Jena, Germany
4ETH Zürich, Mikrobiologie, Zürich, Switzerland
5ETH Zürich, Pharmaceutical Microbiology, Jena, Germany
6University Nottingham, Fungal Genetics and Biology Group, Nottingham, Great Britain

Question: A gene encoding a nonribosomal peptide synthetase (NPS) which consists of one complete module and a T-C repeat is found in numerous basidiomycete genomes and represents the most conserved peptide synthetase gene in the group of fungi. In Ceriporiopsis subvermispora it is represented by nps2. NP25 resembles siderophore synthetases. To test the hypothesis of NP25 also serving siderophore biosynthesis, this study is focused on the identification and characterization of the NP25 product.

Methods: Ceriporiopsis subvermispora nps2 was heterologously expressed in Aspergillus niger p2 under the control of the terA promoter (Gressler et al., 2015). The ATP[32P] pyrophosphate exchange assay was used for substrate identification. The secondary metabolite was analyzed via in vitro product formation assay, chrome azurol S (CAS) assay, high pressure liquid chromatography and mass spectrometry (LC-MS).

Results: The adenylation domain of NP25 activated N5-acetyl-N5-hydroxy-L-ornithine (AMOH) and N5-anhydromevalonyl-N5-hydroxy-L-ornithine (AMHO). In vitro product formation analyses by LC-MS and the CAS assay revealed a trimer of AMOH that was active as iron chelator. Under iron-depleted conditions, the secretion of a siderophore by Ceriporiopsis subvermispora was detected. In agreement, under these conditions the expression of nps2 and the adjacent monoxygenase gene were upregulated.

Conclusion: In summary, these results characterize a representative of the most conserved basidiomycete NPS. Further investigations on the siderophore produced in vivo are envisaged to elucidate its complete biosynthesis.

NPV03

SimC7 is an unusual angucyclinone ketoreductase essential for antibioic activity of simocyclinone D8

*M. Schäfer1, B. T. K. Le2, S. Hearnshaw1, C. E. Stevenson1, D. M. Lawson2, A. Maxwell1, G. L. Chaliss3, B. Wilkinson1, M. J. Buttner1, John Innes Centre, Molecular Microbiology, Norwich, Great Britain
2University of Warwick, Chemistry, Coventry, Great Britain
3Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Jena, Germany

Introduction: Simocyclinone D8 (SD8) is an antibiotic produced by Streptomyces antibioticus Tü6040 that targets DNA gyrase, an essential bacteria-specific enzyme and validated target for clinically useful antimicrobials1,2. SD8 has an unusual hybrid structure composed of an aminocoumarin and an angucyclinone that are linked by a linear tetrane and a deoxy sugar. The biosynthetic simocyclinone (sim) cluster has been identified and sequenced. Although a hypothetical biosynthetic pathway has been proposed, very few enzymes have been functionally analysed, mainly due to the gene accessiblility of the natural producer and enormous size of the gene cluster.

Objectives: In this study we analysed the structure and function of SimC7 involved in simocyclinone biosynthesis.

Methods: The entire 72-kb simocyclinone gene cluster was isolated on a single phase artificial chromosome (PAC) to facilitate genetic manipulations and product analysis. Simocyclinones were extracted, purified, and analysed by high resolution NMR spectroscopy and UV-vis LCMS, and their biological activity was determined against DNA gyrase. The de novo protein structure of SimC7 in complex with simocyclinones was defined by X-ray crystallography.

Results: We revealed that SimC7 is an NAPDPH-dependent angucyclinone ketoreductase that acts on the C-7 carbonyl group of the angucyclinone, revising the previously proposed dehydratase activity on the tetrane linker 1.

Important, SimC7 is essential for the biological activity of simocyclinone because deletion of simC7 results in production of a novel and inactive simocyclinone intermediate (7-oxo-SD8) with a normal tetrane linker but a modified angucyclinone. Several high-resolution protein structures of SimC7 revealed an unusual catalytic mechanism without involvement of a catalytic tyrosine characteristic for SDR proteins. In addition, SimC7 shares homology to epimerases and other sugar-modifying enzymes but surprisingly little homology to known ketoreductases.

Conclusions: Our study demonstrates the essential biosynthetic role of SimC7 for the inhibitory activity of SD8 and provides novel insights into the molecular basis of alternative mechanisms for unusual SDR proteins. The structural homology of SimC7 to sugar-modifying enzymes implies an evolutionary adapted function driven by an improved biological activity of SD8. These results indicate that the biosynthetic pathway of simocyclinone is not entirely understood.

NPV04

Elucidation of the biosynthetic gene cluster involved in the biosynthesis of the natural compound sodorifen in S. pumificata 4Rx13

* D. Domik1, A. Thürmer1, S. von Reuss2, B. Pichulla1
1University of Rostock, Department of Biochemistry, Rostock, Germany
2Georg August Universität Göttingen, Institute of Microbiology and Genetics, Göttingen, Germany

Microorganisms are fascinating because they intrude our lives without noticing or any possible way of avoiding them. The mold on the bread we forgot over the weekend, the antibiotic we take against an infection, the glass of wine we enjoy after a long day of work. They are omnipresent and produce a variety of natural products, which are often unique. In many cases the biosynthesis is unknown. However, for a long time it was overlooked that microorganisms release a plethora of volatile compounds as well. Recently the database mVOC (1) was setup compiling about 1200 VOCs released by so far 350 bacterial and 100 fungal species. The rhizobacterium Serratia pumificata 4Rx13 is able to produce the unique volatile compound sodorifen, which is produced by only a few isolates. The structure was elucidated and revealed an aromatic bicyclic ring structure consisting only of carbon and hydrogen with multiple methyl groups (2). It harbors no other heteroatoms, which is peculiar for a natural compound. However, the biosynthesis was for a long time a mystery due to the assumption that novel enzymes are involved.

To unravel the biosynthesis of sodorifen a comparative genome analysis was performed avoiding the mold on the bread. Thus, it was speculated that a second gene in the genome of S. pumificata 4Rx13 is able to compensate the function.

Elucidation of the biosynthetic gene cluster involved in the biosynthesis of the natural compound sodorifen in S. pumificata 4Rx13

Microorganisms are fascinating because they intrude our lives without noticing or any possible way of avoiding them. The mold on the bread we forgot over the weekend, the antibiotic we take against an infection, the glass of wine we enjoy after a long day of work. They are omnipresent and produce a variety of natural products, which are often unique. In many cases the biosynthesis is unknown. However, for a long time it was overlooked that microorganisms release a plethora of volatile compounds as well. Recently the database mVOC (1) was setup compiling about 1200 VOCs released by so far 350 bacterial and 100 fungal species. The rhizobacterium Serratia pumificata 4Rx13 is able to produce the unique volatile compound sodorifen, which is produced by only a few isolates. The structure was elucidated and revealed an aromatic bicyclic ring structure consisting only of carbon and hydrogen with multiple methyl groups (2). It harbors no other heteroatoms, which is peculiar for a natural compound. However, the biosynthesis was for a long time a mystery due to the assumption that novel enzymes are involved.

To unravel the biosynthesis of sodorifen a comparative genome analysis was performed avoiding the mold on the bread. Thus, it was speculated that a second gene in the genome of S. pumificata 4Rx13 is able to compensate the function.

Especially interesting was the change of the volatile blend of the terpene phenylpropanoids, 2-methyl-2-cyclohexene-1-carboxaldehyde and 3-methyl-2-cyclohexene-1-carboxaldehyde, and the increase of dihydroformaldehyde. Microorganisms are fascinating because they intrude our lives without noticing or any possible way of avoiding them. The mold on the bread we forgot over the weekend, the antibiotic we take against an infection, the glass of wine we enjoy after a long day of work. They are omnipresent and produce a variety of natural products, which are often unique. In many cases the biosynthesis is unknown. However, for a long time it was overlooked that microorganisms release a plethora of volatile compounds as well. Recently the database mVOC (1) was setup compiling about 1200 VOCs released by so far 350 bacterial and 100 fungal species. The rhizobacterium Serratia pumificata 4Rx13 is able to produce the unique volatile compound sodorifen, which is produced by only a few isolates. The structure was elucidated and revealed an aromatic bicyclic ring structure consisting only of carbon and hydrogen with multiple methyl groups (2). It harbors no other heteroatoms, which is peculiar for a natural compound. However, the biosynthesis was for a long time a mystery due to the assumption that novel enzymes are involved.

To unravel the biosynthesis of sodorifen a comparative genome analysis was performed avoiding the mold on the bread. Thus, it was speculated that a second gene in the genome of S. pumificata 4Rx13 is able to compensate the function.
new compound could be achieved by the incorporation of isotope labeled precursors along with NMR analysis.

1) Lemfack et al., 2013, Nucl. Acid Res., 1-5
2) Renas et al., 2010, Angew. Chem. Int. Ed. 49, 2009-2010

NPV05
The role of short-lived intermediates in the Pseudomonas aeruginosa alkylquinolone biosynthesis pathway
*S. L. Dreves1, F. S. Birme1, S. Thierbach1, S. Fetzner1
1Westfälische Wilhelms-Universität Münster, Institute of Molecular Microbiology and Biotechnology, Münster, Germany

Question: The pqs biosynthetic operon of Pseudomonas aeruginosa codes for the synthesis of an arsenal of secondary metabolites, the most prominent one being the quorum sensing signal molecule PQS. However, several other physiologically important compounds such as 2-heptyl-4(1H)-quinolone (HHQ), 2-heptyl-4-hydroxyquinolone-N-oxide (DQNO), 2,4-dihydroxyquinoline (DHO) and 2-aminoacetophenone (2-AA) derive from the same pathway. We addressed the question of how these molecules are synthesized and how the balance between the diverse products is achieved.

Methods: Biosynthetic enzymes were purified, reaction intermediates and analogs chemically synthesized and individual reactions were characterized using chromatographic and spectroscopic methods. Theoretical approaches to multi-step reactions were applied to provide complementary insight. Metabolite levels of wild-type and different knockout mutants of P. aeruginosa were compared.

Results: The “peptide part” of the “PQS response protein” PqsE, which has regulatory functions, is additionally involved in alkylquinolone (AQ) biosynthesis, acting as thioesterase on the labile intermediate 2-aminoenzyolylactyl-CoA (2-AABA) (1). The released 2-AABA is the substrate of PqsBC for formation of HHQ (2), but it is also found extracellularly and, depending on environmental conditions, decomposes to either DHO or 2-AA, a physiological inhibitor of PqsBC. The monooxygenase PqsL is required for formation of HQNO (3). Remarkably, its reaction product is highly unstable, affecting the balance between HQNO and HHQ. The monooxygenase PqsH is essential for the hydroxylation of HHQ to form PQS but has a side activity on HQNO (3). As a result, the reaction product is highly unstable, affecting the balance between HQNO and HHQ. The monooxygenase PqsH is essential for the hydroxylation of HHQ to form PQS but has a side activity on HQNO. The released 2-ABA is the substrate of PqsBC for formation of HHQ but has a side activity on HHQ.

Conclusion: The apparent diversity of alkylquinolone-related secondary metabolites is the result of a finely tuned balance between enzymatic reactions and abiotic degradation processes. Because labile pathway intermediates can react to different products, P. aeruginosa may exploit their chemical properties as a means of responding to environmental influences and the own metabolic condition.

NPV06
The cyclochlorotrimycolat toxin produced by the nonribosomal peptide synthetase CcN in Talaromyces islandicus (“Penicillium islandicum”)
*T. Schaafhauser1, N. Kirchner1, A. Kulik1, H. Große2, T. Weber3
1Eberhard Karls University of Tübingen, Microbiology/Biotechnology, Tübingen, Germany
2Technical University of Denmark, Center for Biosustainability, Lyngby, Denmark

Talaromyces islandicus (“Penicillium islandicum”) is a widespread foodborne mold that produces numerous secondary metabolites, among them potent mycotoxins belonging to different chemical classes. A notable metabolite is the hepatotoxic and carcinogenic pentapeptide cyclochlorotrimat. It contains the unique 3,4-dichloropentane as well as the amino acids β-phenylalanine and 2-amino-4-butyric acid. The latter two are rare in nature. Although the chemical structure has been known for over five decades, nothing is known about the biosynthetic pathway of cyclochlorotrimat. Bioinformatic analysis of the recently sequenced genome of T. islandicus identified a wealth of gene clusters potentially coding for the synthesis of secondary metabolites. Here we show by RNA-interference-mediated gene silencing that a nonribosomal peptide synthetase, CcN, is responsible for the synthesis of cyclochlorotrimat. Moreover, we identified novel cyclochlorotrimat chemical variants, whose production also depended on CcN expression. Surprisingly, the halogenase required for cyclochlorotrimat biosynthesis is not encoded in the cct cluster. Nonetheless, our findings enabled us to propose a detailed model for cyclochlorotrimat biosynthesis. The work is the first description of an NRPS gene cluster in the genus Talaromyces. The NRPS pathway could serve as a prototype for the biosynthesis of cyclic and chlorinated pentapeptide toxins in the genus Talaromyces as we identified similar gene clusters are prevalent among all available genomes of Talaromyces species, including those with significant impact in medicine and food industry.

1Goethe-Universität Frankfurt, Institut für Molekulare Biotecnologien, Frankfurt a. M., Germany

Entomopathogenic bacteria of the genera Photobacterium and Xenorhabdus live in symbiosis with Heterorhabditis or Steinernema nematodes, respectively, which infect insect larvae. After infection, the bacteria are released into the insect haemolymph where they kill the insect by producing a wide range of bioactive compounds, including siderophores. Siderophores are small molecule virulence factors that are able to bind iron from the environment and transport it into the cell. Analysis of sequenced Photobacterium and Xenorhabdus genomes revealed a widespread gene cluster with high similarity to the yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica. Yersiniabactin is a catecholate siderophore that is biosynthesised by a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) enzyme complex. To investigate whether Photobacterium and Xenorhabdus also produce related siderophore metabolites, a promoter exchange mutant was constructed in X. szentirmaii. Subsequent HPLC-MS analysis revealed the presence of a new metabolite, which differed from yersiniabactin by 14 mass units and was highly unstable against nucleophiles like methanol. High resolution MALDI-MS along with labelling experiments confirmed an unusual sum formula of the molecule. Differential analysis by 2D NMR spectroscopy (DANS) performed directly on the crude cell extract provided support for the proposed structure. The regulation and biological function of this yersiniabactin-like metabolite were also investigated. Construction of a ferric uptake regulator (Fur) mutant of X. szentirmaii showed that expression of this biosynthetic gene cluster is under the regulatory control of Fur as well as other genes involved in iron metabolism. In addition to functioning as a siderophore, this compound might also act as a virulence factor in the lifestyle of these entomopathogenic bacteria.

NPV07
A yersiniabactin-like siderophore/virulence factor of entomopathogenic bacteria
*M. Hirschmann1, V. L. Challinor1, F. Wesche1, H. B. Bode2
1Goethe-Universität Frankfurt, Institut für Molekulare Biotecnologien, Frankfurt a. M., Germany
...stilbene synthase (STS) in this strain led to the production of three compounds. Worldwide, over 25% of food crop is lost because of infectious plant diseases, including microbe-induced decay of harvested crops. Anaerobic bacteria infected and decomposed by *Clostridium* punicum that grow in the absence of oxygen. Although the association of these anaerobic bacteria with rotting vegetables has been described over a century ago, to date nothing is known about any factors promoting the devastating plant disease. In particular, the central question by which means an air-sensitive plant pathogen can enter and claim an oxygen-rich plant environment has remained unanswered. We demonstrate that these anaerobic plant-pathogenic *Clostridium* harbors a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment. Genome mining revealed a type II PKS gene locus for clostrubin biosynthesis that is unique among all hitherto sequenced genomes (>200) non-plant pathogenic *Clostridium*. Quantification of tuber degradation, live/dead FACS analysis and electron microscopy show dramatically different phenotypes of wild type and targeted clostrubin-negative mutant under aerobic conditions. Clostrubin synthase may be a useful target for development of antibacterial therapeutics and plant-protective agents.

NMV03

Diversity and metabolite profiles of Actinobacteria from the Atacama Desert

A. Villalobos, J. Weise, J. F. Imhoff

GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany

The Atacama Desert is well known as the driest place and as the oldest desert on Earth which comprises a number of extreme environments, from hyperarid soils, various types of salt lakes (Salares) with different composition of mineral salts and its concentration as well as also hot springs and geysers. These habitats are exposed constantly to very high UV radiation and strong fluctuations in temperature. These conditions make the Atacama Desert a hot spot of microbial biodiversity, in which adaptation plays an important role in microbial life, leading to a great diversity of unique microorganisms. Molecular studies based on 16S rRNA gene libraries and high throughput sequencing have shown a high diversity of Actinobacteria along the Atacama Desert, but only few studies have been done in the isolation of new strains and their exploration for biotechnological applications.

Results: The focus of our studies is on the isolation, identification and characterization of Actinobacteria from rhizosphere samples of endemic plants from the Atacama Desert (near Socaire) and their potential as producers of new antibiotics. A total of 102 strains were isolated and identified using the 16S rRNA gene sequences. The isolates belong to the genera *Streptomycetes*, *Nocardioides*, *Rhodococcus*, *Micromonospora*, *Arthrobacter*, *Kribella* and *Kocuria*. Preliminary experiments of crude extracts showed a high diversity of compounds and antibiotic activity against *Bacillus subtilis*, *Escherichia coli* and *Staphylococcus lentus*. The isolation of Actinobacteria from extreme environments is presenting a great diversity of these bacteria which are expected to represent a promising source of novel antibiotic active natural products. We expect to find new bioactive compound in the isolated Actinobacteria.

NMV04

Discovery of the tryptacin gene cluster in the human-pathogenic fungus *Aspergillus fumigatus*

Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany

The opportunistic human pathogen, *Aspergillus fumigatus* produces a myriad of different natural products (NPs). Pertaining to the different biosynthetic gene cluster of *A. fumigatus*, many have been identified and correlated to their respective metabolites, but there still remain several unidentified. Understanding the complete metabolome of such a major pathogenic fungus is crucial in establishing proper techniques of treatment and identification in patients. Here we assigned the anthraquinone derivative, tryptacin, its respective gene cluster. Since tryptacin was shown to be located in the spores, the main route of distribution in the environment by the fungus, its role in the interaction with amoebae and macrophages was studied.

Methods: The genome of *A. fumigatus* was mined for NP gene clusters based on comparison of clusters of known NPs similar in structure with *A. fumigatus* and other Aspergilli. The polyketide synthase (PKS) of the identified cluster was deleted and confirmed by southern blot and LCMS analysis. Both, mutant and parental strain were studied in phagocytosis assays with the amoeba *Dictyostelium discoideum* and human macrophages.
Results: Here we have pin-pointed the known NP trypacidin to its biosynthetic gene cluster in A. fumigatus. This metabolite, in particular, is of interest because of its biological activity and possible role in the infection process. It was shown that macrophages would phagocytize the spores of the knock-out mutant more frequently than the parental strain. This indicates that this spore-related metabolite could play a role in the interaction of the fungus with the macrophage in one of the first lines of defence for the host during the infection process. Additionally, when confronted with the phagocytic amoeba, D. discoideum, they also showed to be sensitive when introduced to the A. fumigatus metabolite.

Conclusion: This shows from an ecological perspective that the fungus protects its spores by arming them with NPs to not only avoid from being killed in the environment, but also in its potential host.

MMV05 Experimental evolution of metabolic dependency in bacteria

1Max Planck Institute for Chemical Ecology, Jena, Germany
2Max Planck Institute for Terrestrial Microbiology, Organismic Interactions, Marburg, Germany
3Heinrich Zentrum München, Institute for Bioinformatics and Systems Biology, München, Germany
4University of Montpellier 2, Institute of Evolutionary Sciences, Montpellier, Germany
5Max Planck Institute for Evolutionary Biology, Department of Evolutionary Genetics, Plön, Germany

Bacteria that adapt to specialized environments frequently lose biosynthetic genes, which render them dependent on an environmental uptake of the corresponding metabolites. However, it remains generally unclear whether selection or drift is driving this genome-streamlining. Here we experimentally determined the propensity of bacteria to lose biosynthetic functions when the metabolite is environmentally available. For this, we serially propagated replicate lines of the bacterium Escherichia coli for 2,000 generations in an amino acid-containing environment. A subsequent quantification of auxotrophic mutants revealed that genotypes that essentially required amino acids to grow evolved already after 1,000 generations and were highly abundant (up to 20%) in all replicate populations after 2,000 generations. Derived auxotrophic mutants were significantly more productive and fitter than the prototrophic ancestor in the presence of amino acids. However, this growth advantage was lost in amino acid-deficient environments, suggesting environmental compensation of amino acids contributed to the observed gains in fitness. The adaptive loss of biosynthetic functions resulted from mutations in compensatory metabolic genes, which render them dependent on an environmental uptake as well as by cross-feeding from co-existing prototrophic strains. Our study provides quantitative evidence that nutrient-containing environments exert a strong selection pressure for a loss of metabolic functions in bacteria and has significant implications for the evolution of microbial genomes and communities.

MMV06 Virulence in smut fungi – insights from evolutionary comparative genomics

1G. Schweizer1, C. Kost2
2Max Planck Institute for Chemical Ecology, Jena, Germany

Smut fungi comprise a large group of about 1,400 species, which all need to establish fine tuned biotrophic interactions with their hosts to complete sexual reproduction. Host plants are typically grasses, including important crops like maize, sorghum, barley, wheat, oat and sugar cane. Five smut genomes of different species parasitizing specific hosts are available: Ustilago hordei infecting barley, Ustilago zeae infecting maize and the wild ancestor teosinte [2], Sporisorium scitamineum growing on sugar cane, S. reilianum f. sp. zeae parasitizing maize [3] and S. reilianum f. sp. sorgii growing on sorghum grass. Based on their typically narrow host range and the availability of molecular tools enabling genetic manipulations, smut fungi are a particularly interesting model to uncover genes contributing to virulence and potentially host specificity. We used a computational approach to identify genes in each species with an interesting evolutionary history: genes showing signatures of positive selection and orphan genes. To detect genes showing signs of positive selection, we reconstructed families of homologues using clustering methods. We employed this data set to search for genes with elevated rates of non-synonymous substitutions by applying non-homogenous models of sequence evolution without a priori assumptions. Families of homologous sequences containing only members of one species were considered to be orphan genes and further confirmed by a tblastn search against the non-redundant nucleotide data base of NCBI.

A deletion mutant of a gene under positive selection in S. reilianum f. sp. zeae (sr10529) showed drastically reduced virulence symptoms, indicating an important contribution to pathogenicity. Since the orthologous gene in U. maydis, um01375 (pit2), was previously characterized as inhibitor of a group salicylic acid-induced cysteine proteases [4], we currently assess whether the allele of S. reilianum f. sp. zeae shows differences in inhibition of cysteine proteases compared to the allele of S. reilianum f. sp. sorgii in apoplastic fluids. To obtain clues of a potential role in host specificity, we additionally exchange pit2 alleles exchanges between both variants of S. reilianum and monitor the influence on virulence. In this way, clues of a potential role in host specificity for Pit2 can be obtained. Whether orphan genes play a role in virulence of U. maydis is currently investigated by creating deletion mutants.

MMV07 Ancient Yersinia pestis genome from a post-Black Death outbreak in Southwestern Germany

1M. A. Spyrou1, M. Feldman1, J. Drath2, S. Arnold3, J. Wahl4, A. Herbig1, K. Bös1, J. Krause1.3
2Max Planck Institute for the Science of Human History, Archaeogenetics, Jena, Germany
3Research Center for Anthropology and Health, University of Coimbra, Coimbra, Portugal
4State Office for Cultural Heritage Management Baden-Württemberg, Esslingen, Germany
5State Office for Cultural Heritage Management Baden-Württemberg, Osteologie, Konstanz, Germany
6Institute for Archeological Sciences, University of Tübingen, Tübingen, Germany

Question: Yersinia pestis has been implicated in three pandemics in human history. Of the three, the most deadly was the second plague pandemic, which began with the infamous Black Death in 1347 and continued with recurrent outbreaks in Europe until the late 18th century. Little is known about the distribution of plague lineages in Europe during and after the Black Death. Current hypotheses suggest that post-Black Death plague outbreaks were either attributed to recurrent plague introductions from the East, or to a local European focus, which persisted after the Black Death. To test these hypotheses we attempted genome reconstruction of a Yersinia pestis strain involved in a 16th century plague outbreak in Ellwangen, in Southwestern Germany.

Methods: We tested 79 tooth remains from three mass graves in the site of Ellwangen, for the presence of a Y. pestis-specific gene using a previously established qPCR-screening assay (Schuenemann, 2011). Samples yielding amplification products were used for whole genome hybridization capture and subsequent phylogenetic analysis.

Results: We were able to reconstruct a complete Yersinia pestis genome from a plague victim from Ellwangen. The genome-wide data obtained allowed us to compare the bacterial strain from the 16th century to both modern and other ancient Y. pestis strains in order to make inferences on the spread of this historically important pathogen. Phylogenetic reconstruction identified this 16th century strain as a descendant of a previously described Black Death strain from London, 1348 - 1350 (Bos, 2011). Of those sampled to date, no extant lineages of Y. pestis belong to the Ellwangen lineage.

Conclusion: We were able to reconstruct a Yersinia pestis genome from a 16th century plague outbreak in South Germany. Since this lineage has a previously described Black Death strain as its ancestor, our data add legitimacy to the existence of a historical European plague focus, which is now likely extinct.

After forming groups with random distribution of initial cell number and subpopulations composed of a free-rider and a producer (cooperator) regulated expression of the pyoverdine master regulator PfrI and/or a experiments we used cooperator strains which either have a wildtype and its production of the iron scavenging siderophore pyoverdine. For our populations on the development of cooperation.

Methods: Our experimental model is the soil bacterium P. putida KT2440 and its production of the iron scavenging siderophore pyoverdine. For our experiments we used cooperator strains which either have a wildtype regulated expression of the pyoverdine master regulator PfrI and/or a constitutive one. To determine the pressure we measured the relative fitness. Furthermore we examined the development of subpopulations composed of a free-rider and a producer (cooperator). After forming groups with random distribution of initial cell number and producer fraction, growth for different periods of time and merging, producer fraction and cell number were determined.

Results: The extent of pyoverdine production by cooperators increases the relative fitness advantage of free-riders. Regarding the development of cooperativity in merged groups we obtain a constant increase with the wildtype, and a transient one using strains which have a constitutive pyoverdine production. The results are in agreement with theoretical models predicting a transient development of cooperativity under our experimental conditions. The extent and duration of cooperativity depends on the initial cell number, producer fraction and environmental conditions.

Conclusion: A higher extent of pyoverdine production leads to higher metabolic costs for the cooperator, and increases the availability of pyoverdine for free-riders. As a consequence we only observed a stable increase of cooperativity under our experimental conditions when pyoverdine production is controlled by the regulatory system of the wildtype.

A central question in evolutionary biology is the development of cooperation in cultures of cooperators and free-riders [1, 2]. There are several solutions to this problem, one comes from theoretical models combining internal evolution and growth dynamics of a population [2, 3]. Here we analyze how the extent of pyoverdine production of Pseudomonas putida strains influences development, extent and duration of cooperation.

Question: A central question in evolutionary biology is the development of cooperation in cultures of cooperators and free-riders [1, 2]. There are several solutions to this problem, one comes from theoretical models combining internal evolution and growth dynamics of a population [2, 3]. Here we analyze how the extent of pyoverdine production of Pseudomonas putida strains influences development, extent and duration of cooperation.

Methods: Our experimental model is the soil bacterium P. putida KT2440 and its production of the iron scavenging siderophore pyoverdine. For our experiments we used cooperator strains which either have a wildtype regulated expression of the pyoverdine master regulator PfrI and/or a constitutive one. To determine the pressure we measured the relative fitness. Furthermore we examined the development of subpopulations composed of a free-rider and a producer (cooperator). After forming groups with random distribution of initial cell number and producer fraction, growth for different periods of time and merging, producer fraction and cell number were determined.

Results: The extent of pyoverdine production by cooperators increases the relative fitness advantage of free-riders. Regarding the development of cooperativity in merged groups we obtain a constant increase with the wildtype, and a transient one using strains which have a constitutive pyoverdine production. The results are in agreement with theoretical models predicting a transient development of cooperativity under our experimental conditions. The extent and duration of cooperativity depends on the initial cell number, producer fraction and environmental conditions.

Conclusion: A higher extent of pyoverdine production leads to higher metabolic costs for the cooperator, and increases the availability of pyoverdine for free-riders. As a consequence we only observed a stable increase of cooperativity under our experimental conditions when pyoverdine production is controlled by the regulatory system of the wildtype.

MG08

Impact of the extent of pyoverdine production in *Pseudomonas* populations on the development of cooperation

F. Becker, K. Wiendahl*, M. Lechner†, E. Frey‡, H. Jung§

* Ludwig-Maximilians-Universität München, Mikrobiologie, Martinsried, Germany

†Ludwig-Maximilians-Universität München, Arnold Sommerfeld Centre for Theoretical Physics and Center for NanoScience, München, Germany

Question: A central question in evolutionary biology is the development of cooperation in cultures of cooperators and free-riders [1, 2]. There are several solutions to this problem, one comes from theoretical models combining internal evolution and growth dynamics of a population [2, 3]. Here we analyze how the extent of pyoverdine production of *Pseudomonas putida* strains influences development, extent and duration of cooperation.

Methods: Our experimental model is the soil bacterium *P. putida* KT2440 and its production of the iron scavenging siderophore pyoverdine. For our experiments we used cooperator strains which either have a wildtype regulated expression of the pyoverdine master regulator PfrI and/or a constitutive one. To determine the pressure we measured the relative fitness. Furthermore we examined the development of subpopulations composed of a free-rider and a producer (cooperator). After forming groups with random distribution of initial cell number and producer fraction, growth for different periods of time and merging, producer fraction and cell number were determined.

Results: The extent of pyoverdine production by cooperators increases the relative fitness advantage of free-riders. Regarding the development of cooperativity in merged groups we obtain a constant increase with the wildtype, and a transient one using strains which have a constitutive pyoverdine production. The results are in agreement with theoretical models predicting a transient development of cooperativity under our experimental conditions. The extent and duration of cooperativity depends on the initial cell number, producer fraction and environmental conditions.

Conclusion: A higher extent of pyoverdine production leads to higher metabolic costs for the cooperator, and increases the availability of pyoverdine for free-riders. As a consequence we only observed a stable increase of cooperativity under our experimental conditions when pyoverdine production is controlled by the regulatory system of the wildtype.

OVT02

IsCr of *Rhodobacter sphaeroides* functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein

B. Reines, B. Eisenhardt†, V. Srivinasan‡, G. Klag‡

†Microbiology and Molecular Biology, Gießen, Germany

‡LOEWE center for synthetic microbiology, Marburg, Germany

All aerobic living organisms have to face oxidative stress caused by reactive oxygen species (ROS) which are generated during respiration. While iron and iron-sulfur (Fe-S) clusters are essential for virtually all forms of life, free iron favours ROS generation in the iron catalysed reduction of *H*₂*O*₂, known as Fenton reaction. Furthermore, in photosynthetic organisms like *Rhodobacter sphaeroides*, iron limitation results in a 2- to 10-fold increase in ROS levels which has also been found in cells grown in iron-replete conditions. Thus, organisms have to coordinate and balance their responses to oxidative stress and iron availability.

E. coli IsCr is an important regulator of iron metabolism and acts as a sensor of the cellular demands for Fe-S cluster biogenesis by binding a Fe-S cluster with (Cys)₃(His)₁ ligation. The three essential cysteine residues are conserved in many proteobacteria, but only a single cysteine residue is present in all *Rhodobacteraceae* IsCr. Using a global transcriptome analysis in the background of a *AisCR* strain we showed that *R. sphaeroides* IsCr functions as transcriptional repressor of genes preceded by a specific DNA binding motif (iron-Rhodo-box). Furthermore, we confirmed that IsCr from *R. sphaeroides* coordinates a Fe-S centre despite the missing cysteine residues and provide first hints to amino acids involved in this ligation. These results contribute to understanding the sensing of oxidative stress and iron starvation in *Rhodobacteraceae*.

OVT03

Formation of polyphosphate by polyphosphate kinases and its relationship to Poly(3-Hydroxybutyrate) accumulation in *Ralstonia eutropha*

T. Tumlirsch, A. Szajdaj†, D. Jendrossek‡

‡Universität Stuttgart, Institut für Mikrobiologie, Stuttgart, Germany

A protein (PhaX) that interacted with poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 and with PHB granule-associated phasin protein PhaP2 was identified by two-hybrid analysis. Deletion of *phaX* resulted in an increase in the level of polyphosphate (polyP) granule formation and in impairment of PHB utilization in nutrient broth-gluconate cultures. A procedure for enrichment of polyP granules from cell extracts was developed. Twenty-seven proteins that were absent in other cell fractions were identified in the polyP granule fraction by proteome analysis. One protein (A2437) harbored motifs characteristic of type 1 polyphosphate kinases (PPK1s), and two proteins (A1212, A1271) had PPK2 motifs. In vivo colocalization with polyP granules was confirmed by expression of C- and N-terminal fusions of enhanced yellow fluorescent protein (eYFP) with the three polyphosphate kinases (PPKs). Screening of the genome DNA sequence for additional proteins with PPK motifs revealed one protein with PPK1 motifs and three proteins with PPK2 motifs. Construction and subsequent expression of C- and N-terminal fusions of the four new PPK candidates with eYFP showed that only A1979 (PPK2 motif) colocalized with polyP granules. The other three proteins formed fluorescent foci near the cell pole (apart from polyP) (A0997, B1019) or were soluble (A0226). Expression of the *Ralstonia eutropha* ppp (gkpReu) genes in an *Escherichia coli* Δppk background and construction of a set of single and multiple chromosomal deletions revealed that both A2437 (PPK1a) and A1212 (PPK2c) contributed to polyP granule formation. Mutants with deletion of both genes were unable to produce polyP granules. The formation and utilization of PHB and polyP granules were investigated in different chromosomal backgrounds.

growth in minimal medium. Analyzing the DNA content after replication runout revealed up to eight chromosomes per cell, depending on the growth medium applied. Reassuringly, flow cytometry analysis confirmed remarkably high chromosome numbers per cell, which is supported by microscopy data suggesting up to 5 ParB-eYFP foci and up to six DnaN-Cherry foci per cell. In summary, our data give further insights in the spatiotemporal chromosome organization of C. glutamicum and allow proposing complete cell cycle models under different growth conditions.

OTV05

The heterododecameric, membrane-associated bacterioferritin of Magnetospirillum gyrophilwaldense is not involved in magnetite biosynthesis

*R. Uebe1, K. Jäger1, B. Matzanke1, D. Schüller1
1Universität Bayreuth, LS Mikrobiologie, Bayreuth, Germany
2Universität zu Lübeck, Isotopenlabor, Lübeck, Germany

Iron is essential for almost all organisms. Because of its versatile biochemical properties it serves as a cofactor in a multitude of biochemical reactions including respiration, photosynthesis or DNA synthesis. Excess iron, however, is toxic due to its ability to increase the formation of reactive oxygen species via the Fenton reaction. To avoid iron-mediated toxicity, bacteria use iron storage proteins of the ferritin-like superfamily to store excess iron as a ferric hydroxide-like inert iron mineral phase and, thus, regulate cytotoxic iron levels. A rather unusual role of ferritin-like proteins was proposed for magnetotactic bacteria (MTB). In species of the Magnetospirillum genus a so far uncharacterized ferritin-like component was found to play a major role in the intracellular biomagnetization pathway of membrane-enclosed ferrimagnetic magnetite \([Fe^3+(Fe^3+)_{2}O_4]\) crystals, called magnetosomes. These unique prokaryotic organelles enable magnetosporula and other MTB to orient themselves along the Earth’s magnetic field lines to find growth-favoring anoxic or microoxic zones within their aquatic habitats. In order to identify the ferritin-like iron metabolite and its role for magnetite biomagnetization we studied ferritin-like proteins of M. gyrophilwaldense. Using deletion mutagenesis, transcomplementation assays, as well as biochemical analyses we show that the ferritin-like proteins Bfr and Dps are not required for magnetite biomagnetization but involved in oxidative stress resistance. We also provide evidence that Bfr of M. gyrophilwaldense is a membrane-associated, heterododecameric protein complex able to bind DNA and thereby protect it against oxidative damage.

OTV07

The early immune response by human monocytes to Candida albicans

*L. D. Halder1, M. A. Fatah1, E. A. H. Jo1, P. F. Zipfel1,2, C. Skerka1,2
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Department of Infection Biology, Jena, Germany
2Friedrich Schiller University, Jena, Germany

Question: Circulating blood monocytes ‘patrol’ along the lumen of blood vessel and are recruited to peripheral tissues during inflammation where they differentiate either into macrophages or dendritic cells. Monocyte recruitment to sites of infection is crucial in restricting growth and invasion of various microorganisms including pathogenic fungi C. albicans. Although monocytes can exert bactericidal activity via phagocytosis and production of reactive oxygen and nitrogen species, their immediate response to pathogenic fungi is poorly characterized.

Methods: Monocytes were isolated using magnetic beads technique and tracked for their interaction with C. albicans by live cell imaging with confocal laser scanning microscopy. To visualize extracellular traps and protein binding, fixed cell imaging and immunofluorescence staining was used. To quantify extracellular trap formation fluorescence assay was used. Extracellular traps were isolated with enzymatic digestion of DNA and C. albicans growth was monitored with optical density measurement.

Results: Monocytes react on C. albicans by immediate phagocytosis and by release of decondensed DNA to form extracellular traps (called monocytic extracellular traps; MoETs). These traps contain citrullinated histones and myeloperoxidase, which are specific markers for extracellular traps. Both types of monocytes \((CD14++CD16-/CD14+CD16++)\) form MoETs within the first three hours upon contact with C. albicans. MoETs immobilize and kill C. albicans, as demonstrated by microscopy and killing assays. Interestingly, we found complement regulator protein factor H attached to the surface of MoETs and also NETs. Whether recruitment of factor H restricts complement resistance is unclear.

Conclusion: Altogether human monocytes recognize C. albicans and immediately start strong defense mechanisms by phagocytosis and by releasing DNA traps similar to neutrophils.
Biological agents in sight – danger avoided: the GESTIS-database on biological agents.

Methods: Figuratively in biotechnology all "colors" are represented: red, white and green biotechnology is established in all areas of everyday life. In red biotechnology microorganisms are used to prepare new therapeutic and diagnostic procedures. With the white biotechnology detergents and cosmetics are produced more efficiently in industry. New plant species are grown in the green biotechnology. There are a lot of specific technical applications of biological agents that are developed in many companies and successfully used in production. Also many biological agents are applied in science, research and in the laboratory animal facility. Without any risks?

Results: Hence, an internet based database on biological agents has been developed by a collaboration between the Ministry of Labour and Social Affairs (BAMS), the German Social Accident Insurance Institution for the raw materials and chemical industry (BG RCI) and the German Social Accident Insurance (DGUV). Maintained by the Institute for Occupational Safety and Health (IFA) of the German Social Accident Insurance (DGUV) the database contains freely accessible information on biological agents.

Conclusion: Risks arising from activities involving biological agents must be safely assessed and controlled. The additional value of this new database is that occupational safety and health aspects are considered in addition to scientific facts about potential infection, disease patterns and pathways of transmission of microorganisms. Hereby a database has been achieved not only for specialists and scientists but for employers, employees, contractors and other interested parties, such as experts on occupational safety and occupational physicians.

Coping with stress – convergence of cell cycle and stress signaling pathways by a bifunctional histidine kinase

Free-living bacteria are frequently exposed to various environmental stress conditions, including heat, changes in osmolarity or nutrient depletion. To survive under such adverse conditions, cells must induce pathways that prevent and alleviate cellular damages, but they must also adjust their cell cycle to guarantee cellular integrity. Although past work provided important insight into bacterial stress responses, the molecular mechanisms adjusting cell cycle progression in response to stress conditions remain poorly understood.

Here, we analyzed the impact of various stress conditions on the regulation of the cell cycle in the model bacterium Caulobacter crescentus by using a combination of genetics and cell biology techniques.

We observed that different stress conditions result in drastic changes in cellular morphology resulting from altered regulation of cell cycle processes. Most conspicuously, increased external salt or ethanol concentrations lead to strong cell filamentation and an accumulation of multiple chromosomes, indicating that cells grow and replicate their DNA but stop dividing. Upon stress release cells resume cell division within a few hours, suggesting that the observed filamentous phenotype is due to transient changes in cell cycle regulation. Global gene expression analysis by RNA-sequencing technology revealed that most genes belonging to the regulon of the key cell cycle and cell division regulator CtrA are differentially expressed under these conditions. Consistently, we observed a rapid drop in CtrA abundance upon exposure to salt, ethanol or heat stress, which we found results from remarkably fast CtrA proteolysis by the protease ClpXP. Our genetic studies suggest that the increased rate of CtrA degradation stems from a stimulation of the phosphatase activity of the bifunctional histidine kinase CckA that is normally required to phosphophylate and thus activate and stabilize CtrA in predivisional cells. The stimulation of CckA's phosphatase activity under stress conditions leads to rapid inactivation and destabilization of CtrA and consequently to a cell division block.

Based on our results we hypothesize that the membrane-bound kinase CckA directly or indirectly responds to membrane stress upon salt or ethanol exposure, and thereby signals CtrA to block cell division and cell cycle completion. A specific block of cell division under adverse conditions might provide an important strategy that helps cells to maintain cellular integrity and to survive.

Genetic analysis of competence development in Micrococcus luteus

The current knowledge of the process of natural transformation in bacteria is derived from only a few model organisms. Although natural transformation was discovered in members of the Actinobacteria (high G+C Gram-positive bacteria) already more than four decades ago, the structural components or the regulation of the competence system have not been studied in any representative of the entire phylum.

In this report, we show that a distinct type of pilus biogenesis genes (tad genes), which so far had been connected only with biofilm formation, adhesion and virulence traits, are required for genetic transformation in the actinobacterial species Micrococcus luteus. By expressing a tagged variant of the putative major prepilin subunit and immunofluorescence microscopy, filamentous structures extending from the cell surface could be visualized. Genetic analysis indicated that two tad gene islands growth defect. The Pst transporter forms a signaling complex together with the PhoR/PhoB two-component system to induce gene expression of the Pho regulon under phosphate starvation, however, deletion of any of the pst genes causes constitutive activation. In these mutants we observed kdpABC expression in the absence of KdpD, which was found to be dependent on PhoR. Our data suggest that cross-talk between the KdpDE and PhoRB two-component systems mediates the balance between positively and negatively charged ions in the cell.

complementarily contribute to the formation of a functional competence pilus in this organism. We also confirm previous observations that M. luteus competence is a transient state and depends on the growth phase and nutrient availability. By using eYFP-based transcriptional reporter strains where under inducing conditions competence genes are expressed in only a fraction of the cells of an isogenic population. In order to further elucidate the mechanisms governing competence development, we generated a large set of regulatory knockout mutants (~70 genes) and screened them for their ability to undergo transformation. This screen led to the identification of key factors, probably partly of a stringent response regulatory circuit, which links nutritional signals to competence induction. Our data provides first insights into the components and the regulation of natural transformation in a member of the Actinobacteria phylum and may also prove to be relevant to a number of important pathogens belonging to the same taxonomic group.

STV04 Regulation of phenotypically heterogeneous anthraquinone production in Photorhabdus luminescens via the novel transcriptional activator AntJ

*A. Glaeser1, A. K. Heirich1, H. B. Bode1, R. Heermann1
1LMU München, Mikrobiologie, Martinsried/München, Germany
2Goethe-Universität Frankfurt, Institut für Molekularle Biowissenschaften, Frankfurt a. M., Germany

Photorhabdus luminescens, a bioluminescent Gram-negative bacterium, contains a complex life cycle, which involves a symbiotic interaction with nematodes as well as a pathogenic association with insect larvae. P. luminescens exists in two distinct phenotypic forms, designated as primary and secondary cells. Individual primary cells undergo phenotypic switching after prolonged cultivation and convert to secondary cells. Compared to primary cells, secondaries are less bioluminescent, unable to live in symbiosis with nematodes and non-pigmented due to the absence of anthraquinones. The biological role of the anthraquinone pigments has not yet been elucidated, but a weak antimicrobial activity as well as a feeding deterrence against birds has been hypothesized. Anthraquinone biosynthesis is achieved via a type II polyketide synthase and several modifying enzymes (AntA-D) (1). Via chromosomally integrated P_mCherry fusions a heterogeneous promoter activity of the anthraquinone operon could be observed in wild-type primary cells (2). Additionally, the regulator AntJ has been identified as activator of antA-mCherry expression by binding within the respective promoter region. Overexpression of AntJ resulted in a homogeneous activation of P_mCherry in primary cells. Interestingly, a basal homogeneous distribution of P_mCherry activity was observed also in the non-pigmented secondary cells, revealing that a yet unknown ligand of AntJ might be the key to heterogeneous anthraquinone production. Overproduction of AntJ was sufficient to restore the pigmentation in secondary cells. This demonstrates that the loss of pigmentation in secondaries is not caused by a global change of the overall metabolic state, but rather due to solely phenotypic heterogeneity of P_mCherry activity.

STV05 The Aspergillus fumigatus DHN-melanin production is regulated by MEF2-like (RlmA) and bHLH (DevR) transcription factors

*V. Valiante1, C. H. P. Hertogs2, P. Hertogs3, A. A. Brakhage1, M. StrahlBurger4, T. Heinekamp5, A. A. Brakhage1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institut, Jena, Germany
2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institut, Jena, Germany
3Hans Knöll Institut, Molecular and Applied Microbiology, Jena, Germany
4Friedrich Schiller University Jena, Department of Microbiology and Molecular Biology, Jena, Germany
5Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institut, Transfer Group Anti-infectives, Jena, Germany

Melanins play a crucial role in defending organisms from external hazards. In many pathogenic fungi, melanin production is also essential for virulence. The human pathogenic fungus Aspergillus fumigatus produces two different types of melanins. One of them, the dihydroxyanthraquinone (DHN)-melanin, is classified as secondary metabolite, and is mainly produced during sporulation. It plays a crucial role in protecting conidia from being recognized by the host immune system. The DHN-melanin biosynthesis pathway contains six genes grouped in a cluster. The central gene in the cluster is pksp, which codes for a polyketide synthase. Promoter analyses identified specific DNA binding sites in the pksp promoter region that can be potentially recognised by basic helix-loop-helix (bHLH) and myocyte enhancer factor-2 (MEF2-like) transcriptional regulators. Independent and combined deletion of two genes coding for the transcription factors DevR and RlmA disturbed sporulation and melanisation. Furthermore, both transcription factors were proven to control the expression of the DHN-melanin gene cluster. In vitro surface plasmon resonance interaction analysis indicated that the computationally predicted binding sites were recognized by the respective transcriptional regulators with high affinity and specificity. Moreover, in vivo experiments made by targeted mutations of the pksp promoter, combined with either deletion or over-expression of the transcriptional regulators, confirmed that both factors cooperatively regulate melanin biosynthetic genes. Additionally, these experiments revealed that DevR and RlmA act both as repressors and activators, depending on the recognised DNA binding motif, suggesting a highly regulated mechanism for DHN-melanin production. Taken together, the presented results revealed a novel mechanism in gene regulation for bHLH and MEF2-like transcriptional regulators.

110 ABSTRACTS – ORAL PRESENTATIONS • SHORT LECTURES

BIOspektrum | Tagungsband 2016
Phosphorylation and thiol-redox modifications as molecular switches in cellular signaling during host-microbe interactions

The respiratory Airways, including bronchial epithelial cells and specialized immune cells, constitute a frontline barrier against airborne bacterial pathogens such as the pneumonia causative agent Staphylococcus aureus. Proteinogenic regulatory switches, in particular phosphorylation or cysteine thiol oxidation, are essential components of cell signaling networks ensuring rapid modulation of cellular responses. We hypothesize that interaction of bacterial pathogens with cells of the airway epithelium is accompanied by characteristic alterations in posttranslational modifications (PTM) that are either associated with defense mechanisms of the host or establishment and progression of the infection. Characterization of the regulatory switches can therefore lead to a greater understanding of the molecular pathomechanisms of infections and the establishment of novel host-centric targets for anti-infectives.

We utilize models of S. aureus-infected human bronchial epithelial cells and a monocye differentiation model in combination with enrichment techniques for protein kinases, phosphopetides and thiol-redox modifications to comprehensively characterize changes in phosphorylation and thiol-redox-modifications under infection-relevant conditions.

Functional data analysis on the investigated PTMomes not only identified affected biological processes and molecular functions, our studies also highlight key regulatory proteins. For example, in human bronchial epithelial cells the activity of the epidermal growth factor receptor was found to be critical for sensitivity towards staphylococcal alpha toxin. In addition, temporal phosphorylation signatures indicate a key role of cycline and calcium-dependent kinases during the early phase of infection and pharmacological inhibition of relevant kinases significantly diminished the bacterial load. TAK1 kinase in THP-1 monocye cells, on the other hand, was found to be implicated in monocyte-to-macrophase transition, chemokine production and bacteral killing. Eventually, our studies indicate thiol-redox and phosphorylation cross-talk and emphasize the important role of hydrogen peroxide as a second messenger.

In conclusion, mass spectrometry-based PTMomes can reveal alterations in cellular signaling during host-microbe interactions and highlight relevant regulatory hubs that might be suitable for pharmacological intervention.

Regulation of the C4-dicarboxylate sensor kinase DcuS by the transporters DcuB and DctA

Johannes Gutenberg-Universität, Institut für Mikrobiologie und Weinforschung, Mainz, Germany

Question: The sensor histidine kinase DcuS of Escherichia coli forms a sensor complex with the C4-dicarboxylate transporters DcuB or DctA under anaerobic or aerobic conditions, respectively [1]. It was determined whether DcuS or the anaerobic transporter DcuB are responsible for substrate recognition in the DcuB/DcuS sensor complex. The role of the transporter in the sensor complex and in sensing was analyzed.

Methods: The substrate spectrum of DcuB was determined by a competition uptake assay and was compared to the substrates inducing expression of a dcuB-lacZ reporter gene. Substrate specificity of the sensor was modified by mutation in the periplasmic PAS domain (PASD) of DcuS. DcuS was titrated with DcuB expressed from an arabinose inducible plasmid.

Results: The substrate spectrum of the transporter DcuB differs from the substrate spectrum for induction of dcuB-lacZ expression. Additionally, the substrate spectrum of the sensor complex could be modified by introducing point mutations in PAS. Titration of DcuB with increasing levels of DcuB lead to formation of increasing levels of C4-dicarboxylate responsive sensor DcuS.

CRISpy-web – design sgRNAs for CRISPR applications in microbes using an easy online tool

K. Blin, L. E. Pedersen, T. Weber, S. Y. Lee

1DU - NNF Centre for Biosustainability, New Bioactive Compounds, Hørsholm, South Korea
2Korea Advanced Institute of Science and Technology, Daejeon, South Korea

Question: Originally evolved in prokaryotes as an adaptive immune system against bacteriophages, the CRISPR/Cas system is now being explored in genome editing workflows. The most popular system at the moment uses the Streptococcus pyogenes endonuclease Cas9. To direct Cas9 to the target, so-called single guide RNAs (sgRNAs) need to be designed for each targeted editing site. While there are many tools available to design sgRNAs for the popular model organisms, only few tools exist that allow designing sgRNAs for non-model strains.

Methods: sgRNAs are identified if they fulfill two conditions: (i) the 20 bp target sequence needs to be immediately upstream of a "protospacer adjacent motif" (PAM). The S. pyogenes PAM sequence is "NGG". (ii) The target sequence should be unique within the genome of the target organism to prevent off-target activity, i.e.the cleavage of the chromosome in the wrong position.

CRISpy searches for the "NGG" PAM on both strands of the selected target region, and then checks for off-target hits with 0, 1, 2 and 3 bp mismatches for a 13 bp core sequence upstream of the PAM [1]. Hits with a high number of off-target matches are discarded, the remaining results are stored. A microservice web architecture provides a responsive graphical interface to (i) upload the genome of interest or directly load it from an antiSMASH genome editing workflows. The most popular system at the moment uses the Streptococcus pyogenes endonuclease Cas9. To direct Cas9 to the target, so-called single guide RNAs (sgRNAs) need to be designed for each targeted editing site. While there are many tools available to design sgRNAs for the popular model organisms, only few tools exist that allow designing sgRNAs for non-model strains.

Results: We have developed CRISpy-web (http://crispy.secondaryarmy.metabolites.org), an easy to use web tool to design sgRNAs for any user-provided microbial genome.

Conclusions: CRISpy-web allows researchers to interactively select a region of their genome of interest to scan for possible sgRNA. After checks for potential off-target matches, the resulting sgRNA sequences are

The Bacillus BioBrick Box 2.0 – generation and evaluation of new essential genetic building blocks for standardized work with Bacillus subtilis

P. Popp, M. Dotzler, J. Radeck, J. Bartels, T. Mascher

1Technical University Dresden, General Microbiology, Dresden, Germany
2Ludwig Maximilians University, Biology, Munich, Germany

Standardized and well-characterized genetic building blocks allow the convenient assembly of novel genetic modules and devices, ensuring reusability of parts and reproducibility of experiments. The initial Bacillus BioBrick Box contained integrative vectors, promoters, reporter genes and epitope tags for the Gram-positive model bacterium Bacillus subtilis. [1] In the next generation of the Bacillus BioBrick Box, we provide tools for fine-tuning protein expression, evaluate the whole spectrum of fluorescence proteins (FP) in B. subtilis, investigate properties of linkers for fusion-proteins, and introduce new vectors designed to evaluate promoter activity.

We developed six new expression vectors which either replicate or integrate into the genome. These vectors are equipped with xylose- or bacitracin-inducible promoters followed by a multiple cloning site in BioBrick RFC10 standard. In addition, we evaluated a set of ribosome binding sites (RBS) that cover a range of 2.5 orders of magnitude in expression level using six different RBS.

For the evaluation of the FPs, we tested different strategies of codon adaptation specific for B. subtilis to achieve best translation rates and showed their functionality. With two FPs we demonstrate functional fusions via linkers of different lengths.

We also introduce new vectors carrying the chloramphenicol resistance gene and luxABCDE in one operon, for screening functional promoters qualitatively via antibiotic selection and quantitatively via luminescence.

We believe that the new parts of our well-evaluated Bacillus BioBrick Box 2.0 are a valuable extension to the existing BioBrick Box and expand the range of standardized genetic work with B. subtilis.

SMV03 Synthetic secondary chromosomes to study chromosome maintenance in Escherichia coli

D. Schindler1, S. Messerschmidt2, F. Kemter1, *T. Waldminghaus1

1Philips-Universität, SYNMIKRO, Marburg, Germany

Advances in de novo synthesis of DNA and assembly methodology make construction of synthetic chromosomes a reachable goal [1]. Considering a potential design leads almost certainly to the question what the essential parts of a chromosome are. Investigations on this question have mainly focused on the minimal set of genes needed to allow cells to live. However, chromosomes are more than arrays of genes. Chromosomes need systems to replicate, segregate and organize the encoded genetic information. We explore such chromosome maintenance systems by application of synthetic biology approaches and have designed and constructed the small synthetic secondary chromosome synVicII [2]. The replication origin stems from the secondary chromosome of the human enteric bacterium Vibrio cholerae which carries a natural secondary chromosome. Application of a new assay for the assessment of replication stability based on flow-cytometric analysis of an unstable GFP variant revealed an improved stability of synVicII compared to a secondary replicon based on E. coli oriC. Cell cycle analysis and determination of cellular copy numbers of synVicII indicate that replication timing of synVicII in E. coli is comparable to the natural chromosome II in V. cholerae. Now, synVicII is used as backbone to construct bigger replicons (~100kbp) with variations in the distribution of DNA motifs relevant for chromosome maintenance. Downstream functional characterization should allow deeper understanding of chromosome maintenance. Our long term goal is to establish synthetic secondary chromosomes as experimental system to study chromosome maintenance and to provide chromosome construction rules for biotechnology applications.

SMV04 Employing photocaged carbohydrates in light-controlled cell factories for synthetic biotechnological and single applications

*D. Binder1, C. Bier1, A. Grünberger1, F. Hilgers1, A. Loeschcke1, D. Kohlheyer2, J. Pietruszka1, K.-E. Jaeger1

1Karlsruhe Institute of Technology, Institute of Functional Interfaces, Department of Applied Biology, Karlsruhe, Germany
2Institute of Biocatalysis & Genomics, Biotechnology and Biocatalysis, Department of Applied Biology, Biocatalysis, Karlsruhe, Germany

Optogenetic tools are light-responsive components that allow for a simple and precise control of gene expression in different biotechnological and pharmaceutical applications. Here, we report on the development and evaluation of light-responsive microbial expression systems based on photocaged compounds such as caged IPTG2) or caged arabinose. To this end, the photocaged carbohydrates have been used for accurately controlling target gene expression in different biotechnologically relevant production hosts. Short UV-A light exposure is sufficient for the photo-cleavage of light-sensitive caged inducers resulting in rapid and efficient protein production in E. coli as initially demonstrated in vivo with different reporter proteins. Furthermore, expression output was gradually varied by means of both light-intensity and exposure times. Microfluidic single cell analysis revealed expression heterogeneity which could be abrogated by using photocaged carbohydrates as inducers. Apparent, their increased membrane-permeability superseded specific inducer uptake systems. Finally, the biotechnological applicability of light-responsive inducers was demonstrated by distinct improvements of production yields for terpenoids and antibiotics produced in different industrially relevant Gram-positive and Gram-negative expression hosts.

*F. Simonet1, A. Döttsch1, J. Gescher1

1Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe, Germany

**SMV05 Investigation of the anaerobic propionate metabolism in Escherichia coli K12

*F. Simonet1, A. Döttsch1, J. Gescher1

1Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe, Germany

Propionate is a very abundant volatile fatty acid (VFA) in nature as well as in biotechnological processes. So far, anaerobic oxidation of propionate was studied in syntrophic organisms. Here, the Gibbs free energy under state conditions is positive. Thus oxidation by propionate degraders is only possible when the concentrations of the products H2 and/or formate, are kept low by H2 and/or formate depleting organisms such as methanogens. The enteric bacterium Escherichia coli is also exposed to high concentrations of propionate in its environment due to the fact that it is a typical fermentation by-product or endproduct of other microorganisms. These organisms are also located in gastrointestinal tracts of their mammalian hosts. To overcome the negative effects of the VFA-accumulation and use it as carbon and electron source, E. coli evolved the 2-methylocitrullate pathway to metabolize propionate to pyruvate. The cluster of genes which enable the propionate degradation are referred to as prp-genes and are arranged in an operon with two divergently transcribed units. The first unit consists of the transcriptional activation regulator gene prpR. The prpBCDE gene cluster, the second transcriptional unit, is composed of the genes prpB, prpC, prpD and prpE which encode the enzymes for propionate degradation.

In this work we the ability of E. coli K12 to grow solely with propionate as carbon-source under anaerobic and anaerobic conditions was investigated. Experiments with the wildtype strain of E. coli K12 showed only growth with O2 as electron acceptor whereas with NO3- and DMSO neither growth nor propionate consumption could be detected. Transcriptome analysis revealed an additional anaerobic posttranscriptional regulation of the prp-operon as the log-fold change of the normalized reads per kilo basepair (nRPK) decreased drastically along the operon. In the meantime transcription of the ribonuclease R (Rrr) was significantly higher under anaerobic conditions, assigning it a key role in the regulation of the operon. In fact the deletion of the rrr-gene enabled E. coli to utilize propionate also under anaerobic conditions. These results encourage further research on propionate degrading organisms for the regulation of VFA accumulation in anaerobic digestors.

SMV06 Metabolic engineering of Escherichia coli for the biosynthesis of para-amino-L-phenylalanine

*J.-W. Youn1, B. Mohammadi Nargesi1, G. A. Sprenger1

1University of Stuttgart, Institute of Microbiology, Stuttgart, Germany

Introduction: Aromatic amino acids like L-phenylalanine (L-Phe), L-tyrosine (L-tyr) and L-tryptophan (L-trp) are used in different industrial fields (3, 5). These amino acids can be produced in large scale of several metric tons by fermentations with the genetically modified microorganisms like E. coli or Corynebacterium glutamicum (5). Another non proteinogenic aromatic amino acid, para-amino-L-phenylalanine (L-PAPA), is a building block of antibiotics like chloramphenicol or pristinamycin (1, 4). L-PAPA is of special interest because of its broad platform for technical and pharmaceutical applications (2, 6). The aim of
this study was to construct and establish a de novo L-PAPA pathway in E. coli.

Methods: We modified genetically E. coli K-12 by heterologous overexpression of selected genes from C. glutamicum and Streptomyces venezuelae to produce L-PAPA.

Results: By heterologous gene overexpression from C. glutamicum paraaminobenzoate synthase (pabB) and S. venezuelae 4-amino-4-deoxychorismate mutase (papD) and 4-amino-4-deoxypyruvate dehydrogenase (papC) L-PAPA was identified in the supernatant of E. coli. Furthermore we increased the L-PAPA titer to 0.7g/L by additional modification of the shikimate pathway in E. coli.

Conclusion: We demonstrated that E. coli can be genetically engineered to produce L-PAPA from a renewable source like glucose.

Reference:

SMV08

Metabolic engineering of syngas fermenting Clostridium ljungdahlii for jet fuel production using an efficient genomic delivery system

Currently, transportation fuels represent the foremost cause for consumption of fossil energy resources. Due to their limiting character and increasing demand in this sector, sustainable alternative feed stocks are needed. Furthermore, the combustion of fossil fuels lead to an increase of CO2 in the atmosphere which is regarded as the major reason for global warming. Microbial biosynthesis based on industrial waste gases could serve as a worthy substitute for providing the necessary bulk chemicals that can be further processed by oligomerisation. The genus Clostridium has a broad product spectrum comprising e.g. several acids, solvents and short to medium chained alcohols. Despite the versatile substrate use of different clostridial species, sugar based feed stocks are frequently used as carbon source for synthesis in industrial scale. A by far more attractive feedstock (especially concerning the ‘land use’ issue) would be the use of synthesis gas. This mixture of carbon monoxide, carbon dioxide and hydrogen is emitted in large amounts by the steel industry or by gasification of municipal waste. Several strains like e.g. Clostridium ljungdahlii are able to grow autotrophically on various syngas compositions using it as sole carbon and energy source. Here we use C. ljungdahlii as a host organism to introduce foreign biochemical pathways to link the favorable substrate metabolism with the desired product synthesis. Until today the metabolic engineering of Clostridia in general and of syngas fermenting Clostridia strains in particular has proven rather challenging. Hence, we developed an efficient genomic delivery system allowing the introduction of complex and large gene clusters into syngas-fermenting Clostridia cells and the stable integration into their genome. We cloned 13 genes derived from C. kleyeri and C. acetobutylicum in a shuttle vector resulting in a 25 kb construct, introduced it into the cells by conjugation and successfully detected synthesis of butanol and hexanol. This strategy will not only allow for syngas-based fermentation for diverse bulk chemicals for biofuels but will also foster the development of further fermentation processes using other feed stocks and products in the future.

CBV-FG01

Orthogonal natural product studies of the jamican marine cyanobacterium Moorea producens JHB

E. Esquenazi1, E. A. Monroe1, S. Desfoe1, R. Kinne1, L. Gerwick1, P. C. Dorrestein1, W. H. Gerwick1, 2
1 Scripps Institution of Oceanography and University of California San Diego, La Jolla, USA
2 University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, USA

Marine cyanobacteria have been one of the richest marine sources of novel and highly bioactive natural products. For the most part, they derive from the assembly of amino acids via the non-ribosomal peptide synthetase pathway, acetate units from the polyketide synthase pathway, and the inter-digitation of these two pathways to form ‘hybrid’ natural products. While these metabolites possess diverse biological properties, many are toxic to cells and therefore have potential applications in cancer. Indeed, one marine cyanobacterial inspired product, monomethyl auristatin E, is toxic to cells and therefore have potential applications in cancer. Indeed, the discovery of new synthetic pathways and the development of novel metabolic engineering approaches will be necessary to fully exploit the potential of marine cyanobacteria as a source of novel bioactive compounds.

Conclusion: The genetic engineering of M. extorquens towards a CO2-fixing organism using the CBB cycle is an important step towards the implementation of synthetic carbon fixation pathways. The engineering process revealed interesting new details about the physiology and evolution of the fundamental biological process of autotrophy and resulted in a clear phenotype that enables further characterization and evolution.

Marine cyanobacteria have been one of the richest marine sources of novel and highly bioactive natural products. For the most part, they derive from the assembly of amino acids via the non-ribosomal peptide synthetase pathway, acetate units from the polyketide synthase pathway, and the inter-digitation of these two pathways to form ‘hybrid’ natural products. While these metabolites possess diverse biological properties, many are toxic to cells and therefore have potential applications in cancer. Indeed, one marine cyanobacterial inspired product, monomethyl auristatin E, is toxic to cells and therefore have potential applications in cancer. Indeed, the discovery of new synthetic pathways and the development of novel metabolic engineering approaches will be necessary to fully exploit the potential of marine cyanobacteria as a source of novel bioactive compounds.

Conclusion: The genetic engineering of M. extorquens towards a CO2-fixing organism using the CBB cycle is an important step towards the implementation of synthetic carbon fixation pathways. The engineering process revealed interesting new details about the physiology and evolution of the fundamental biological process of autotrophy and resulted in a clear phenotype that enables further characterization and evolution.
CBV-FG02
The role of carbon-polymer biosyntheses of both glycogen and poly-β-hydroxybutyrate in non-diazotrophic cyanobacteria

Y. Zilíges, R. Dannow, I. Maldener
Freie Universität Berlin, Department of Photosynthesis, Berlin, Germany

Humboldt-Universität zu Berlin, Plant Biochemistry, Berlin, Germany
Eberhard Karls Universität Tübingen, Interfaculty Institute of Microbiology and Infection Medicine/Section of Organismic Interactions, Tübingen, Germany

Carbon polymers such as glycogen and polyhydroxybutyrate (PHB) have a crucial impact under macronutrient stress conditions, especially those favoring high C to N ratios. Most cyanobacteria exclusively synthesize and degrade glycogen, which is in agreement with the metabolic principle that only one polymer acts as both a sink and a reserve in one species. A few cyanobacteria such as Synechocystis sp. PCC 6803 additionally produce the physico-chemically different PHB. For the first time, the function and interrelation of both carbon polymers are analyzed in a comparative physiological study of single- and double-knockout mutants (ΔglgC, ΔphaC, ΔphaCΔglgC, respectively). Most of the observed phenotypes are easily related to the knockout of glycogen synthesis, highlighting the metabolic, energetic, and structural impact of this process whenever cells switch from an active, photosynthetic 'protein status' to a dormant 'glycogen status'. The carbon flux regulation into glycogen granules is apparently crucial for both phycobilisome degradation and thylakoid lysis in the presence of light. In contrast, PHB granules is apparently crucial for both phycobilisome degradation and thylakoid lysis in the presence of light. In contrast, PHB synthesis is definitely not involved in this primary acclimation response. Moreover, the very weak interrelations between the two carbon-polymer syntheses indicate that the regulation and role of PHB synthesis in Synechocystis sp. PCC 6803 is different from glycogen synthesis.

CBV-FG03
Current and potential exploitation of cyanobacterial natural products in health care and biotechnology industry

Cyanobio Technik GmbH, Berlin, Germany
Eberhard Karls Universität Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany

Cyanobacteria have adapted to a remarkable variety of ecological niches over millions of years and can be found in all climate zones of Earth, resulting in an outstanding variety of species. On a molecular level, many cyanobacterial strains are producers of secondary metabolites such as cyanophycin and polyhydroxybutyrate (PHB). Carbon polymers such as glycogen and PHB have a crucial impact under macronutrient stress conditions, especially those favoring high C to N ratios. Most cyanobacteria exclusively synthesize and degrade glycogen, which is in agreement with the metabolic principle that only one polymer acts as both a sink and a reserve in one species. A few cyanobacteria such as Synechocystis sp. PCC 6803 additionally produce the physico-chemically different PHB. For the first time, the function and interrelation of both carbon polymers are analyzed in a comparative physiological study of single- and double-knockout mutants (ΔglgC, ΔphaC, ΔphaCΔglgC, respectively). Most of the observed phenotypes are easily related to the knockout of glycogen synthesis, highlighting the metabolic, energetic, and structural impact of this process whenever cells switch from an active, photosynthetic 'protein status' to a dormant 'glycogen status'. The carbon flux regulation into glycogen granules is apparently crucial for both phycobilisome degradation and thylakoid lysis in the presence of light. In contrast, PHB granules is apparently crucial for both phycobilisome degradation and thylakoid lysis in the presence of light. In contrast, PHB synthesis is definitely not involved in this primary acclimation response. Moreover, the very weak interrelations between the two carbon-polymer syntheses indicate that the regulation and role of PHB synthesis in Synechocystis sp. PCC 6803 is different from glycogen synthesis.

CBV-FG04
Metabolic pathway engineering using the central signal processor PII

*B. Watzer, V. Mahnholdt, K. Forchhammer
Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany

Question: PII signal protein processors are widespread in prokaryotes and plants where they control a multitude of anabolic reactions. Efficient production of metabolites requires relaxing the tight cellular control circuits. Here we demonstrate that a single point mutation in the PII signaling protein in the cyanobacterium Synechocystis sp. PCC 6803 and Anaabaena sp. PCC 7120 is sufficient to cause drastic changes in the amino acid metabolism. This work exemplifies a novel approach of pathway engineering by designing custom-tailored PII signaling proteins.

Methods: We constructed genomically mutants of Synechocystis sp. PCC 6803 and Anaabaena sp. PCC 7120 in which the glnB gene was replaced by a glnB gene carrying the mutation for 86N. To get a deeper insight of the behavior of the generated production strain, microscopic and physiologically studies were performed. To characterize metabolic changes, caused by the PII (86N) an untargeted metabolomics approach was chosen.

Results: The PII (86N) variant in Synechocystis strongly increases the in vivo activity of N-acetylglutamate kinase, the rate limiting enzyme of the arginine biosynthesis, leading to a more than 10 fold higher arginine content compared to the wild type. Due to the high intracellular arginine level, Synechocystis PII (86N) is able to accumulate up to 50-60 % cyanophycin (multi-l-arginyl-poly-l-aspartate) per cell dry mass. This product is of biotechnological interest as a source of amino acids and polyaspartic acid.

The PII (86N) variant in Anaabaena causes drastic changes in the primary metabolism. Remarkably, Anaabaena PII (86N) accumulated on average a 10-fold more glutamate with the consequence of a more than 10-fold reduced glutamate-level compared to the wild-type. Moreover, the arginine level as well as the cyanophycin level is not influenced.

Conclusions: In this work, we demonstrate the feasibility of engineering the efficiency of a metabolic pathway by using a variant of the central regulatory PII signal transduction protein. The PII (86N) variant of Synechocystis is the most potent cyanophycin producer described so far and a promising option for photoautotrophic production of arginine as well as cyanophycin. The PII (86N) variant in Anaabaena leads to a strongly increased glutamine production. This behavior is a promising mean for photoautotrophic production of glutamine and indicate a novel aspect of PII regulation in filamentous cyanobacteria.

CBV-FG05
GC-MS based profiling of primary metabolism in Cyanobacteria

J. Kopka, J. Ofri
Max Planck Institute of Molecular Plant Physiology, Applied Metabolome Analysis, Dept. Willmitzer, Potsdam-Golm, Germany

Cyanobacteria evolved more than 2.5 billion years ago and shaped the global atmospheric environment by decreasing the atmospheric carbon dioxide (CO2) concentration while increasing the proportion of molecular oxygen (O2). Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is key to the evolution of photosynthesis and catalyzes the central reaction of CO2 fixation where ribulose-1,5-bisphosphate (RuBP) reacts with CO2 to produce two molecules of 3-phosphoglycerate (3PGA). High levels of atmospheric CO2 in Earth’s early history favored the carboxylation reaction. But RubisCO also accepts O2 as a substrate. The oxygenase reaction competes with CO2 fixation and produces equimolar amounts of 3PGA and the toxic product 2-phosphoglycolate (2PGA). Cyanobacteria adapted to increasing atmospheric O2 both, by largely avoiding 2PG production via the evolution of an efficient CO2 concentrating mechanism (CCM) and by evolving mechanisms for 2PG degradation through photosynthetic 2PG metabolism. GC-MS based profiling of primary metabolism applied to Synechocystis sp. PCC 6803 and Cyanogetis sp. PCC 7120 reveals the evolutionary changes in RubisCO activity and the cyanobacterial utilization of 2PGs.

Physiological aspects of microcystin production in *Microcystis aeruginosa* PCC 7806

a Meissner1, D. Steinhauser2, E. Dittmann3, J. Fastner1

1University of Potsdam, Potsdam-Golm, Germany
2Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
3Federal Environment Agency, Berlin, Germany

Cyanobacteria can produce a variety of substances with non-obvious physiological functions such as the toxic peptide microcystin. Mass developments or blooms of a few genera regularly affect the drinking water supply in many parts of the world. The bloom habitat is characterized by sharp gradients and diurnal shifts of e.g. oxygen concentration, available inorganic carbon and ambient pH. This talk addresses a putative role of microcystin production in establishing mass developments by the bloom-forming cyanobacterium *Microcystis aeruginosa*.

A rarely discussed feature of microcystin is its ability to form protein conjugates. Analysis of lab strains and field samples revealed that significant amounts of the total cellular microcystin were bound to proteins. One major binding target of microcystin was identified as the key enzyme for primary carbon fixation, RubisCO. Expression of *Mycb* mutant indicating the potential of microcystin to prevent of cell stress in the wild type. First experiments with enriched Rubisco indicated that microcystinylolation could indeed have an impact on enzyme activity.

The here described mode of microcystin-protein interaction along with the change of stability and activity of microcystinylated enzymes could pose a competitive advantage over non-producing genotypes during episodes of high photosynthetic activity and carbon limitation.

EMV-FG01

How do *Anabaena* cells communicate?

*A. Omairi-Nasser*1, V. Mariscal2, J. R. Austin3, R. Haselkorn1

1The University of Chicago, Department of Molecular Genetics and Cell Biology, Chicago, USA
2Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
3The University of Chicago, Advanced Electron Microscopy Facility, Chicago, USA

Introduction:

The filamentous nitrogen-fixing cyanobacterium *Anabaena* sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several *fra* gene mutations were isolated 25 years ago on the basis of their phenotypes: inability to fix nitrogen and transfer the fixed nitrogen to adjacent vegetative cells as well as investigate the role of three *fra* gene products in channel formation. After a brief light microscopic pre-screening, we selected the most interesting strains in which we hypothesized that their interaction with phototrophs is key to understand both, their ecology and cell biology. In a first attempt we aimed towards a holistic perspective on the phylum Planctomycetes like budding, putative subcellular compartments, endocytosis-like uptake mechanisms and might be advantageous in fluctuating environments. To further investigate the dynamics of cell development and division, live-staining methods and time-lapse microscopy should be employed.

Results:

Both, wild-type and *QST* mutant, use excess substrate to form PHB storage bodies. Several mutant *QST* are visible in enlarged wild-type cells. When nutrients get scarce, both strains use accumulated PHB to undergo reductive cell division. The *QST* mutant cell number almost doubles. However, the daughter cells contain no PHB and cell numbers drop fast again. In contrast, the wild-type divides less, but maintains a higher PHB-content and stable cell number under starvation.

When nutrients become available again, both strains produce PHB before starting to divide again.

Conclusion:

QS might have a dampening effect on reductive cell division and might be advantageous in fluctuating environments. To further investigate the dynamics of cell development and division, live-staining methods and time-lapse microscopy should be employed.

Conclusion:

QS might have a dampening effect on reductive cell division and might be advantageous in fluctuating environments. To further investigate the dynamics of cell development and division, live-staining methods and time-lapse microscopy should be employed.

EMV-FG03

A microscopic perspective of the plantomycetal ecology

*C. Jogle*1

1Leibniz Institute DSMZ, Braunschweig, Germany

Planctomycetes are ubiquitous environmentally important bacteria. Several conspicuous cell biological traits, such as FacZ independent yeast-like budding, putative subcellular compartments, endocytosis-like uptake of proteins and lack of a peptidoglycan (PG) cell wall, were postulated. This led to the hypothesis that Planctomycetes represent a ‘missing link’ between pro- and eukaryotes.

We aimed towards a holistic perspective on the phylum Planctomycetes and hypothesized that their interaction with phototrophs is key to understand both, their ecology and cell biology. In a first attempt we sampled various environments and obtained literally hundreds of novel planctomycetal strains, species, genera and families. After a brief light microscopic pre-screening, we selected the most interesting strains in terms of cell biological features or in-depth microscopic characterization.

We started with a superresolution microscopy methods, we demonstrate that Planctomycetes are Gram-negative bacteria that comprise set them apart from other ‘typical’ Gram-negative bacteria.
EMV-FG04
Toward applications of superresolution microscopy in environmental microbiology

*C. Moraru1
University of Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany

Superresolution microscopy encompasses a suite of cutting edge microscopy methods able to surpass the resolution limits of light microscopy. Among these methods, Structured Illumination Microscopy (SIM) has a resolution of 100-130 nm, while STED and “Blink Microscopy” (e.g. Photostrengthened Localization Microscopy - PALM, and direct Stochastic Optical Reconstruction Microscopy - dSTORM) can achieve as low as 20-50 nm. The recent commercial availability of superresolution microscopy has allowed the spread of these techniques in microbiological research, especially to the study of microorganisms amenable to genetic engineering and in vivo expression of autofluorescent fusion proteins, e.g. GFP. For example, superresolution microscopy was used to study the structure and segregation of nucleoids and sub-cellular distribution of ribosomes. Studies on model bacteria have shown the existence of two opposing types of organization, one in which the nucleoid occupies a central position, while the ribosomes are concentrated in the periphery of the cell, and the other in which the ribosomes co-localize with the nucleoid and occupy the entire cellular space. The application of these methods to the study of environmental microbes is limited, because require genetic manipulation and the vast majority of the microorganisms are still not cultivable. Therefore, culture-independent methods are needed. rRNA-FISH is an excellent tool for single cell identification in environmental samples. In the same time, by targeting rRNA, it serves as proxy for ribosome localization. We present here methodological improvements for RNA-FISH to study the sub-cellular localization of ribosomes and nucleoids in environmental microorganisms.

EMV-FG05
Simple generation of stereoscopic 3D images with any light- or scanning electron microscope

*H. Cyponika1, E. Voelcker2, M. Rohde3
1Universität Oldenburg, Institut für Chemie und Biologie des Meeres, Oldenburg, Germany
2Karwendelstr. 25, 12203, Berlin, Germany
3Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany

One of the major issues of macro- and microphotography is the low depth of focus. Using sequential focus series of images (z-stacks) and software to extract sharpen structures from the image stack helps to overcome this problem (1). Furthermore, the generation of a depth map describing the z-positions of the sharpest pixels can be used to generate virtual stereoscopic 3D images. Here we describe the freeware program PICOLAY (2) and its use with light- and scanning electron microscopy (SEM). We compare various approaches to generate stereoscopic 3D images: (1) focus stacking as described above; (2) “hologram stacking”, which only shows the sharpest, but any structure that exceeds a certain sharpness score; (3) use with light- and scanning electron microscopy methods able to surpass the resolution limits of light microscopy; and (4) how to utilize GalA-inducible genes and growth of B. cinerea on GalA. A BeGaaR-GFP fusion protein was predominantly localised in nuclei in mycelium grown in GalA. Fluorescence in nuclei was much stronger in mycelium grown in GalA, as compared to fructose and glucose. This study provides the first report of a GalA-specific transcription factor in filamentous fungi. Orthologs of BeGaaR are present in other ascomycete fungi that are able to utilize GalA, including Aspergillus spp., Trichoderma reesei and Neurospora crassa.

FBV-FG02
Characterization of novel regulators for pectin degradation in Neurospora crassa

*N. Thieme1, V. Wu2, N. L. Glass2, J. P. Benz2
1Technische Universität München, Holzforschung München - Wood Bioprocesses, Freising, Germany
2University of California at Berkeley, Energy Biosciences Institute, Berkeley, USA

To minimize economic losses during the conversion of plant biomass to fermentable sugars all wall components - cellulose, hemicellulose and pectin - will have to be degraded with similar efficiency. This necessitates a flexible utilization of cell wall depolymerizing enzymes that can be dynamically tailored to the composition of the biomass at hand. However, a targeted manipulation of pectinase production is not possible due to a lack of knowledge regarding the underlying regulatory mechanisms of pectin perception and degradation. Gaining a better understanding of these processes is therefore important to achieve the best and most profitable conversion of this plant cell wall polysaccharide into its constituent monosaccharides.

Through a phenotypic screening of all Neurospora crassa strains with a putative transcription factor knock out and the analysis of the large scale RNA-Seq database provided by The Fungal Nutritional ENCODE Project, three transcription factors involved in the regulation of pectin degradation, as well as one transcriptional regulator could be identified. These novel regulators were further characterized in this work and their putative role in the pectin degradation network elucidated. The gained knowledge about the regulatory network for pectin degradation could help to greatly accelerate the development of efficient strains which can produce more pectinolytic enzymes or completely utilize all cell wall polysaccharides for bioenergy processes.

FBV-FG03
Regulatory networks of the gibberellin cluster in Fusarium fujikuroi

*E.-M. Niehaus1, L. Rindermann2, B. Tudzynski1
1Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany

The filamentous fungus Fusarium fujikuroi is known to produce a variety of structurally diverse secondary metabolites such as the plant hormones gibberellins (GAs), pigments and mycotoxins. The GAs are a virulence factor of its producer and causus of the so-called ‘Bakanae’ (foolish seedling) disease but otherwise they are also commonly used in agr-, horti- and viticulture as plant growth regulators. Thus, the understanding of the regulation of the GAs is of great biotechnological interest.

During the past decade of years, we identified a complex regulation network for GA biosynthetic genes. They are repressed by high amounts of nitrogen and were the first secondary metabolites for which a strict dependency on the GATA-type transcription factor AreA was shown. Recently, we revealed that a second GATA-type transcription factor, AreH, is also essential for expression of the GA genes. Besides these two transcription factors the fungal-specific Velvet complex is also involved in the regulation of the GA cluster. Deletion of FvVel1 and the putative methyletransferase FvLael led to downregulation of the respective biosynthetic genes while overexpression of FvLael resulted in significant upregulation. Furthermore chromatin modification, e.g. deletion of the histone deacetylase FvHda1, strongly affects GA gene expression and production. In addition, the active histone mark H3K9Ac (acetylation of lysine 9 at histone 3) at the GA cluster is enriched under nitrogen-limiting conditions and this is consistent with gene expression of these genes indicates that a specific regulatory mechanism occurs in B. cinerea. In this study, promoter regions of these genes were analysed and eight conserved sequence motifs identified. The Belg1 promoter, containing all these motifs, was functionally analysed and the motif designated GalA-responsive Element (GARE) identified as the crucial cis-regulatory element in regulation of GalA utilization in B. cinerea. Yeast one-hybrid screening with the GARE motif led to identification of a novel ZnCys transcription factor, designated BcGaaR. Targeted knockout analysis revealed that BeGaaR is required for induction of GalA-inducible genes and growth of B. cinerea on GalA. A BeGaaR-GFP fusion protein was predominantly localised in nuclei in mycelium grown in GalA. Fluorescence in nuclei was much stronger in mycelium grown in GalA, as compared to fructose and glucose. This study provides the first report of a GalA-specific transcription factor in filamentous fungi. Orthologs of BeGaaR are present in other ascomycete fungi that are able to utilize GalA, including Aspergillus spp., Trichoderma reesei and Neurospora crassa.

1 Raep E, Cyponika H (2011) Vom Bilderntrap in die dritte Dimension: 3D-Mikroskaphmen mit PICOLAY. Mikroskaphmen 100:140-144

2 (www.picolay.de)
expression of this cluster. This study will give an overview of the complex regulation of the GA cluster.

FBV-FG04

Aspects in microbial interactions and intracellular regulation of *Schizophyllum commune*

E.-M. Jung, K. Krause*, N. Knabe**, E. Kothe*

1 Friedrich Schiller University, Jena, Germany
2 Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany

The basidiomycete *Schizophyllum commune* belongs to the white rot fungi and is relevant for wood degradation worldwide. Its high competitive ability is based on the recognition of other fungi and bacteria, the production of specific extracellular metabolites and a strategy of fast growth. As early colonizer of tree wounds and after forest fire, the fungus has also phytopathogenic importance.

In contact with other wood degrading fungi growing in proximity, different interactions are established. Depending on media composition and competitor, they can be classified as intermingling, inhibition and overgrowing. Final results are developmental changes with re-directed growth and fruiting body production. Secondary metabolites, either released to the environment from the Spizentäskörper, or enriched in fungal tip cells, include pigments. This results in pigmented demarcation lines between competitors. In interactions of *S. commune*, indigo is formed as final product of toxic precursors secreted as a barrier towards competing fungi and in stressed partners. The filamentous fungi *S. commune* was used to identify tightly connected genes in *S. macrospora* or orphan genes and regulatory and/or functional pathways ("guilt-by-association" approach). In *S. commune* a high percentage of genes upregulated during sexual development was found among the 1% of the most highly upregulated genes. Interestingly, the highest percentage of genes upregulated during sexual development was found among the 1% of the most highly upregulated genes. Furthermore, the expression patterns of these genes differ in their expression patterns.

FBV-FG06

Regulation dynamics in the HOG signaling pathway in filamentous fungi

S. Jacob, S. Bohmer*, E. Thines**

1 Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Kaiserslautern, Germany
2 Johannes Gutenberg University Mainz, Institut für Mikrobiologie und Wein Forschung, Mainz, Germany

Detection of environmental signals and signal transfer within the cell to give an appropriate response are vital for microorganisms in order to adapt to varying external conditions during their life cycles. For this purpose, signaling pathways play a crucial role and one example is the high osmolarity glycerol (HOG) signaling pathway responsible for osmoregulation of fungi. This signal cascade comprises a phosphorelay system linked to a MAPK cascade and is extensively studied in the model yeast *Saccharomyces cerevisiae*. In its phosphorelay system only the histidine kinase Shi1p was found as an osmosensor and inactivation of the corresponding gene SLN1 is lethal in yeast. In filamentous pathogenic fungi osmoregulation is still not well understood and differs accordingly from yeast, e.g. the phosphorelay system comprises more signal components and filamentous fungi have specific elements. Thus, this signaling cascade is worth to be studied in these pathogens.

We studied the HOG-pathway intensively in the rice blast fungus *Magnaporthe oryzae* and found among others the signaling cascade sensing environmental signals such as salt and stress signal by different sensor kinases MoShi1p and MoHik1p. These signals both were identified to be transferred over the MAPK MoHog1p by means of phosphorylation resulting in an osmotic stress response. However, nothing was known about how MoHog1 is regulating the genetic program of this cellular response to osmotic stress. Therefore, we conducted time course RNAseq (NGS) analysis of the *M. oryzae* wildtype strain compared to a mutant strain with inactivated HOGI signaling cascade in order to obtain genes contributing to the transcriptional regulation. With the resulting data, we were able to present a set of strong regulated genes with putative function in osmoregulation which never had been linked to the HOG pathway before. Furthermore, we will demonstrate initial findings concerning the regulatory network and crosstalk of the HOG pathway in filamentous fungi.

FBV-FG07

A gene co-expression network as a tool to predict functional modules in *Aspergillus niger*

P. Schäpe*, M. J. Scanl*, S. Lena*, B. Nitsche*, V. Meyer*

1 Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Kaiserslautern, Germany
2 Technical University Berlin, Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin, Germany

Aspergillus niger is a well-established cell factory in biotechnology used for production of organic acids and enzymes since almost hundred years and with a published genome sequence since 2008. However, the function of only 2 % of its predicted 14,000 genes has been studied so far and about 50 % of the annotated ORFs encode hypothetical proteins. Gene co-expression network analysis is a powerful approach for the functional annotation of uncharacterized genes. It aims to find genes with a consistent, correlated expression pattern across phenotypically diverse samples or experimental conditions. Genes within shared expression profiles are tightly connected and are predicted to function in the same regulatory and/or functional pathway ("guilt-by-association" approach). In order to identify tightly connected genes in *A. niger*, we have established a transcriptomics database using Affymetrix microarray data published for *A. niger*. The database includes 158 different cultivation conditions reflecting different carbon and nitrogen sources, starvation and stress conditions, conditions related to temporal and spatial stages during its life cycle, different cultivation concepts and many more. Using Bioconductor, pairwise correlation coefficients were calculated and pairs with a Spearman score higher than 0.7 were considered to have significant co-expression relationships and were connected by an edge in the network. The resulting gene co-expression network was furthermore enriched with a network created for shared putative transcription factor binding sites, a network predicting protein-protein interactions based on orthology to *Saccharomyces cerevisiae* and a network considering physical chromosomal co-localization. The functional modules predicted by the final network were investigated for gene content and validated based on
published data for the function of known secretory pathway genes. These analyses supported the biological relevance of these modules, suggesting that the co-expression network obtained presents a valuable predictive tool for functional annotation of A. niger genes.

Our analysis using this tool makes it now for the very first time feasible to zoom into the gene expression networks and physiological processes under which the predicted 78 secondary metabolite gene clusters are embedded in utmost detail.

MPV-FG01

Phase-Locked Mutants elucidate novel functions and differential virulence of variable surface lipoproteins encoded by mycoplasma multigene families

R. Chopra Dewasthaly1, S. Hegde1, R. Rosengarten1

1University of Tübingen, Biotechnology, Tübingen, Germany
2Institute of Microbiology, Vetmeduni Vienna, Dept. of Pathobiology, Vienna, Austria

Mycoplasmas possess complex virulence determinants that are largely unknown. This is inspire the progress in genomic and proteomic studies witnessed in the last decade. Presence of large multigene families encoding phase- and/or size-variable immunodominant surface antigens is a common theme that is often implicated, but never directly proven, to play a role in mycoplasma infection and pathogenesis. We focused on understanding the same using a model system based on Mycoplasma agalactiae that exhibits phenotypic diversity through the high-frequency variable expression of a family of immunomodulatory surface lipoproteins called Vpma.

Having elucidated the genetic mechanism governing Vpma variations, we had earlier constructed the first ‘Phase-Locked Mutants’ (PLMs) that served as breakthrough tools to assess their role during in vitro and in vivo infection studies as they steadily expressed a single steady Vpma product (1). Comparing them with a WT strain in an experimental sheep infection model it was demonstrated that Vpma phase variation is not necessary for establishing an infection although it might critically influence the survival and persistence of this pathogen under natural field conditions (2).

Initial attachment to host cells is regarded as one of the most important steps for colonisation and infection. PLMs served as ideal tools to study the role of each of the six Vpmas in cyttadhesion, which was otherwise not possible due to the high-frequency switching of Vpmas in WT strain. Using in vitro adhesion assay with HeLa and sheep primary cells (3), we could demonstrate significant differences in the adhesion capabilities of each of the six PLMs compared to the WT strain. PLM-U mutant, which expresses VpmaU protein, showed the least adhesion (18%) whereas the PLM-V mutant expressing VpmaV protein exhibited the highest adhesion (62%). To further confirm the role of Vpma in M. agalactiae cyttadhesion, we performed adhesion inhibition assays by pre-incubating the PLMs with the respective Vpma specific polyclonal anti sera raised in rabbits. This led to a significant decrease (p<0.05) in the adhesion percentage of each of the PLMs. Furthermore, using immunofluorescence staining, Vpma proteins extracted using TX-114 were shown to bind to HeLa and sheep cells proving the direct role of Vpmas in cell adhesion. This is the first report that describes cyttadhesion as a novel function of Vpma.

Combined with the antigenic variability of these proteins, the newly identified phenotype is likely to play a critical role in the pathogenicity of M. agalactiae, and also provides important clues to the role of similar phase variable lipoprotein families in mycoplasmas.

MPV-FG02

Skin-specific unsaturated fatty acids were taken by Staphylococcus aureus and their incorporation into lipoprotein boosts innate immune response

M. T. Nguyen1, D. Hanzelmann2, T. Härter1, A. Peschel1, F. Götz1

1University of Tübingen, Microbial Genetics, Tübingen, Germany
2University of Tübingen, Infection Biology, Tübingen, Germany

The skin is the largest and most exposed interface of our body with the environment. It has therefore a central role in host defense not only by its physical barrier but also by its innate and adaptive immune systems. We investigated the impact of human unsaturated skin fatty acids on S. aureus growth and immune stimulation. The (phospho)lipids of S. aureus only contained saturated fatty acids suggesting that only these fatty acids can be synthesized. The question was therefore, whether S. aureus can also take up and incorporate unsaturated skin fatty acids into (phospho)lipids and lipoproteins. Although S. aureus is unable to synthesize unsaturated fatty acids we show that long-chain unsaturated fatty acids (e.g. linoleic acid) of human skin can be incorporated into its lipoproteins with the effect that S. aureus is better recognized by the innate immune system. This is an additional mechanism how our skin controls bacterial colonization and infection.

MPV-FG03

Immunogenicity of lipoproteins and other classical pneumococcal surface proteins

F. Voß1, N. Sundaramoorthy1, M. Abdulllah1, S. Michalk1, M. Saleih1, F. Schmidt2, S. Hammerschmidt

1Interfaculty Institute of Genetics and Functional Genomics/University of Greifswald, Genetics of Microorganisms, Greifswald, Germany
2ZIK-FunGene Junior Research Group ‘Applied Proteomics’/Interfaculty Institute for Genetics and Functional Genomics/University Medicine Greifswald, Department of Functional Genomics, Greifswald, Germany

Question. Despite the availability of effective vaccines Streptococcus pneumoniae is responsible for about 3–5 million deaths each year, mostly in children under 5 years of age and in the elderly population. The ideal vaccine would be serotype independent and based on highly and immunogenic proteins. The pneumococcal cell surface is decorated with several clusters of proteins. Namely these are choline-binding proteins (CBPs), sortase anchored proteins, lipoproteins, (trans)membrane linked proteins and so called non-classical surface proteins like enolase. Several proteins from these different clusters, that are highly conserved among pneumococcal serotypes and may therefore represent potential candidates for an innovative vaccine, were analyzed regarding their immunogenicity and abundance on the pneumococcal surface.

Methods. Protein specific polyclonal IgGs were isolated from mouse sera obtained post-immunization with various lipoproteins and other pneumococcal proteins. The relative antibody titers of the polyclonal mouse IgGs were determined by ELISA. The mouse sera and corresponding IgGs were also analyzed with the Luminex® FlexMap3D® technique. In addition, convalescent patient sera obtained from patients suffering from infections with different pneumococcal serotypes were assessed to demonstrate the immunogenicity of selected surface proteins during infections. The cell-surface abundance of the proteins in S. pneumoniae D39 was examined by flow cytometry.

Results. The Luminex-based immunoproteomics approach showed that nearly all proteins are immunogenic when administered to mice. The polyvalent mouse antibodies bound to different proteins encoded by mycoplasma multigene families. The cell surface differed among the candidates. The most abundant proteins were the CBP and adhesion PspC, SP_0845, the foldase PpmA and PsaA. Interestingly these antibodies also bound to the encapsulated strain D39. In addition, the analysis of convalescent patient sera revealed 5 proteins from different protein clusters (PspA, SP_0845, PspG, PspC, PavB) inducing high antibody titers during pneumococcal infections. The fact that immunogenicity of some proteins correlates with their cell-surface abundance (PspC, PsaA, SP_0845) turns them into potential candidates for a protein-based vaccine. Further experiments will indicate the efficacy of the specific antibodies to opsonize pneumococci and therefore trigger recognition by the immune system.

Conclusion. The analyzed pneumococcal surface proteins are highly conserved and immunogenic. Besides, the surface abundance of some proteins is high and partly correlates with the observed immunogenicity. Therefore, these proteins represent promising candidates for a protein-based conjugate or subunit vaccine, which are urgently needed to combat pneumococcal infections in a serotype-independent manner.

MPV-FG04

Plasminogen interaction to Helicobacter pylori colony confers surface resistance

B. Singh1, Y.-C. Su1, K. Riesbeck1

1Lund University, Translational Medicine, Malmö, Sweden

The gastrointestinal pathogen H. pylori colonizes the gastric mucosa of more than half of the world’s population. Colonization and subsequent infection with Helicobacter can result in chronic gastritis, an inflammation in the stomach causing abdominal pain that untreated might lead to ulcers and gastric adenocarcinoma. H. pylori interaction with plasminogen has been described previously and some surface proteins has been identified.
(1, 2). The mechanism of interaction and its role in colonization of H. pylori is not fully understood. In this study, we observed that several clinical isolates of H. pylori for can bind human plasminogen at their surface. Therefore, outer membrane proteome of H. pylori was analysed in order to find plasminogen binding proteins by using 2D-PAGE proteomics approach. The identified proteins included, 19 kDa Hpg1, Hpg2 (18 kDa), Hpg3 (60 kDa), Hpg4 (16 kDa), Hpg5 (40 kDa), Hpg6 (50 kDa), and a 55 kDa catalase A. PgbA was included as positive control in our study (2). These identified proteins were recombinantly expressed in E. coli and purified by Ni-NTA chromatography. Plasminogen interaction to these proteins were verified by using ELISA and Biolayer Interferometry (Octet Red96). Hpg1, Hpg5, PgbA, and catalase bound to plasminogen in a range of $K_d = 0.5-2.5 \mu M$. Plasminogen bound to the surface of H. pylori was accessible to host urokinase plasminase activator that converted plasminogen into plasmin. The active plasmin bound to the surface of H. pylori degraded human fibrinogen, complement component complexes C3 and C5. Our study showed new plasminogen binding proteins of H. pylori that may contribute to the virulence of this pathogen.

MPV-FG05

PrA1, the Candida immune evasion protein is a protease that cleaves complex C3 and also blocks the effector components C3a and C3b

P. Dasari1, S. Luo1, N. Reiher1, A. Hartmann1, S. Jacksch1, E. Wende2, D. Barz2, N. Beyersdorf4, T. Hünig4, A. Klos3,4, C. Skerka1,3,4, P. F. Zipfel1

1. 2Medical High School Hannover, Germany
2. 1University Hospital Jena, Institute for Transfusion Medicine, Jena, Germany
3. 1University Würzburg, Institute for Immunology, Würzburg, Germany
4. 1Spanish National Biotechnology Centre - CNB-CSIC, Department of Microbial Biotechnology, Madrid, Spain

Question: The human opportunistic fungal pathogen, Candida albicans, causes superficial and life-threatening systemic infections; particularly immunocompromised humans are at high risk for infections. The human pathogenic yeast Candida albicans activates the alternative and the classical pathway of complement. Candida has developed sophisticated means to evade host complement attack by recruiting host complement regulators and by blocking effector functions of activation products. Candida pH regulated antigen 1 (Pra1) is a multifunctional fungal immune evasive protein. Pra1 binds and complexes native C3 and blocks C3 conversion by the host C3 convertase. Here we asked whether Candida Pra1 also binds to the C3 activation fragments and further interferes with their effector functions of complement activation fragments, and importantly how exactly Pra1 blocks/inactivates C3 and it activation fragments.

Methods: ELISA and bio layer interferometry was performed to investigate the binding of Pra1 to C3 activation fragments. C3 cleavage, cofactor assays, C3b deposition, phagocytosis, live cell image analysis and candida killing assays were performed. To investigate C3a antifungal activity, flow cytometry, confocal microscopy, and colony forming unit assays was studied.

Results: Here we define Candida Pra1 the first fungal C3 cleaving protease. Pra1 cleaves C3 at a unique site. Pra1 directly targets C3a and its non-pathogenic surrogate

MPV-FG06

Stoichiometry of the bacterial type III secretion export apparatus

Z. Zilkenat1, M. Franz-Wachtel2, Y.-D. Stierhof3, J. E. Galán4, B. Mack5, S. Wagner5

1. Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
2. University of Tübingen, Proteome Center Tübingen, Tübingen, Germany
3. University of Tübingen, Center for Plant Molecular Biology, Tübingen, Germany
4. Yale University School of Medicine, Department of Microbial Pathogenesis, New Haven, USA
5. German Center for Infection Research, Partner-site Tübingen, Tübingen, Germany

Bacterial type III secretion systems are cell envelope-spanning effector protein-delivery machines essential for colonization and survival of many Gram-negative pathogens and symbionts. The membrane-embedded core unit of these secretion systems is termed needle complex. The needle complex is composed of a base that anchors the machinery to the inner and outer membranes, a hollow filament formed by inner rod and needle subunits that serves as conduit for substrate proteins, and a membrane-embedded export apparatus facilitating substrate translocation. While the stoichiometry of the base and of the major export apparatus protein have been revealed by structural analyses, the stoichiometries of the other export apparatus components and of the inner rod remain unknown. We employed peptide concatenated standard and absolute quantification-based strategies to analyze the stoichiometry of the entire needle complex by mass spectrometry. Here we provide evidence that the export apparatus of the type III secretion system encoded on Salmonella pathogenicity island 1 contains 5 SpaP, 1 SpaQ, 1 SpaR, and 1 SpaS. We have corroborated the previously suggested stoichiometry of 9 InvA per needle complex and describe a loose association of InvA with other needle complex components that may reflect its function. These numbers indicate that the inner membrane patch of the needle complex base houses 104 transmembrane domains in total, a dense assembly whose function in the secretion process we merely understand. Furthermore, we present evidence that not more than 6 PrgJ form the inner rod of the needle complex.

MPV-FG07

Essential role of the SepF mycobacterial cell division protein

M. Vicente1, A. Iquiéndiro1, GS. Gola1

1. 1Spanish National Biotechnology Centre - CNB-CSIC, Department of Microbial Biotechnology, Madrid, Spain

Question: Cell division requires the sequential assembly at mid-cell of several essential proteins into a complex, called the divisome. Central to divisome formation is the FtsZ protein, as in its absence the divisome fails to assemble altogether (1). Early FtsZ-interacting proteins are crucial for the process, because they anchor the FtsZ-ring to the cytoplasmic membrane and act as structural modulators. In model organisms as Escherichia coli or Bacillus subtilis, these functions are provided by the joint action of two proteins that form together with FtsZ the so-called proto-ring. Mycobacterium tuberculosis has a homolog to only one of them - SepF - whose functions we have characterised in vivo.

Methods: Mycobacterial SepF-GFP variants were localised in M. tuberculosis and its non-pathogenic surrogate Mycobacterium smegmatis and the phenotype resulting from conditional overexpression and repression of the sepF gene investigated in M. smegmatis. Diversity of sepF was analysed in 1.500 strains of the M. tuberculosis complex (MTBC) in addition to Mycobacterium leprae and Mycobacterium leprae, Mycobacterium lepromatosis. SepF variants were tested for complementation in a sepF conditional mutant background.

Results: In M. tuberculosis and M. smegmatis cells, SepF-GFP fusions localised in ring-like structures at potential division sites in a FtsZ-dependent way. Both, SepF overproduction and depletion resulted in a complete block of division prior to septation. Together with the high conservation of the gene in the MTBC, these results suggested that SepF is a key proto-ring protein for mycobacterial proliferation (2). Toxicity of altered cellular SepF levels in vivo required the establishment of a single-copy complementation assay to enable testing sepF mutants in detail. This assay allowed us to find that the SepF⁵⁰ variant (2), in contrast to the SepF⁵⁵-GFP fusion, is functional in vivo and to find a subtle effect of the GFP fusion to the C-terminus of the wildtype SepF. Moreover, our results point at the N-helices located in the N- and C-termini as being important for mycobacterial SepF activity.

QDV-FG01

Molecular diagnostic in the era of MRGN bacteria

*O. Makarewicz¹, M. W. Pletz²

¹Universitätsklinikum Jena, Zentrum für Infektionsmedizin und Krankenhaushygiene, Jena, Germany

Currently, the spread of multidrug-resistant Gram-negative bacteria (MRGN) producing extended-spectrum β-lactamases (ESBL) and carbapenemases is a global threat to public health. Bloodstream infections with MRGN bacteria are associated with increased mortality, which is primarily due to delayed appropriate treatment resulting in clinical failure. As most sepsis guidelines, the German guideline suggest an empiric treatment with a β-lactam with antipseudomonal activity (i.e. piperacillin/tazobactam, ceftazidim, cefepim or a carbapenem) in an additional combination with an anti-polyglycolyse (e.g. fluoroquinolones, which does not cover ESBL-producers except for carbapenems (last resort antibiotics). With up to 72 hours to result, the standard blood culture-based routine diagnostic is highly sensitive for detection of bloodstream infections, but takes excessively long.

In attempts to improve and accelerate diagnostic procedures, numerous molecular methods have been developed. Commericially available molecular approaches focus on species identification but cover often only a limited number of resistance genes and are therefore of minor use for clinical decisions regarding antibiotic treatment. Whereas a simple PCR based approach maybe suitable for multi-drug resistant Gram-positives like MRSA and VRE with ‘monogenetic’ resistance, most of these tests fail to accurately detect MRGN bacteria. This is explained by the highly genetically and phenotypically diverse group of β-lactamases conferring resistance to penicillins, monobactams, cephalosporins (ESBL) and/or carbapenemases. The β-lactamase superfamily counts more than 1500 variants subdivided in four phylogenic classes (A, B, C and D) with numerous subgroups; some of them are highly conserved requiring a diagnostic resolution on a single nucleotide level, others share less than 40 % similarity challenging the identification of appropriate primer pairs. Finally, dozens of novel β-lactamases are annually discovered. Thus, an one-fit-all assay remains unlikely to be developed covering the species, all β-lactamases and other resistance and toxin factors.

We are going to discuss the diagnostics hurdles and present our running projects that aim to improve the molecular diagnostic in face of the increasing MRGN-problem.

QDV-FG02

Acceleration of microbiological diagnostics of sepsis

*E. A. Idelevich¹, K. Becker²

¹Universitätsklinikum Münster, Institut für Medizinische Mikrobiologie, Münster, Germany

Sepsis is an acute condition with high mortality rates. Immediate antimicrobial therapy is essential while the appropriateness of administered antibiotics is critical for the clinical outcome. One of the main tasks of clinical microbiology is identification and antimicrobial susceptibility testing of pathogens. Particularly in case of sepsis, diagnostics has to be performed rapidly to provide clinicians with the findings allowing early adaptation of antimicrobial therapy. Rapid sepsis diagnostics has been shown to guide antimicrobial therapy, which leads to improved patients’ outcome.

Several methodological improvements have recently become available for accelerated microbiological diagnostics of sepsis. The advent of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized clinical microbiology. The immediate (few minutes) species identification has become available from colonies after overnight sub-cultivation from positive blood culture broth. Furthermore, MALDI-TOF MS can directly be performed from positive blood cultures using lys-centrifugation procedure. It allows species identification in 78.6 % of cases for Gram-negative rods, 41.9 % of cases for Gram-positive cocci, and in 62.5 % of cases for yeasts. Alternatively to this direct method, which takes approximately 20-30 minutes to perform, MALDI-TOF MS identification can be accomplished from the very short-term cultures, sub-cultivated onto solid medium from positive blood culture broth. The average incubation time needed for successful species identification from such ‘young’ cultures is only 2.0 hours for Gram-negative rods, and 3.1 hours (with a short extraction procedure) for Gram-positive cocci. The same biomass can be inoculated into the automated susceptibility testing system at the early time point, i.e. after 2.4 hours or 3.8 hours for Gram-negative rods and Gram-positive cocci, respectively.

Thus, the results of susceptibility testing are provided one day earlier. This short incubation method appears to be the best suitable for routine processing of positive blood cultures because it provides early result without any additional cost or time expenditure.

Direct blood culturing on solid medium has been investigated as an alternative to the liquid-based automated blood culture systems which are currently broadly used. Species identification from directly incubated agar plates was always achieved earlier than the growth detection by the automated system. At the positivity detection with automated system, only Gram stain is possible. The average time difference between bacterial growth detection in the automated system and species identification from microcolonies shortly incubated on solid medium was 4.6 hours.

In conclusion, a considerable acceleration of sepsis diagnostics is now available for use in clinical laboratories.

QDV-FG03

DIAL-FISH for the rapid detection and identification of bacterial agents

*K. Aistleitner¹, K. Stocker², T. Sieper³, J. Stürz³, R. Wölfel³

¹Bundeswehr Institute of Microbiology, Bacteriology and Toxicology, Munich, Germany

Fluorescence in situ hybridization (FISH) is a powerful method for the cultivation-independent in situ detection and identification of microorganisms. Since its establishment over two decades ago it has become an essential tool in microbial ecology. As it is an easy, robust, cheap and rapid method, FISH is also occasionally used in clinical settings. However, up to now only three bacterial species could be identified simultaneously in one hybridization step, making the identification of larger sets of bacterial species laborious and time-consuming, thereby impairing the use of FISH in many diagnostic approaches. Here we report on the development of an RNA-targeted FISH based diagnostic algorithm (DIAL-FISH) allowing for the cultivation-independent rapid detection, identification and quantification of up to thirteen bacterial pathogens in clinical samples.

Novel group-specific probes targeting members of the Rickettsiaceae, the Bacillus cereus group and Leptospiraceae as well as species-specific probes targeting Vibrio cholerae, Yersinia pestis, Escherichia coli and Coviella burnetii were designed using the arbit-software package. The specificity of the probes was evaluated using formamide-series and the daime software. By combining these probes with previously published probes for Brucella spp, Burkholderia mallei, Burkholderia pseudomallei, Neisseria meningitidis, and Francisella tularensis the diagnostic assay now targets thirteen bacterial pathogens. Using multicolored double-labeled oligonucleotide probes, these species can now be identified by only two hybridizations in less than four hours.

We applied our set of probes successfully for the identification of infectious agents in various sample materials, including paraffin sections of lymph nodes, powder samples and skin surfaces. To overcome the need for a furnace hood and allow for broader application of this method, we currently aim to substitute for toxic formamide, which is used in conventional FISH to adjust the stringency of the probe, by non-toxic urea. Interestingly, usage of urea so far not only results in the specific detection of bacteria, but also in brighter fluorescence signals for some probes. In summary, DIAL-FISH allows the fast and direct visualization of rarely occurring, but nevertheless important bacterial pathogens in a straightforward and robust manner. In addition, it provides a different and independent laboratory method that supplements PCR-based detection methods for these bacteria.
To protect cheese products against foodborne pathogens, food additives such as nisin are added. The influence of common nisin concentrations to various Listeria species has been well discussed in vitro. However, the aim of this study was to evaluate the bioavailability and the effect of nisin on the survival of Listeria monocytogenes in sour curd cheese (SCC). Different nisin concentrations were tested in vivo with a mix of eight different strains of lactic acid bacteria (LAB) and one L. monocytogenes strain, respectively. Therefore, SCC were supplemented with or without 150 units nisin per g cheese. SCC produced in our laboratory were contaminated with 10^8 CFU g^-1 L. monocytogenes and incubated for two days at 30 °C and 99 % humidity. After incubation growth of LAB and L. monocytogenes were determined with conventional cultivation techniques and fluorescence in situ hybridization (FISH). The cultivation-dependent approach revealed that 150 U g^-1 nisin did not inhibit growth of LAB but 2000 U g^-1 nisin reduced LAB for one log CFU g^-1. However, growth of L. monocytogenes was reduced 2.6 log CFU g^-1 at 150 U g^-1 nisin. The aerobic most probable number was 10^9 CFU g^-2 after cleaning, regardless if L. monocytogenes, nisin or both were present. FISH based results were in line with cultivation based results for both LAB and L. monocytogenes. Furthermore, FISH analyses showed that L. monocytogenes did not proliferate over incubation time at nisin addition of 150 U g^-1. In conclusion, nisin addition was bioavailable and anti-listerial active in SCC, therefore reducing cell counts of L. monocytogenes but not LAB after ripening time usually applied in dairy. Our results were a successful challenging test and upcoming research will be carried out with similar Listeria cell amount found in cheese.

QDV-FG04
Effect of nisin on the survival of Listeria monocytogenes in sour curd cheese after artificial contamination
M. Szendy, M. Noll
Coburg University of Applied Sciences and Arts, Faculty of Science
Bioanalytics, Coburg, Germany

RSV-FG01
Engineering synthetic regulatory systems for enhanced chemical production
F. Zhang
Washington University, Department of Energy, Environmental and Chemical Engineering, St. Louis, USA

Engineering microbial metabolic pathways offers the opportunity to produce renewable chemicals and advanced biofuels. In order for this technology to be economically viable, heterologous production systems must be optimized to have high titers, yields, and productivities. Microbes evolved sophisticated regulatory network to adapt to various environments for cell growth, but not to produce chemicals in large quantities and with high efficiencies. To improve heterologous chemical production, we employed sensor-regulators to dynamically control the expression of pathway genes, which balance the metabolism of heterologous pathways and prevent the accumulation of intermediates to toxic levels. We also develop sensor-selectors to continuously select for high-performing, non-genetic variants within iso-genetic populations. Using the designed synthetic regulatory systems, we have demonstrated significantly enhanced product titers, yields, productivities and genetic stability on multiple biosynthetic pathways. Design principles of these synthetic regulatory systems should be useful in other areas of synthetic biology, enabling new avenues of research and applications.

RSV-FG02
Hunting for new genetic targets – biosensor-based FACS screening of microorganisms
J. Marienhagen
Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-1: Biotechnology, Jülich, Germany

The engineering of microbial strains for the production of small molecules is a time-consuming, laborious and expensive process. This can be mostly attributed to the fact that good producers cannot be readily obtained by high-throughput (HT) screening approaches since increased product formation usually does not confer a clear phenotype to producing strain variants. Recently, advances were made in the design and construction of genetically encoded biosensors for detecting small molecules at the single-cell level [1]. At the IBG-1, we focus on transcription factor-based biosensors. In these sensor systems a transcriptional regulator binds to its target promoter in response to the presence of the small metabolite of interest and subsequently activates expression of a fluorescent reporter protein. In combination with fluorescence-activated cell sorting (FACS) we could already demonstrate the value and potential of such biosensors by screening large libraries of chemically mutated Corynebacterium glutamicum cells for L-lysine producers [2]. Motivated by the assumption that other amino acid substitutions in MurE might lead to even higher L-lysine titers, we developed RecFACS for the site-directed saturation mutagenesis of microbial genomes. RecFACS combines targeted genome mutagenesis by recombineering with biosensor-guided HT screening [3]. We successfully used RecFACS to generate and screen a site-saturation library of murE of C. glutamicum via FACS and identified 12 different amino acid substitutions causing different L-lysine titers. Currently, we are engineering the L-lysine sensor and other biosensors to alter their individual ligand specificities. Goal is the design of custom-made biosensors for the detection of compounds of biotechnological interest.

QDV-FG05
A view to a kill? – ambient bacterial load of frames and lenses of spectacles and evaluation of different cleaning methods
A. Jenner*, C. Lippe*, A. Zehnder*, C. Horn*, F. Blessing*, M. Kohl*

*F. Zhang*1
Washington University, Department of Energy, Environmental and Chemical Engineering, St. Louis, USA

1Coburg University of Applied Sciences and Arts, Faculty of Science
Bioanalytics, Coburg, Germany

Surfaces with regular contact to the human body are usually contaminated with a variety of microorganisms and might be considered as fomites [1, 2]. Although widespread in the population, little is known about the ambient microbial contamination of spectacles, particularly in non-clinical environments. We investigated 11 worn spectacles of students and employees from a university environment and 10 worn spectacles of inhabitants of a nursing home for elderly people. Each spectacle was swab sampled at 7 sampling sites following DIN ISO 10113. The microbial load was determined by serial dilutions and aerobic cultivation on TSA agar. Dominant bacterial morphotypes were identified by MALDI biotyping. All investigated spectacles were found to be contaminated with bacteria, most densely at the nose pads and the inner sides of the ear clips, i.e. at sites with direct skin contact. Averaged over all sites, the microbial load of the investigated spectacles were found to be contaminated with bacteria, most densely at the nose pads and the inner sides of the ear clips, i.e. at sites with direct skin contact. Averaged over all sites, the microbial load of the investigation spectacles (9.6 ± 29.7·10^2 CFU cm^-2) was not significantly different compared to the spectacle of the nursing home people (4.3 ± 6.0·10^2 CFU cm^-2). 213 bacterial isolates were obtained from all spectacles and assigned to 11 genera, with Staphylococcus as the dominant one. On genus-level, bacterial diversity was significantly higher on spectacle frames than on lenses artificially contaminated with Escherichia coli, Micrococcus luteus, a mixture of E. coli and M. luteus, and Staphylococcus epidermidis, the dominant isolate in our study, respectively. Best cleaning results (96 % - 100 % median germ reduction) were obtained with impregnated wipes; dry cleaning was less effective (74 % - 95 % median germ reduction). Finally, 10 wom university spectacles were cleaned with wipes impregnated with an alcohol-free cleaning solution before sampling. The average bacterial load was significantly lower (0.08 ± 0.18·10^3 CFU cm^-2) compared to the uncleaned university spectacles investigated before (see above). Clearly, spectacles are contaminated with bacteria of mostly human skin origin, including significant shares of potentially pathogenetic ones, and might play a role in eye infections [2].
RSV-FG03
Engineered riboswitches – convenient building blocks for the construction of synthetic genetic circuits
*B. Sues1
1Technical University Darmstadt, Synthetic Biology and Genomics, Department of Biology, Darmstadt, Germany

One of the most interesting areas of Synthetic Biology is the control of cellular behaviour using engineered circuits. Genes with selected features are combined in a building block manner and transferred to organisms of interest to achieve the desired biological functions. However, the expression level of the corresponding genes must be regulated and fine-tuned to avoid unbalanced gene expression and the accumulation of toxic intermediates. In order to achieve this, a versatile set of RNA-based control devices, so called engineered riboswitches, have been developed. We make use of in vitro selected, small molecule binding aptamers inserted into untranslated regions of several mRNAs. Thereby we exploit the fact that upon ligand binding the aptamer structure interferes with cellular functions such transcription, translation or splicing. The striking advantage of such regulator is that in principle they can be designed to sense any ligand of choice. In addition, the direct RNA-ligand interaction renders auxiliary factors unnecessary.

We will present engineered riboswitches developed for all three domains of life and targeting different cellular processes. In addition, we will give a mechanistic insight into these regulators.

RSV-FG04
Synthetic RNA-based control units for balanced triterpene biosynthesis in cyanobacteria
*I. M. Axmann1
1Heinrich Heine University, Institute for Synthetic Microbiology, Düsseldorf, Germany

As oxygenic phototrophs with a versatile metabolism, cyanobacteria constitute an economically advantageous platform for the production of a diversity of high-value compounds including plant triterpenes. Concretely, the natural occurrence of squalene as an intermediate of the hopanoid biosynthesis in cyanobacterium Synechocystis sp. PCC 6803, hereafter Synechocystis provides a new vantage point for bioengineered triterpene production. Cloning of a triterpene biosynthesis cassette from Arabidopsis thaliana for expression in Synechocystis together with engineering the cyanobacterial host allows us to synthetically produce a variety of interesting precursors, e.g. marneral, thalanol, ß-Amyrin. However, accumulation of high levels of intermediates appears to be a challenging problem of synthetic pathways that can become toxic resulting in reduced host growth. Thus, we are programming metabolic pathways using newly designed logical gates that transmit and process information in an innovative way, namely via RNA-based control units. For example, an extended RNA-based comparator unit has been established for self-adjustment and balancing the gene expression of two genes. Accumulation of the first intermediate induces specific, synthetic RNA regulators that on the one hand represses expression of its own synthesis, and on the other hand activates expression of the second gene encoding for the downstream enzyme in the pathway. A second internal feedback-loop measures accumulation of the second intermediate and represses activates vice versa. In that way, a smart, automated and dynamically adapting control can be implemented (i) sensing changes in metabolite concentrations and (ii) using this information to control transcriptional regulation of genes encoding enzymes in metabolic pathways with a high degree of flux control. Our toolbox of synthetic RNA control units will expand the field of synthetic biology within the research area of phototrophic organisms and necessarily improve metabolic engineering strategies in cyanobacteria and other hosts.

SIV-FG01
Cryptic Pathways at the Host-Microbe Interface
*C. Hertweck
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoll Institute, Jena, Germany

Small molecules play important roles in microbial interactions as they may support the mutualism or serve as pathogenicity factors. In many cases, however, the molecular basis of the chemical crosstalk remains unknown. Thus, it is often useful to combine analytical and genetic tools to gain insight into the molecules that are produced at the host-microbe interface. This talk focuses on our progress in exploring molecular assembly lines in less investigated bacterial genera such as Burkholderia spp.

SIV-FG02
How indole-3-acetic acid is modulating Tricholoma vaccinum ectomycorrhiza?
*K. Krause1, C. Henke1, T. Assinwe1, W. Boland2, E. Kothe1
1Friedrich Schiller University, Institute of Microbiology, Microbial Communication, Jena, Germany
2Max Planck Institute for Chemical Ecology, Jena, Germany

The auxin indole-3-acetic acid (IAA) is a long time known phytohormone affecting the growth of plants and its roots. Here, we report on fungus-derived IAA, causing morphological changes in the development of ectomycorrhiza. Both partners, tree and fungus are affected. The biosynthesis in fungal hyphae, excretion, induced ramification in fungal cultures, and enhanced Harty net formation in mycorrhiza were observed and gene expression, labeled IAA precursors, aldehyde dehydrogenase aodI overexpressing Tricholoma vaccinum and heterologous expression of an transporter were used to study the effects in molecular detail.

In T. vaccinum, IAA is produced from tryptophan via indole-3-pyruvate and indole-3-acetaldehyde finally oxidized by an aldehyde dehydrogenase. Upregulation of aodl was found in ectomycorrhiza and by external supplementation with indole-3-acetaldehyde. In mycorrhization studies, aodl overexpressing T. vaccinum showed an increased width of the apoplast between the cortical cells of the Harty net, as well as upregulation of the multidrug and toxic excretion (MATE) transporter Mtel1, involved in the export of IAA from fungal cells. External supply of IAA and its precursors induced elongation and increased branching in mycorrhizal fungi, whereas no morphogenetic changes were observed in saprobic fungi like Schizothiomyum commune. These findings indicate a crucial role for IAA in the regulation of ectomycorrhiza formation and morphology.

SIV-FG03
Bacterial-macroalgal interactions – the symbiotic tripartite community of Ulva (Chlorophyta)
*T. Wichard1
1Jena School for Microbial Communication, Jena, Germany

The interactions between marine macroalgae Ulva mutabilis Foy (Chlorophyta) and their associated bacteria depend strongly on chemical stimuli. Many studies have attempted to extract external bacterial compounds with growth regulatory activities motivated by the evidences that marine bacteria produce auxin- and cytokinin-like regulators. A prerequisite for the investigation of these signal mediated interactions is the availability of axenic cultures. To produce axenic cultures gametophytes of U. mutabilis were induced to form gametangia by removal of sporulation inhibitors. Released gametes were separated from their accompanying bacteria by taking advantage of the gametes fast movement towards light [1]. These axenic cultures develop into callus-like colonies. The combination of specific bacteria such as the Roseobacter sp. (MS2) (among other alpha and gamma- proteobacteria) and the Cytophaga sp. (MS6) can recover growth, development and morphogenesis via diffusible morphogenetic compounds and replaces thus completely the bacterial microflora of U. mutabilis [2,3]. This well-defined unicellular/bacterial system allowed us to study the activity of novel signal molecules and to determine the mechanism by which bacteria and U. mutabilis interact with each other. To prove the ecological significance, axenic algae were also used to survey morphogenetic activities in seawater of the Ria Formosa Lagoon (Faro, Portugal). The tripartite community of U. mutabilis, Cytophaga sp., and Roseobacter sp. is an ideal system to investigate, for example, (i) symbiotic interactions, (ii) the chemotactic attraction of bacteria (iii) the quorum sensing systems between bacteria and the host, and (iv) the interactions between the macroalgae and opportunistic bacterial/pathogens. The bio-analytical and microbiological approach will be supported by a newly developed transformation system for U. mutabilis [4]. The approaches in chemistry and genetics along with the short generation time of a naturally occurring developmental mutant of U. mutabilis make this tripartite community well suited to model studies in chemical ecology and developmental biology.

SIV-FG04
Host and symbiont jointly control gut microbiota during complete metamorphosis

*S. R. Johnston1, J. Roll1
1 Freie Universität Berlin, Institut für Biologie, Berlin, Germany

Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host immune system interacts with symbiotic bacteria to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Moreover, the data also suggest that the risk of opportunistic infection during the destruction of the larval gut is countered by the host through up-regulation of immune function. These findings may be broadly applicable to insects with complete metamorphosis, including many disease vectors.

SIV-FG05
Nitric oxide is an ambivalent mediator of microbial interactions in beewolves

*T. Engl1, T. Nechita1, E. Strohm1, M. Kaltenpoth1
1 Johannes Gutenberg-Universität Mainz, Institut für Zoologie, Abteilung Evolutionäre Ökologie, Mainz, Germany

The selective pressure to protect themselves against competing microbes drove beewolves to evolve several sophisticated defense mechanisms. They engage in a symbiosis with Streptomyces bacteria that protect the beewolf offspring with an antibiotic cocktail against opportunistic mold fungi in the surrounding soil. Further, the beewolf eggs release a strong burst of nitric oxide into the brood cell only a few hours after oviposition. On the one hand side, beewolves thereby initiate a radical brood cell sterilization that significantly delays the onset of fungal growth. However, as a potent antimicrobial agent, nitric oxide also poses a threat to the defensive symbiosis. Besides damaging proteins and lipid, nitric oxide also induces severe DNA damage. The repeated exposition over millions of years left an evolutionary signature in the Streptomyces symbionts. They not only show an exceptional strong induction of radical defense mechanisms upon nitric oxide exposure, but also suffer from advanced genome erosion. Beewolves probably need to maintain a delicate equilibrium. Releasing to much nitric oxide into a brood cell cell might damage their symbiont beyond repair, releasing not enough could allow a fatal infestation with opportunistic mold fungi. Thus, the fate of this unique symbiosis depends upon one simple, small molecule.

SIV-FG06
Pleasant guests restrain – Can selective advantages explain the AT-bias of endosymbiotic genomes?

*A.-K. Dietel1, M. Kaltenpoth2, C. Kost1
1 Max-Planck-Institut für Chemische Ökologie, Biotorganische Chemie, Jena, Germany
2 Johannes Gutenberg University, Ecology, Mainz, Germany

The genomic base composition of bacteria is highly diverse. Strikingly, intracellular bacterial symbionts as well as plasmds and viruses which all share a host-dependent lifestyle generally exhibit higher AT-contents. However, the driving force towards high AT-contents remains unclear. The loss of nucleotide biosynthesis genes as well as a nucleotide uptake from the host’s cytoplasm has been hypothesized to reduce the metabolic burden an endosymbiont imposes on its host. Since dATP and dTTP are the most abundant nucleoside triphosphates in a cell, low GC-contents of endosymbiotic genomes are expected to be selectively favoured. However, an experimental test of this hypothesis is currently lacking, since the endosymbiont-host-relationship is difficult to disentangle experimentally. This project aims at unravelling the molecular explanation for the observed decrease in genomic GC-content by the use of a tractable model system. For that, Escherichia coli strains which differ in their demand for AT- and GC-nucleotides were generated by introducing plasmids of high AT- or high GC-contents. Experimentally increasing GC-contents caused a drastic decrease of the cells’ fitness, which is in line with the proposed hypothesis. Furthermore, determining the plasmid copy number via quantitative real-time-PCR revealed lower copy numbers of all GC-rich plasmids compared to AT-rich plasmids. Providing the cells with GC-nucleotides resulted in a fitness increase of cells with higher demands for GC nucleotides, indicating that GC nucleotides being a scarce resource that limit growth. Taken together, our results provide strong experimental evidence for a selective advantage of high AT-contents in the genomes of intracellular bacteria.

WAV-FG01
Legionella in evaporative cooling systems – new federal immission control act

*R. Szweczyk1
1 Federal Environment Agency, Department II 1.4, Microbiological risks, Berlin, Germany

WAV-FG02
Occurrence, frequency and distribution of Legionella pneumophila strains isolated from environmental sources in Germany

*C. Lück1
1 Technical University Dresden, Institut für Medizinische Mikrobiologie, Dresden, Germany

Legionella bacteria are a commonly distributed in man-made water systems. After transmission via aerosols to humans these bacteria can cause pneumonia. Currently, 59 species exist within the genus Legionella. The most relevant species L. pneumophila can be divided into at least 16 serogroups. Serogroup 1 can be further subtyped by monoclonal antibodies into so called monoclonal subgroups. Further subtyping of L. pneumophila strains is performed by so called SBT, a seven gene sequence based typing assay, which is currently the gold standard for Legionella pneumophila. More than 83 % of the community-acquired and travel-associated cases were caused by L. pneumophila, serogroup 1, MAb 3-1 positive strains. Only 43 % of nosocomial cases did so. In contrast only 11 % of environmental isolates not related to human infections reacted with Mab 3-1. Albeit, the molecular basis for this phenomenon is not fully understood it is a useful marker to distinguish between highly virulent and less virulent L. pneumophila strains. L. pneumophila strains belonging to serogroups 2 to 15 cause seldom infections in healthy persons, but account for 45 % of nosocomial infections. They are found at a similar frequency in environmental samples. Thus, in immunocompromised hosts less virulent strains might cause infections. L. non-pneumophila species are seldom isolated from patients, but commonly found in routine water samples. Most common environmental species is L. unia. The clinical isolates could be classified into 24 different sequence types (ST). In Germany, ST1 (24 %) and ST9 (7 %), ST 23 (5 %), ST 62 (11 %) and ST182 (18 %) were the most frequently ones. The latter one is almost exclusively detected in the Berlin area. The detected ST profiles were a combination of both frequently isolated and unique STs, and of both worldwide distributed and more local strains (ST 332, 425, 334). Environmental isolates are much more heterogeneous (276 ST) arguing for the assumption that only few strains cause the majority of infection especially in not immunocompromised hosts. Beside serogroup 1 strain some ST of serogroups 2, 3, and 6 seems to have a higher virulence since they are often associated with human infection.
Legionella species diversity and dynamics from surface reservoirs to cold and hot tap water: from a cold adapted to a thermophilic community
R. Lesnik, M. G. Höfle1, *L. Brettar1
1Helmholz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Research Group Microbial Diagnostics, Braunschweig, Germany

Members of the genus Legionella are found around the globe in a variety of natural and man-made freshwater environments. However, very little is known about their specific abundances in these environments on a species level. This is primarily due to their Viable-But-Non-Culturable (VBNC) state and their inability to grow outside their protozoan hosts. Best studied is L. pneumophila which has been found in natural freshwater environments such as lakes, streams and Drinking Water Supply System (DWSS). It also contaminates air conditioning systems, cooling towers and condensers. We analysed water samples from a complete DWSS in Northern Germany for its Legionella species composition using genus-specific PCR amplicons and SSP fingerprints analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including the two raw waters, treatment process and large scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of the raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water 7 to 14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8 % to 40 %) accompanied by 5 to 11 other PTLs of which 6 PTLs were in common with cold water. Cold and hot water did not show a distinct seasonal pattern. Many of the observed PTLs are considered to represent new Legionella species indicating a large diversity of uncultured Legionella species in tap water. This study demonstrated the establishment of a thermophilic Legionella community, including L. pneumophila, able to grow in the hot water above 50 °C. An increase of the L. pneumophila population from 50 °C to 58 °C was observed with the molecular approach used and could be confirmed with independent real-time PCR measurements. If a part of this community is infectious to humans has to be assessed in future studies. This thermophilic community is of general relevance with respect to hot water management and public health, but also with respect to the ecology and evolution of the genus Legionella.

LEGIONELLA SPECIES DIVERSITY AND DYNAMICS FROM SURFACE RESERVOIR TO TAP WATER: FROM COLD ADAPTATION TO THERMOPHYLISM

Lesnik, R., Brettar, I and M. G. Höfle (2015) Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily. ISME J. published online, DOI: 10.1038/ismej.2015.199

Detection of system-wide Legionella contaminations in drinking water plumbing systems – risk factors, temporal-spatial variability, strategies
*C. Schreiber1, T. Kistemann1
1University of Bonn, Institute for Hygiene and Public Health, Bonn, Germany

Introduction: It is necessary to access the hygienic-microbiological situation of drinking water plumping systems (DWPS) by use of limited information. This in turn has important implications for the design and implementation of monitoring and remediation measures.

Objectives: The aim of the study was to gain deeper insight into Legionella contamination of DWPS. The dimension of German-wide Legionella contamination of DWPS should be evaluated. Risk factors and parameters that could help to detect contaminations had to be identified.

Methods: All German public health authorities were interviewed by a questionnaire about monitoring. Acquired data of water samples from the period 2003-2009 were merged into a relational database. In a field study, long-time monitoring of water quality in eight Legionella contaminated buildings was done for one year according to the German drinking water ordinance (GDWO; ISO 19458:2006). Additionally, short-term variability in the course of a day was monitored twice in one building by sampling every two hours. Legionella spp. was analysed by culture methods following GDWO and DIN EN ISO 11731-2:2008 and by qPCR using the L. pneumophila mip gene (Shannon et al. 2007, modified for higher heat stability) for amplification after sample filtration and DNA extraction with Chelex Resin 100 and proteinase K (Walsh et al. 1991).

Results: In Germany, 12.2 % (n=22,124) of drinking water samples from public buildings showed Legionella contamination exceeding the technical threshold limit (TTL). Detailed data showed that hospitals were at highest risk. Nursing homes (n=438), schools (n=703) and kindergartens (n=928) exceeded the TTL of Legionella at least one time in the period 2003-2009 in more than 20% of the objects. Incidences of Legionella contamination showed a strong spatial and temporal (short- and long-term) variability. Sampling points where cultural or qPCR results continuously exceeded the GDWO technical threshold limit at the outlet were rarely detected. Statistical analysis and modelling showed that the parameters, temperature at constancy, stagnation and pipe length seem to be the best predictors of Legionella contamination at single outlets.

Conclusions: The observed long and short term variation of L. pneumophila should result in a re-evaluation of guidelines concerning sampling and monitoring strategies. Identified risk factors should be taken into account for detection at an early stage.

Legionellosis outbreaks have occurred consistently during the last years worldwide. Aerosolized L. pneumophila from evaporative cooling towers were found frequently at risk. Regarding the high risk of infection, rapid detection methods for Legionella have a great impact on environmental health and diagnostics. We have developed a combined analytical process that uses monolithic adsorption filtration (MAF) and centrifugal ultrafiltration (CeUF) to concentrate viable Legionella from 10 L to 1 mL in 45 min. Bioaerosols are collected by cyclone impinger Coriolis μ. Multiplexed quantification of Legionella is performed by DNA and antibody microarrays on the analysis platform MCR 3. A sandwich microarray immunosassay (SMIA) is developed for monoclonal subtyping of L. pneumophila. Isothermal amplification on DNA microarrays is established for rapid quantification of L. pneumophila and Legionella spp. A monoclonal antibody (mAb) against L. pneumophila Sg 1 Bellingham and a polyclonal antibody (pAb) against L. pneumophila Sg 1 was immobilized as capture antibodies on microarray chips. Surface water samples were processed by MAF-CeUF prior to SMIA. A limit of detection of 8.7 CFU/mL and 0.39 CFU/mL was achieved for pAb and mAb, respectively. A recovery of 99.8 ± 15.9 % was determined for concentrations between 1 CFU/mL and 1,000 CFU/mL [1]. In a first study, sampling sites along the river Isar were chosen with increasing anthropogenic influence by e.g. wastewater treatment plants, industrial plants, and agriculture. With increasing anthropogenic influence along the river, the pAb has shown significantly higher CL signals compared to the source. At a reservoir we have identified subtype Bellingham. Bioaerosols and treated waste water from factories that produce waste water with an increased temperature (e.g. breweries, dairies, and paper production) were studied by usage of an antibody microarray that contains a panel of monoclonal antibodies for subtyping of L. pneumophila. First results have shown that L. pneumophila could be identified in treated waste water after concentration by MAF and CeUF and in bioaerosol samples. Finally, we have established the first microarray-based isothermal amplification method to quantify L. pneumophila and Legionella spp. The detection limit was 1.8 × 101 GU/mL and 1.2 × 104 GU/mL respectively.

Detection of Legionella in aerosols from cooling towers
*M. Strathmann1, G. Schäule2, H. J. Oldenburg2, R. Rabe2, T. Wehde2
1IWW Zentrum Wasser, Mülheim/Ruhr, Germany
2Labor Dr. Rabe HygieneConsult, Essen, Germany

Cooling towers are used since many years to dissipate heat loads from industrial processes. Their cooling effect is based on the principle of evaporation of water. In order to make this process as effective as possible in most cases a trickling or spraying of the cooling water is done to create a large evaporation surface. This can also contribute to formation of water droplets (aerosols) which can be discharged into the ambient air. Due to
favorable growth conditions (moisture, nutrients, temperature) for microorganisms in the water and in particular in biofilms in the circuits as well as on the evaporator surfaces, the water droplets may also contain Legionella. Legionella-containing aerosols represent a health risk because they can lead to illnesses (severe pneumonia) upon inhalation.

In the research project “Detection of Legionella in aerosols from cooling towers” (UFOPNO FKZ 3712 61 202) a sensitive detection method for Legionella in the air from cooling towers (emission measurement) and in the ambient air should be developed. It should also be investigated, how Legionella bacteria are released from biofilms in cooling plants into the air and how long the Legionella can survive there under different conditions (temperature, humidity).

For a sampling of possibly Legionella-containing aerosols from cooling towers a process using wet cyclone (Coriolis method) was developed. For the subsequent quantitative detection of Legionella in the collected air samples both a cultural method (ISO 11731 and DIN EN ISO 11731) and a molecular biological qPCR detection was established. In the combination of both methods, a detection limit of 5.5 CFU/m³ air or 60 GUF/m³ air could be achieved. An adverse impact of potential air matrix components on the detection method could not be shown.

Regarding the possible release of Legionella from biofilms, no quantitative relationship between Legionella concentrations in the cooling water, in biofilms and in the emitted aerosols were detected in 10 practice facilities. In none of the aerosol samples Legionella were detected culturally. However, by qPCR Legionella were detected in the same air samples. Generally, even at high concentrations of Legionella in cooling waters it is not necessarily to expect Legionella-contaminated aerosols. Laboratory studies on the survival of Legionella in aerosols showed that cultivability decreased considerably after a short period during which the bacteria remained in the air of a bioaerosol test chamber. Variations in temperature and humidity didn’t influence the cultivability of Legionella significantly.

BIO

YEV-FG01

Two novel yeast species from the gut of two different termite species

S. Handel1, T. Wang1, A. Yurkov2, H. König1

Johannes Gutenberg University of Mainz, Institute of Microbiology and Wine Research, Mainz, Germany

Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany

Question: The termite gut is a complex microbione. It contains a diverse community of microorganisms (Archaea, Bacteria and yeasts). Furthermore, flagellates are present in lower termites. The microbiotic gut community of microorganisms (Archaea, Bacteria and yeasts).

Methods: Microbial enrichments of yeast symbionts were performed in Vogel’s minimal salt medium and glucose-yeast extract-peptone (GYP) medium in the presence of antibiotics. The enrichment cultures were obtained on agar plates and axenic cultures by micromanipulation (membrane technique, [2]). Several tests were performed to characterize the physiological properties of the novel species (i. a. API tests, sugar-based polymer degradation assays, 4-methylumbelliferyl (4-MUF)-assays). The taxonomic position was determined by sequencing of suitable genome regions (ITS, SSU, LSU, RPB1, RPB2, TEF, MtSm).

Results: The novel yeast species were able to degrade azurine-crosslinked xylan. 4-MUF-β-xylanolyse and 4-MUF-β-xylanolyse were degraded by both species. Weak activities of α-L-arabinofuranosidasen, α-D-glucopyranosidases and α-D-mannopyranosidases were detected for at least one of the isolated enzymes. Cellulase and laccase activity was absent. Vitamin free growth was possible in both cases. One species was identified as a basidiomycote which is closely related to the Cryptococcus clade. The second, ascomycotous species was related to the Sugiyamaella clade.

Conclusion: Two new yeast species are in axenic cultures. They originate from the gut of two different termite species. Both species isolates degrade xylan. 4-MUF-assays demonstrate the ability of hemicellulose side chain-cleavage (α-L-arabinofuranosidase, α-D-glucopyranosidase or α-D-mannopyranosidase). This implicates a symbiotic role in the degradation of hemicellulose in the respective host gut. The new species could be promising sources for the isolation of novel enzymes, such as xylanases.

YEV-FG02

Three alcohol dehydrogenase genes are responsible for ethanol degradation in *Y. lipolytica*

M. Gatter1, S. Ottlik1, Z. Kvesvi1, G. Barth1

Technical University Dresden, Institute of Microbiology, Dresden, Germany

The non-conventional yeast *Y. lipolytica* is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and different hydrophobic molecules [1]. Although most metabolic pathways for the utilization of these substrates have been clarified by now, the responsible genes for ethanol degradation have been neither identified nor characterized. It was still unclear whether ethanol is degraded by alcohol dehydrogenases [2] or by an alternative oxidation system [3].

In order to detect the genes that are required for ethanol degradation in *Y. lipolytica*, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (*FAO1*) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of *ADH1, ADH2 or ADH3* is required for ethanol utilization in *Y. lipolytica*. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. *Adh2p* is considered to be the main enzyme for ethanol degradation because it showed by far the highest enzyme activity of the three enzymes. As *Y. lipolytica* is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol [1]. To establish alcoholic fermentation, the respective key genes of *S. cerevisiae*, ScADH1 and ScPDC1, were overexpressed in an ADH deletion strain of *Y. lipolytica*. But instead of producing ethanol, the respective strain regained the ability to use ethanol as single carbon source and was still not able to grow under anaerobic conditions.

YEV-FG03

Tripterpenoids from *Sachcharomyces cerevisiae*

A. Lewandowski1, T. Polakowski1, C. Lang1

Organobalance GmbH, Berlin, Germany

S. cerevisiae is a potential source for industrial production of tripterpenoids. Numerous articles were published that describe modifications of the isoprenoid biosynthesis in yeast underlining the importance of the organism as well as the particular pathway for metabolic engineering approaches. In addition to the terpenoids found in yeast a vast number of molecules from this compound class could potentially be produced by means of metabolic engineering (Immethun et al. 2013).

Pentacyclic triterpenoids are found in plants and some of these molecules - like betulinic acid - show antifungal, antibacterial, and antiviral activity (Moses et al. 2013). Therefore, these molecules are of economical relevance and scalable production processes from renewable resources are needed. Here we present the introduction of enzymes needed for betulinic acid production in yeast. A major success factor for betulinic acid production is the choice of the best CYP (cytochrome P450 monooxygenases) and CPR (cytochrome P450 oxidoreductase) combination that allows oxidation of luleop to betulinic acid. The selection of an optimal heterologous oxidosqualene cyclase that form luleop from 2,3-oxidosqualene is additionally of importance to maximize betulinic acid yield. Together with the choice of a suitable host strain the generation of a new production strain for pentacyclic triterpenes is well underway (Lewandowski et al., in preparation).

Urm1 – a ubiquitin-like protein that functions in protein and tRNA modification

* A. Jüdes, A. Bruch, K. Thüring, R. Klassen, M. Helm, R. Schaffrath
University of Kassel, Johannes Gutenberg University of Mainz, Kassel, Mainz, Germany

Urm1 is a dual-functional protein, acting either as a ubiquitin-like modifier in a protein conjugation pathway termed urmylation or as a sulfur carrier in tRNA anticodon thiolation. Activation of the modifier depends on the E1-like enzyme Uba4 and involves the formation of a Urm1 thioisocarbamate. Since both Urm1 functions rely on thiocarboxylate formation, they are thought to be mechanistically linked. But this has not been investigated so far.

Therefore, we investigated how urmylation is affected under conditions, which are known to negatively affect tRNA thiolation. Here, we demonstrate that the conjugation of Urm1 is mediated by the same sulfur transfer pathway also responsible for tRNA thiomodification. This is also supported by a down-regulation of urmylation during sulfur starvation. In addition, we find that elevated temperatures decrease Urm1 protein levels and therefore overall urmylation in yeast, revealing a new possibility for environmental regulation of this protein modification pathway. Moreover, Uba4 mutants that were previously described to abolish thioisocarbamate formation were still able to allow impaired urmylation and tRNA thiolation, suggesting an alternative mechanism for Urm1 activation. Taken together, our results indicate that tRNA thiolation and urmylation are tightly linked processes, which rely on the same activation mechanism and have a comparable regulation.

YEV-FG06
Analysis of 25S rRNA Base modifications

*S. Sharma1, Y. Yang2, D. Hartmann2, K.-D. Entian1
*Goethe University Frankfurt, Molecular Genetics and Eukaryotic Cell Biology, Institute for Molecular Biosciences, Frankfurt a. M., Germany

Ribosomal RNA undergoes various modifications to optimize ribosomal structure and expand the topological potential of RNA. The most common nucleotide modifications in ribosomal RNA (rRNA) are pseudouridylations and 2'-O-methylation (Nm). In this study, performed by HECA box snoRNAs and C/D box snoRNAs, respectively. Furthermore, rRNAs of both ribosomal subunits also contain various base modifications, which are catalysed by specific enzymes. These modifications cluster in highly conserved areas of the ribosome.

Although most enzymes catalysing 18S rRNA base modifications have been identified, little was known about the 25S rRNA base modifications. In recent years, we identified all these base methyltransferases of the 25S rRNA. The m’A modification at position 645 in Helix 25.1 is highly conserved in eukaryotes and catalysed by the Rossman-fold like methyltransferase Rpr8 (Peszler et al., 2013). Using a combination of RP-HPLC, mung bean nuclease assay and a rRNA mutagenesis, we discovered that instead of one, yeast contains two m’A residues at positions 2278 and 2870 and identified Rcm1 and Nop2 which are both highly conserved in eukaryotes (Sharma et al., 2013a). m’A2142 modification of helix 65 of 25S rRNA is catalysed by Bmt2 (Sharma et al., 2013b), whereas m’U2634 and m’U2843 methylation are catalysed by Bmt4 and Bmt5 (Sharma et al., 2014).

PEF 126
Methanogens: New Energy Sources

* C. Schöne, M. Rother
Technical University Dresden, Institut für Mikrobiologie, Dresden, Germany

Methanogenesis is an important part of the global carbon cycle and exclusively carried out by methanogenic members of the domain Archaea. Most methanogenic archaea can use only one energy substrate, which makes it difficult to study the function of factors involved in methanogenesis by mutational analysis. Methanosarcina (M.) species are more metabolically versatile allowing disruption of individual methanogenic pathways by targeted mutagenesis. M. acetivorans cannot use hydrogen and carbon dioxide as growth substrates due to the lack of a functional hydrogenase system, but is able to grow on methylated compounds (e.g. methanol), acetate or carbon monoxide (CO). Common to methanogenesis from any of these substrates is involvement of the energy-converting methyltransferase MTR in Methanosarcina acetivorans. The ribosome assembly factor Nep1 responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Methanosarcina acetivorans. Yeast Nop2 and Rcm1 methylate C2278 and C2278 of the 25S rRNA, respectively. Nucl. Acids Res. 41: 9062-9076 [Epub 2012 Nov 23].

YEV-FG08
Hypermodification of eukaryotic 18S rRNAs

*B. Meyer1, P. Kötter1, J. Wöhnert1, K.-D. Entian1
*Goethe University Frankfurt, Molecular Genetics and Eukaryotic Cell Biology, Institute for Molecular Biosciences, Frankfurt a. M., Germany

The biogenesis and maturation of ribosomes in eukaryotes is a highly complex process requiring not only the ribosomal building blocks such as the ribosomal RNAs (rRNA) and ribosomal proteins (r-proteins). Ribosome biogenesis also depends on the concerted action of a large number of non-ribosomal proteins and small non-coding RNAs. Ribosomal RNA precursors become heavily chemically modified already during transcription as well as during their subsequent processing. A most conspicuous and unique modification in eukaryotic rRNAs is the hypermodification of U1191 of 18S rRNA to 1-methyl-3-(3-amino-3-carboxypropyl)-pseudouridine (m1acp3 U1191). This nucleotide, located in the vicinity of the decoding center of the ribosome, is synthesized in three steps, beginning with the snoRNA35 guided conversion of U1191 to m1A modification at position 645 in Helix 25.1 is highly conserved in eukaryotes and catalysed by the Rossman-fold like methyltransferase Rpr8 (Peszler et al., 2013). Using a combination of RP-HPLC, mung bean nuclease assay and a rRNA mutagenesis, we discovered that instead of one, yeast contains two m’A residues at positions 2278 and 2870 and identified Rcm1 and Nop2 which are both highly conserved in eukaryotes (Sharma et al., 2013a). m’A2142 modification of helix 65 of 25S rRNA is catalysed by Bmt2 (Sharma et al., 2013b), whereas m’U2634 and m’U2843 methylation are catalysed by Bmt4 and Bmt5 (Sharma et al., 2014).

The biogenesis and maturation of ribosomes in eukaryotes is a highly complex process requiring not only the ribosomal building blocks such as the ribosomal RNAs (rRNA) and ribosomal proteins (r-proteins). Ribosome biogenesis also depends on the concerted action of a large number of non-ribosomal proteins and small non-coding RNAs. Ribosomal RNA precursors become heavily chemically modified already during transcription as well as during their subsequent processing. A most conspicuous and unique modification in eukaryotic rRNAs is the hypermodification of U1191 of 18S rRNA to 1-methyl-3-(3-amino-3-carboxypropyl)-pseudouridine (m1acp3 U1191). This nucleotide, located in the vicinity of the decoding center of the ribosome, is synthesized in three steps, beginning with the snoRNA35 guided conversion of U1191 to m1A modification at position 645 in Helix 25.1 is highly conserved in eukaryotes and catalysed by the Rossman-fold like methyltransferase Rpr8 (Peszler et al., 2013). Using a combination of RP-HPLC, mung bean nuclease assay and a rRNA mutagenesis, we discovered that instead of one, yeast contains two m’A residues at positions 2278 and 2870 and identified Rcm1 and Nop2 which are both highly conserved in eukaryotes (Sharma et al., 2013a). m’A2142 modification of helix 65 of 25S rRNA is catalysed by Bmt2 (Sharma et al., 2013b), whereas m’U2634 and m’U2843 methylation are catalysed by Bmt4 and Bmt5 (Sharma et al., 2014).
AEP02
The Temperature Gradient Forming Device TGFĐ – a simple apparatus allowing high temperature microscopy

*R. Wirth1
University of Regensburg. Microbiology – Archaa Centre, Regensburg, Germany

Question: Light microscopy of (hyper)thermophilic microorganisms should be performed at high temperatures, e.g. 100 °C. Otherwise motility – which is often temperature-dependent - would go undetected.

Methods: A rather complex constructed thermomicroscope, developed in 1998, allows analyses at only one preset high temperature [1]. Here a newly developed apparatus is presented, which can be added onto any commercial light microscope, converting it into a thermomicroscope [2].

Results: The temperature gradient forming device TGFĐ allows analyses in temperature gradients of up to 40 °C over a distance of just 2 cm. Only this device, which can be used with heating rates of > 5 °C/s, enabled us to show that the hyperthermophile Methanocaldococcus villosus [3] can react within seconds to high temperature by starting motility - even if prestored for 9 months in the cold.

Conclusions: The TGFĐ can convert any commercial light-microscope into a “thermomicroscope”. The main advantages of the TGFĐ are the extreme fast heating time and the ability to analyze cells in a temperature gradient of up to 40 °C. Only use of this instrument enabled us to demonstrate temperature taxis in a hyperthermophile [3]; thermostax of prokaryotes had been described before only Escherichia coli.

AEP04
Possible SAM-dependent methyltransferase involved in [Fe]-hydrogenase cofactor biosynthesis

*L. Bai1, T. Fujishiro2, M. Schick1, J. Kahnt1, M. Rother1, U. Ermpler3, S. Shima2
1Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
2Technische Universität Dresden, Microbiology, Dresden, Germany
3Max Planck Institute for Biophysics, Frankfurt a. M., Germany

[Fe]-hydrogenase is found in many hydrogenotrophic methanogenic archaea and is over-produced when nickel is limiting. The iron in [Fe]-hydrogenase is part of the FeGP cofactor, which is composed of a redox-inactive low-spin Fe(II) ligated to a Cys176-thiolate, two CO, one pyridinol N, and one acetyl-C of the acetyl methyl substituent of pyridinol. The pyridinol ring is conjugated to guanine monophosphate. The pyridinol is highly substituted with two methyl groups and an acetyl group. In many methanogenic archaea, the hmd genes ([Fe]-hydrogenase structural genes) are clustered with lmd-co-occurring (hcg) genes (hcgA-G). The hcg genes are found in the genome of all methanogenic archaea containing the hmd genes, which suggests that the hcgA-G genes are involved in biosynthesis of the FeGp cofactor. To identify the biosynthetic precursors, we retrosynthetically analyzed the FeGP cofactor isolated from the enzyme based on stable-isotope-labeling patterns. This analysis indicated that in the biosynthesis of the FeGP cofactor, a methyltransferase catalyzes formation of the 3-methyl group of the pyridinol moiety [1]. To analyze the function of the hcg genes, we employed a “structure-to-function” strategy [2,3]. Here we show that the crystal structure of HcgC resembles that of S-adenosylmethionine (SAM)-binding enzymes. In co-crystallization studies, SAM and its demethylated product, S-adenosylhomocysteine, bound HcgC, suggesting that HcgC is a SAM-dependent methyltransferase. Genetic studies confirmed HcgB and HcgC as key biosynthetic enzymes. Based on the results, we propose that HcgC is a methyltransferase catalyzing formation of the 3-methyl group of the pyridinol moiety.

AEP05
New insights into the substrate spectrum of Methanomassiliicoccus luminyensis

*L. Kröninger1, U. Deppenmeier1
1Institute for Microbiology and Biotechnology, University of Bonn, Germany

Question: Little is known about the energy-conserving pathway of the gut human archaeon Methanomassiliicoccus luminyensis. Therefore, experiments with resting cells were performed to analyze the substrate spectrum of the organism in detail. Until recently it was thought that growth of M. luminyensis strongly depends on hydrogen as electron donor. Hence, the question was addressed whether other compounds could also deliver electrons to the energy-conserving system of the organism.

Methods: M. luminyensis cultures were grown to mid-exponential phase with trimethylamine or methanol in combination with H2 as substrates, harvested by centrifugation and washed twice with stabilization buffer to remove substrates while keeping the cells intact. All manipulations were done under strictly anaerobic conditions. Experiments were carried out in stopped 9 mL bottles containing 2 mL of cell suspension. The bottles were flushed with oxygen-free N2 or H2 and substrates were added. Methane production was determined by gas chromatography. Substrate consumption was also confirmed by growth experiments.

Results and conclusion: The experiments with resting cells of M. luminyensis demonstrated that the organism has a selective preference for certain substrates. While cells fed with methanol + H2 revealed the highest methane production rate, cells with methanamines + H2 as substrates showed a significantly lower methane production activity. Among methanamines, trimethylamine + H2 were the best substrates for M. luminyensis while dimethylamine + H2 resulted in a reduction of the methane production by about 50%. Resting cells could not use monomethylamine + H2 when the cells had been grown on methanol or trimethylamine + H2.

Additionally H2 was substituted by formate as electron donor in resting cell experiments. Cells could produce methane when formate plus
Fourteen gvp genes are involved in gas vesicle formation. The two major structural proteins are GvpA and GvpC, whereas the eight proteins GvpF through GvpM are accessory gas vesicle proteins. Not very much is known about the function of them. They occur in the exponential growth phase prior to the presence of large amounts of GvpA. Except GvpH and GvpI, all of them are required for gas vesicle formation. We propose that they are involved in early stages of gas vesicle formation, aggregates or form pre-structures that are ultimately enlarged by the addition of GvpA and GvpC. GvpD and GvpM both exhibit sequence similarities to GvpA (50-60%). Gas vesicle formation is inhibited by large amounts of GvpM and this inhibitory effect can be compensated by the simultaneous presence of comparable amounts of GvpH, GvpL or GvpI but not of GvpG[1].

Conclusions: Variants of GvpM were constructed to investigate their influence on gas vesicle formation. Also, we searched for potential interaction partners of GvpM to analyze its role in gas vesicle biogenesis.

Methods: Mutations in gvpM were introduced by mutagenesis PCR and the resulting plasmids were used to transform Hfx. volcanii WR340 together with a DM construct, containing all gvp genes required for gas vesicle formation except gvpM. Transformants were inspected for their ability to form gas vesicles. Ni-NTA agarose affinity chromatography was used to test protein-protein interactions.

Results: The exchange of non-polar to polar aa in the N-terminal region of GvpM with high similarity to GvpA (aa 13-24) resulted in Vac cells impaired in the formation of the major residues that are essential for gas vesicle formation and might offer contact sides to partner proteins. Point mutations in the region with high similarity to GvpA (aa 44-48) resulted in minor amounts of gas vesicles suggesting that this region is important for the function of GvpM. Deletions in the N-terminus indicated that the first ten aa are essential for gas vesicle formation whereas deletions of the last ten aa at the C-terminus were not required. Partner proteins of GvpM could be detected like GvpH, GvpJ and GvpL. An interaction of GvpM and GvpG was not observed [2].

Conclusion: GvpM plays an important role in gas vesicle biogenesis since single point mutations abolish gas vesicle formation. The hypothesis that non-polar residues are essential for gas vesicle formation and might offer contact sides to partner proteins is supported.

References:

AEP07

Stressors in the archaeal world – osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon

Nitrosopumilus maritimus

"L. Czech1, N. Widderich1, F. J. Elling2, M. Könneke2, N. Stöveken1,3, M. Pittelkow1, R. Riclea4, J. S. Dickschat4, J. Heider1,3, E. Bremer1,3

1 Medical University of Marburg, Laboratory for Microbiology, Department of Biology, Marburg, Germany
2 Université de Strasbourg, Institute of Biology, Strasbourg, France
3 Friedrich-Wilhelms-University Bonn, Kekulé-Institute for Organic Chemistry and Biochemistry, Bonn, Germany
4 Technische Universität Darmstadt, Microbiology and Archaea, Darmstadt, Germany

Methods: Bacterial and archaeal genomes were analysed bioinformatically for the presence of gvp genes and their gene neighbourhood. Growth of Ca. Nitrosopumilus maritimus was analysed with the addition of different salt concentrations and HPLC analysis revealed the production of both ectoine/hydroxyectoine. The characteristic for the key enzymes EctC and EctD were studied biochemically. The transcriptional unit of the gvp genes was studied in a PCR based method and qRT-PCR was used to analyse the expression levels.

Results: Database analysis of 557 archaeal genomes revealed that only 12 strains of the genera Nitrosopumilus, Methanohalobacter, or Methanobacterium harbor ectoine/hydroxyectoine gene clusters. Using the thaumarchaeon Ca. *N. maritimus* as a model, we demonstrated that its hyp-ectABCD-mscS gene cluster is functional and co-transcribed from a salt-inducible promoter leading to the production of both ectoine and hydroxyectoine in response to enhanced osmotic stress. The ectoine synthase (EctC) and the hydroxyectoine synthase (EctD) were biochemically characterized and their properties resemble those of their counterparts from *Bacteria*. The mscS gene, cotranscribed with the gvp genes, encodes a functional mechanosensitive channel (NmMscS), as demonstrated through complementation experiments with an E. coli mutant lacking all known mechanosensitive channel proteins (MscM, MscS and MscL).

Conclusions: Our data show for the first time that the effective stress protectants ectoine and hydroxyectoine are not only present in 19 bacterial phyla but are also found in at least 12 archaeal strains. We found that *Ca. N. maritimus* cells cope with high salinity not only through the synthesis of stress protectants-protective proteins but they already prepare themselves for an eventually occurring osmotic down-shock by simultaneously producing a safety-valve (NmMscS). Hence, the ectABCD-mscS transcriptional unit present in Ca. *N. maritimus* is a sophisticated genetic device that allows osmotically challenged cells to sequentially cope with increases and decreases in the external osmolality of their marine and estuarine habitat.
Biochemical studies of the two rhodanese-like proteins in *Hydrogenobacter thermophilus* TK-6

Question: Hydrogenobacter thermophilus TK-6 is a thermophilic and obligately chemolithoautotrophic hydrogen-oxidizing bacterium which was isolated from Izu, Japan. The optimum temperature of this bacterium is 70 °C and it can utilize hydrogen and thiosulfate as an energy source. Besides, phylogenetic analyses of 16S rRNA genes suggest that *H. thermophilus* is a member of the deepest branching order in the domain Bacteria. It is thought that ancient organisms utilized reduced inorganic sulfur compounds as the energy sources. Therefore, understanding the sulfur metabolisms in *H. thermophilus* is effective for the elucidation of the energy acquisition evolution of the life.

In sulfur metabolism, rhodanese is one of the most distinctive enzymes. Rhodanese is conserved in the three evolutionary domains and it catalyzes the conversion of sulfane sulfur within thiosulfate to cyanide and sulfate. The role of rhodanese as sulfur carrier and sulfur donor to another enzyme is known while the detailed function is still unclear.

In this study, we identified two genes which contain rhodanese-like domains in *H. thermophilus* and analyzed physiological functions to clarify the role of these two genes.

Methods: The genes which include rhodanese-like domains in *H. thermophilus* were identified by Basic Local Alignment Search Tool (BLAST). The motifs were characterized by multiple sequence alignment. To clarify the function of the genes, the mutant strains were constructed. The growth profiles of the mutants were measured. Sulfur and thiosulfate in the culture medium were also measured using colorimetric method and ion chromatography, respectively.

Results: Two genes containing rhodanese-like domains (HTH 0621 and HTH 1596) were identified from *H. thermophilus* genome and were named rhd1 and rhd2, respectively. Multiple alignment analysis showed both genes had active site residue for rhodanese. Furthermore, rhd1 had the homology to RNA 2-thiouridine synthesizing proteins at its N-termini. Three disruptant mutants (Δrhd1, Δrhd2 and Δrhd1Δrhd2 double mutant) were constructed and the biochemical growth profiles were measured. Growth rate in Δrhd1 strain did not change while accumulation of a large amount of sulfur in the culture medium was observed. Besides, consumption of thiosulfate became faster, suggesting Rhd1 is involved in sulfur and thiosulfate oxidation. Δrhd2 did not affect the growth profiles. It was suggested that Rhd2 was not able to complement the function of Rhd1 because Δrhd1Δrhd2 double mutant showed a similar phenotype as that of Δrhd1.

Conclusion: Two rhodanese-like proteins were identified in the genome of *H. thermophilus*. Growth profiles of disruptants suggested that Rhd1 had a role for sulfur and thiosulfate metabolism. Enzymatic analyses by using purified protein will be carried out to get further knowledge about those genes.

AEP10

Towards a genetic system for the thermophilic aceticogenic bacterium *Thermoanaerobacterium kivui*

Question: We aim to develop a genetic system for the thermophilic aceticogenic bacterium *Thermoanaerobacterium kivui*. The conversion of hydrogen and carbon dioxide to acetate is considered one of the most ancient energy-conserving biochemical pathways (1). In recent years, aceticogenic bacteria which reduce CO2 with electrons either derived from biomass, from hydrogen and/or carbon monoxide oxidation have attracted interest as potential whole cell catalysts for future biotechnological applications (such as syngas-to-biofuel or syngas-to-top value chemical conversions). A prerequisite for industrial application, but also for in-depth studies of physiology and gene regulation is the availability of a genetic toolbox. Many aceticogenic bacteria, however, belong to the Firmicutes, a phylum with effective defense mechanisms against foreign DNA. In consequence, only recently genetic systems became available for a few aceticogenic bacteria.

Methods: A method for cultivation of *T. kivui* on solid medium was developed. The minimal inhibitory pseudocentrornamin (MIC) for kanamycin was determined. Complementation of the inhibition was tested using an Escherichia coli-Thermoanaerobacterium shuttle plasmid containing a kanamycin resistance cassette and a Thermoanaerobacterium origin of replication.

Results: *T. kivui* optimally grows optimally at 60-65 °C with either hydrogen/carbon dioxide or C6 sugars as substrates, with a doubling time of about 2-2.5 h with glucose (2). On solid medium, colony formation was observed after 2-3 days in anoxic jars; with a plating efficiency of about 10-15 %.

Similar to other Thermoanaerobacteraceae (3), *T. kivui* was relatively tolerant to kanamycin; the addition of at least 200 mg mL⁻¹ of kanamycin was necessary to completely inhibit growth. Inhibition on solid medium was complemented by the plasmid with the kanamycin resistance cassette. The plasmid efficiently replicated in *T. kivui*, as it could be isolated from the latter with yields comparable to those from *E. coli* (0.5-1.0 mg DNA per mL of culture).

Conclusions: *T. kivui* exhibited natural competence and acquired the *E. coli*-Thermoanaerobacterium shuttle plasmid during growth on glucose on liquid medium; which conferred the ability to growth on solid medium containing kanamycin. Based on the shuttle plasmid, we are currently constructing an expression vector for production of thermophilic proteins as well as a suicide vector for genetic manipulations on the genome.

AEP12

Novel promoters provide flexible cellulase expression for metabolic engineering and biotechnological application of Sulfolobus acidocaldarius

M. Blum, S.-V. Albers, C. Bräsen, B. Siebers

1 University of Duisburg-Essen, Faculty of Chemistry/Biofilm Centre/MEB, Essen, Germany
2 Albert-Ludwigs-Universität Freiburg, Molecular Biology of Archaea, Freiburg, Germany

The thermocatalytic lifestyle of the crenarchaeon *Sulfolobus acidocaldarius* (78°C, pH 2-3) matches the conditions required for the conversion of lignocellulosic biomass. Together with an advanced genetic toolbox [2], *S. acidocaldarius* thus represents a versatile chassis for the biotechnological production of value added compounds from renewable second generation substrates. To further increase the flexibility of *S. acidocaldarius* as expression host and for metabolic engineering, the two promoters preceded the genes *sso1273* (Psso1273) and *sso2619* (Psso2619), each encoding a binding protein of a peptide-ABC transporter [1], were established. Vector construction based on a modified pSVAI450 [2] resulting in the constructs pBSMB1 and pBSMB2, accompanied by thermophilic β-galactosidase (lacS) reporter gene assays, indicated that both promoters allow for both the induction by cold shock (65°C) and tryptone (80°C). Psso2619 turned out to be advantageous in terms of efficiency whereas Psso1273 offered a higher temperature specificity which allows for tight regulation of induction. The applicability of the Psso2619 was further confirmed by cloning the eukaryotic gene encoding the thermostable cellulase *HM003039* from the fungus *Phialophora* sp. [3] under the control of the Psso2619 into a newly designed pCmalLacS derived expression vector. This provided the encoded protein with an N-terminal *S. solfataricus* derived signal peptide for protein excretion into the medium, as well as a C-terminal His6-StrepII-tag. Upon transformation and tryptone/cold shock induction, the tested thermostable cellulase gene, conferred the ability to the cellulose negative *S. acidocaldarius* WM0001 to degrade the cellulase analogue carboxyly-cellulose (CMC) as well as crystalline cellulose (Avicel) and beechwood xylan. This was indicated by halo formation on indicator plates and demonstrated metabolic engineering of *S. acidocaldarius*. These results further increase the applicability of *S. acidocaldarius* for metabolic engineering approaches which offer several advantages for industrial application.

References:
[1] Urich, T. et al. (2006), Science, 311, 996-1000
[2] Li, M. et al. (2008), BBRC, 369, 919-923

AEP14

Regulation of UV inducible pilus system in Sulfolobus acidocaldarius

T. Le, S.-V. Albers

1 University of Freiburg, Biology II, Freiburg, Germany

Microarray studies on *Sulfolobus* species in response to UV stress revealed a clear transcriptional response, including the repression of DNA replication and chromatin proteins and the upregulation of an operon which is responsible for biosynthesis of a special type IV pilus - ups pilus (UV inducible pilus of Sulfolobales). There are five proteins encoded in this operon: an ATPase (UpsE), a membrane protein (UpsF), two pilin subunits (UpsA, B) and a protein of unknown function (UpsX). The formed pilus lead to species specific cellular aggregation in which the cells exchange DNA to repair the UV damaged genome.

Deep sequencing studies on *S. acidocaldarius* cDNA suggested a primary TSS (transcription start site) in front of upsX and secondary TSSs in front of upsE and upsA. However, so far, it remained unclear how the ups operon is regulated. In order to understand the promoter of upsX, which is thought to be the primary promoter of the ups operon, a LaCes reporter assay was employed.

With the use of this assay we determined the minimal size of the upsX promoter to be 53bp. Interestingly, we found a 6 nucleotide-motif within this region that could also be found in other UV-inducible promoters at approximately same location. Substitution of the nucleotides within this motif resulted in a significant reduction of the promoter activity. Thereby we might have found a “UV inducible box” in the promoter regions of genes related to UV response in *Sulfolobus* species.

This study has given the first hints about regulation of the UV response in *Sulfolobus* species, which could lead to further understanding of responsive mechanism to environmental stress in Archaea.

AEP13

A sulfur oxygenase from the haloalkaliphilic bacterium Thioalkalivibrio paradoxus with almost no reductase activity

P. Rühli, U. Pölö, J. Braun, A. Klingl, A. Kletzin

1 Technical University Darmstadt, Microbiology and Archaea, Darmstadt, Germany
2 LMU München, Department Biology I – Botanik, Munich, Germany

Question: Sulfur oxygenase reductases (SOR) catalyze the oxygen-dependent disproportionation of elemental sulfur with sulfite, thiosulfate and sulfide as products and without external cofactors or electron donors. Usually, oxygenase and reductase reactions have a molar ratio between 4:1 and 10:1 and both activities cannot be separated. SORs are not widespread in nature and before long, their occurrence was restricted to (hyper-) thermophiles. Therefore, the best-studied SORs derive from the branches deeply in a phylogenetic dendrogram with a sequence identity of merely 29% compared to other haloalkaliphilic, mesophilic thermophiles. Thus, it was recently discovered that the enzyme activity depends on total osmolyte concentration rather than salt or compatible solutes.

Results: Electron micrographs and gel filtration showed that the *TpsSOR* forms large hollow ball-shaped homo-oligomeric structures of 15 nm in diameter similar to both *Acidium* enzymes. Thiosulfate and sulfite formation was detectable over a broad temperature (10-98°C) and pH range (6.5-11) with optima around 80°C and pH 9, respectively (265 U/mg protein). In contrast, hydrogen sulfide formation was detected at a maximum specific activity of only 0.03 U/mg protein, corresponding to less than 1% of other SORs. NaCl and glycine betaine concentrations up to 1 M did not have a significant influence, while higher concentrations led to a decrease of enzyme activity. The *TpsSOR* showed residual product formation with both solutes up to saturation conditions, suggesting that the enzyme activity depends on total osmolyte concentration rather than salt or compatible solutes.

Conclusion: Overall, the properties of the *TpsSOR* are comparable to other SORs with respect to structure and oxygenase reaction, the latter of which is nevertheless higher than usual. In contrast, the reductase activity is very low with product ratios almost down to 1:10.000. Hence, the *TpsSOR* represents a sulfur oxygenase with almost no reductase activity. The results suggest, that sulfide formation and sulfur disproportionation of the *TpsSOR* comes from a side reaction rather than from an integral step in the reaction mechanism of the enzyme.
glucose, L-arabinose, D-arabinose, D-xylene), sugar acids, alcohols, and peptides [1, 2]. Whereas the degradation pathway of D-glucose and D-galactose is well understood in hyperthermophilic archaea (for literature see [3]) only little is known about the degradation of other hexoses. The hexose L-fucose is a constituent of cell-envelopes in many pro- and eukaryotes as a fundamental component of exopolysaccharides [4]. However no information is available about the metabolism of L-fucose in archaea so far. Here we report - for the first time in archaea - on the L-fucose degradation pathway in *S. solfataricus*. The organism is able to utilize L-fucose as a sole carbon and energy source. Proteome and transcriptome studies on L-fucose compared to D-glucose revealed that during growth on L-fucose a small set of enzymes was strongly up-regulated, previously characterized from the D-arabinose degradation pathway. Crude extract measurements and characterization of recombinant proteins from *S. solfataricus* indicated that L-fucose is first oxidized to L-fucanate by the D-arabinose-1-dehydrogenase (SS031300) and then converted to 2-keto-3-deoxy-L-fuconate via the D-arabinoate dehydratase (SS03124). Subsequently, 2-keto-3-deoxy-L-fucanate is further converted to L-lactaldehyde and pyruvate by an KD(P)G aldolase (SS03197), which is a key enzyme in sugar degradation in archaea. Thus, the pathway previously shown for D-arabinose degradation in *S. solfataricus* appears to be promiscuous for L-fucose degradation.

1. Ulas et al., 2012; PLOS ONE 7: e45401
3. Bräsen et al., 2014; Microbiol. Mol. Biol. Rev. 78: 89-175

AEP16

AP-MS to detect novel RNA polymerase binding proteins in the hyperthermophilic archaeon Pyrococcus furiosus

F. Grünberger1, R. Deutzmann2, M. Thomm1, W. Hausner1

1University of Regensburg, Institute of Microbiology and Archaea Center, Regensburg, Germany
2University of Regensburg, Biochemistry Center, Laboratory for RNA Biologe, Regensburg, Germany

Question:

DNA dependent RNA polymerases (RNAPs) are multisubunit enzymes that carry out transcription in all three domains of life. The overall structure and subunit composition between archael RNAP and eukaryotic RNAP II are highly conserved. In general the archael transcription system is a simplified version of the eukaryotic system, but it lacks some of the well-described transcription factors found in Eukarya (e.g. TFIH). We investigated affinity purification coupled to mass spectrometry to find novel RNAP interacting partners.

Methods:

Modified strains of *Pyrococcus furiosus* were created with HisTags on RNAP subunits D, A and H. We used affinity chromatography under low salt conditions for purification to allow binding of additional proteins to RNAP. Samples of affinity purified RNAP were analyzed with MALDI-TOF mass spectrometry.

Results:

After statistical analysis of the resulting MALDI data we ended up with a short list of interacting proteins. Bioinformatical tools allowed us to identify novel as well as already known proteins. Furthermore transcription rate of the affinity purified RNAP containing additional bound proteins was significantly different from a highly pure reference RNAP.

Conclusion:

This investigation made it possible to detect novel proteins, that physically interact with RNAP from *Pyrococcus furiosus*. Further analysis showed that some of these proteins might play a role during archael transcription. In order to get an idea at which step of the transcription cycle they are involved, we currently try to express and characterize those proteins.

AEP17

The effect of point mutations on the activity of the glutathione-dependent, ETHE1-like sulfur dioxygenase from Acidithiobacillus caldus

P. Haas1, D. Seipel2, M. Bernhard1, D. Gleiditzsch1, A. Kletzin1

1Technical University Darmstadt, Microbiology and Archaea, Darmstadt, Germany
2University of Regensburg, Institute of Microbiology and Archaea Center, Regensburg, Germany

Question:

The oxidation of elemental sulfur (S\textsubscript{0}) in *Acidithiobacillus spp.* is an essential step in metal sulfide biocatalysis. *Acidithiobacillus* species are dominant bacilli in acidic biocatalyzing sites, where they perform the extraction of metal from poorly soluble metal sulfides like pyrite (FeS\textsubscript{2}). Oxidation of sulfur and inorganic sulfur species is an integral part of biocatalysis. Recently, a gene was identified in *A. caldus* encoding a sulfur dioxygenase (*sdo*), which catalyzes the oxidation of S\textsubscript{0} to sulfite with reduced glutathione (GSH). The protein shows a high similarity to a human mitochondrial protein, whose dysfunction leads to ethylmalonic encephalopathy (ETHE), a lethal hereditary disease based on an impaired sulfide detoxification in mitochondria. The active site contains a monocarbonyl iron site, however the reaction mechanism is not known. Here we present results of mutational studies on the iron ligands and the cysteine residues present in the amino acid chain in order to determine basic properties of the enzyme.

Methods:

The *sdo* gene was heterologously expressed in *E. coli* and proteins were purified via strep-tactin affinity chromatography. The enzyme activity was determined by colorimetric measurement of sulfite formation from sulfur. Point mutations of amino acids, presumed to be essential for enzyme activity, were created via site-directed mutagenesis of the gene.

Results:

The specific SDO activity was optimal at 45°C in 100 mM phosphate buffer pH 8 (1.45 U/mg) with 1 % S\textsubscript{0}, 50 uM FeCl\textsubscript{3}, and 200 uM GSH in the assay buffer. Mutation of the predicted iron ligands, (H113A, D130A, D130E and D130H) resulted in less than 3 % of wild type activity while H57A has 6 % residual activity. The iron content of the as-isolated mutant proteins was <0.05 mole per mole subunit with the exception of the D130E mutant (0.6:1). Mutants of the five cysteine residues (C177A, C177T, C180A, and C224A) had residual activities between 14 and 30 % of the wildtype.

Conclusion:

Altogether the SDO enzyme assay was optimized showing that not only GSH but additional iron is beneficial for activity. Activity assays and iron content determination confirmed the prediction of the iron ligands. In contrast, the cysteine residues seem to be non-essential for enzyme activity, although they might contribute to the overall performance of the protein.

1. H. Wang et al., 2014; Appl Microbiol Biotechnol 98:7511-22

AEP18

The role of apparent malate synthase and *β*-methylmalyl-CoA lyase in acetate assimilation in Haloarcula hispanica

*F. Borjian Bonou*1, *J. Hu*1, *H. Hou*1, *H. Xian*2, *I. Berg*1

1Albert Ludwigs University of Freiburg, Microbiology, Freiburg, Germany
2Chinese Academy of Science, Microbiology, Beijing, China

The methylaspartate cycle is an anaplerotic acetate assimilation cycle recently proposed in haloarchaea (I). In this cycle, acetyl-CoA is transformed to glutamate via the reactions of the tricarboxylic acid cycle and glutamate dehydrogenase. The rearrangement of glutamate into methylaspartate and its following deamination lead to mesaconate, which is then activated to mesaconyl-CoA, hydrated to *β*-methylmalyl-CoA and cleaved to propionyl-CoA and glyoxylate. Propionyl-CoA carboxylation leads to succinyl-CoA, thus closing the cycle, whereas the apparent malate synthase catalyzes the condensation of the glyoxylate with acetyl-CoA to malate. *Haloarcula hispanica* is a genetically tractable haloarchaeon which is capable to grow on acetate. The genome of this archaeon possesses all the enzymes required for the methylaspartate cycle, and deletion of the genes for the key enzymes of the methylaspartate cycle (glutamate mutase, methylaspartate ammonia-lyase, succinyl-CoA-mesaconate CoA-transferase and mesaconyl-CoA hydratase) results in disruption of the growth with acetate as a sole carbon source, thus confirming their participation in acetate assimilation (2). Surprisingly, however, the deletion mutants of two other key enzyme of the methylaspartate cycle, malate synthase (Hah_2476) and *β*-methylmalyl-CoA lyase (Hah_1341) were capable to grow on acetate, although the growth was impaired compared to the wild-type. Interestingly, these two enzymes are homologous, and the double mutants are not capable to grow on acetate. The biochemical analysis reveals that both enzymes catalyze (i) malyl-CoA lyase reaction (malyl-CoA → acetyl-CoA + glyoxylate), (ii) *β*-methylmalyl-CoA lyase reaction (β-methylmalyl-CoA → propionyl-CoA + glyoxylate), and (iii) malyl-CoA thioesterase reaction (malyl-CoA → malate + CoA). Enzyme assays and metabolite concentration determinations in the wild-type and mutant cells have shown that Hah_2476 is adapted to catalyze malyl-CoA formation from acetyl-CoA and glyoxylate, Hah_1341 to catalyze *β*-methylmalyl-CoA lyase reaction, and that malyl-CoA thioesterase activities of both enzymes are not physiologically relevant. Our data indicate the existence of a novel, yet-to-be-determined *β*-methylmalyl-CoA thioesterase in *H. hispanica*, and further confirm the functioning of the methylaspartate cycle in haloarchaea.

AEP19

Differentiation of the species of the genus Methanothermobacter by SAPD PCR and MALDI-TOF-MS

J. Kreuzil, A. Rabenstein, J. Küver, P. Scherer, H. König

Johannes Gutenberg University, Mainz, Institute for Microbiology and Wine Research, Mainz, Germany

Bremen Institute for Materials Testing, Department of Microbiology, Bremen, Germany

Hamburg University of Applied Sciences (HAW), Laboratory for Applied Microbiology, Faculty Life Sciences, Hamburg, Germany

Question: The family Methanobacteriaceae contains the three mesophilic genera, Methanobacterium, Methanobrevibacter, and Methanospirillum, and the only thermophilic genus Methanothermobacter, respectively. We wanted to find out whether there is a possibility to differentiate the species of the genus Methanothermobacter more precisely. So far, the species of the genus Methanothermobacter are difficult to distinguish by the described methods. Therefore, we checked two additional methods, the SAPD PCR and the MALDI-TOF-MS, for their potential to differentiate the thermophilic species of the genus Methanothermobacter.

Methods: The Specifically Amplified Polymorphic DNA PCR (SAPD PCR) and MALDI-TOF-MS (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) were used throughout this study. SAPD PCR is a DNA fingerprinting method developed by Fröhlich and Pfannebecker to differentiate species and strains of different organisms including Bacteria, Archaea, and Eucarya (Fröhlich and Pfannebecker 2007). Species-specific spectral patterns can be obtained by MALDI-TOF-MS that are not influenced by the applied medium, the age of the culture, or the growth conditions (Mellmann et al. 2008, Jensen and Arendrup 2011).

Results: Methanothermobacter crinale, Methanothermobacter defluvi, Methanothermobacter marburgensis, Methanothermobacter tenebrarum, Methanothermobacter thermophilus and Methanothermobacter wolfeii of the genus Methanothermobacter were investigated. Each of the investigated eight species of Methanothermobacter showed a species-specific banding pattern by SAPD PCR and a species-specific spectral pattern by MALDI-TOF-MS.

Conclusion: The differentiation of the species of the genus Methanothermobacter was possible by SAPD PCR and MALDI-TOF-MS. These two methods can therefore be used to identify thermophilic methanogens besides morphology, nutritional versatility, growth temperature, cell wall structure and G + C content of chromosomal DNA.

AEP20

Biogas production under high pressure

T. Türk; K. Hackner; R. Zimmermann; A. Lemmer; W. Merk; H. König

1Institute of Microbiology and Wine Research, Johannes Gutenberg University of Mainz, Mainz, Germany

2State Institute of Agricultural Engineering and Bioenergy, Hohenheim University, Hohenheim, Germany

Question: Today, the rising global energy demand is predominantly met by fossil energy resources. Thus, the utilization of renewable energy resources has gained increased political attention. The European Union approved a strategy for covering 20% of the gross domestic energy consumption by renewable energy resources until the year 2020. In this context biogas produced in rural biogas plants with special emphasis on the genus Methanothermobacter.

Methods: The family Methanobacteriaceae contains the three mesophilic genera, Methanobacterium, Methanobrevibacter, and Methanospirillum, and the only thermophilic genus Methanothermobacter, respectively. We wanted to find out whether there is a possibility to differentiate the species of the genus Methanothermobacter more precisely. So far, the species of the genus Methanothermobacter are difficult to distinguish by the described methods. Therefore, we checked two additional methods, the SAPD PCR and the MALDI-TOF-MS, for their potential to differentiate the thermophilic species of the genus Methanothermobacter.

Methods: The Specifically Amplified Polymorphic DNA PCR (SAPD PCR) and MALDI-TOF-MS (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) were used throughout this study. SAPD PCR is a DNA fingerprinting method developed by Fröhlich and Pfannebecker to differentiate species and strains of different organisms including Bacteria, Archaea, and Eucarya (Fröhlich and Pfannebecker 2007). Species-specific spectral patterns can be obtained by MALDI-TOF-MS that are not influenced by the applied medium, the age of the culture, or the growth conditions (Mellmann et al. 2008, Jensen and Arendrup 2011).

Results: Methanothermobacter crinale, Methanothermobacter defluvi, Methanothermobacter marburgensis, Methanothermobacter tenebrarum, Methanothermobacter thermophilus and Methanothermobacter wolfeii of the genus Methanothermobacter were investigated. Each of the investigated eight species of Methanothermobacter showed a species-specific banding pattern by SAPD PCR and a species-specific spectral pattern by MALDI-TOF-MS.

Conclusion: The differentiation of the species of the genus Methanothermobacter was possible by SAPD PCR and MALDI-TOF-MS. These two methods can therefore be used to identify thermophilic methanogens besides morphology, nutritional versatility, growth temperature, cell wall structure and G + C content of chromosomal DNA.

AEP21

Ammonia-oxidizing Thaumarchaeota and potentially fermenting Woesearchaeota dominate the archaeal community diversity in pristine limestone aquifers

C. Lazar, W. Stoll, D. Akobil, M. Herrmann, R. Lehmann, K.-U. Totsche, K. Küsel

1Institute of Ecology, Aquatic Geomicrobiology, Jena, Germany

2Institute of Geosciences, Jena, Germany

U.S. Geological Survey, Reston, USA

A considerable proportion of microbial communities in subsurface habitats is accounted for by Archaea, however knowledge of their role in biogeochemical cycles is limited. Furthermore, information on archaeal diversity in the terrestrial subsurface is even scarcer. Hence, we sought to assess the archaeal community diversity and their potential involvement in carbon fixation and utilisation, in two superimposed aquifers each characterized by different oxygen availability. Samples were obtained from eight groundwater wells ranging from 12 to 88 m depth in the Hainich region (Thuringia, Germany). Quantitative PCR of archaeal 16S rRNA genes revealed that Archaea accounted for up to 9% of the total groundwater prokaryotes. Analysis of the metabolically active archaeal communities, based on Illumina MiSeq RNA-derived archaeal 16S rRNA gene analysis, showed an overall dominance of two archaeal groups: the ammonia-oxidizing thaumarchaeotal Marine Group I (MG-I), and the presumably heterotrophic River Cluster V (RC-V) clade belonging to the recently identified Woesearchaeota phylum. More specifically, the lower oxic limestone aquifer was dominated by Mg-I Thaumarchaeota, whose cultured representative - *Nirgensymplus maritimus* - was shown to use an autotrophic pathway fixing CO2; as source of carbon. The upper oxygen-deficient aquifer was dominated by the RC-V archaea which could potentially use plant-derived carbohydrates as substrate. DNA was also extracted from rock samples recovered during the drilling of the wells. Initial results show that diversity is very low and the archaea detected so far belong to the Bathyarchaeota. CO2 DNA SIP carried out on passive sampler material revealed that sequences affiliated to a soil inhabiting uncultured archaeal clade, i.e. the soil crenarchaeotal group (or 1.1b sampler material revealed that sequences affiliated to a soil inhabiting uncultured archaeal clade, i.e. the soil crenarchaeotal group (or 1.1b
AEP22

Functional analysis of multiple general transcription factors in Sulfolobus acidocaldarius

“F. Schult,” C. Bräsen,” B. Siebers

University of Kiel, Institute of General Microbiology, Kiel, Germany

Beside unique features, archaea combine typical characteristics of bacteria and eukaryotes. Promoter structure and genetic information processing such as replication, transcription and translation, closely resemble that of their eukaryotic counterparts.

The archaeal transcription machinery consists of a multi-subunit RNA-polymerase (RNAP) and the general transcription factors (GTF) representing homologues of the eukaryotic TATA-binding protein (TBP) and the transcription factor TFII B (TFB).

The actual understanding of the transcription initiation implies that TBP binds to the TATA-Box. Subsequently, TFB binds to the TBP-DNA-complex and forms sequence specific interactions with a purine-rich TFB-responsive element (BRE). The N-terminal region of TFB recruits the RNAP to build the ternary pre-initiation complex. Generally, the archaeal transcription machinery is considered a simplified model of the more complex processes which are known from eukaryotes.

The thermoacidophilic crenarchaeon Sulfolobus acidocaldarius possesses three TFBs (TFB1, TFB2 and TFB3) and one TBP. TFB1 seems to be the most commonly expressed TFB1 homologue under standard growth conditions and supports transcription initiation in vitro (Bell and Jackson, 1998), whereas TFB3 is upregulated following UV-exposure (Götz et al., 2007) and acts as a co-activator in the presence of TFB1 (Paytubi and White, 2009). However, the role of multiple GTFs like TFB1-3 in crenarchaeota is still unclear and functions similar to bacterial sigma factors have been suggested.

The aim of this project is to study the functions of the TFB homologues, especially TFB2, and to investigate their roles in stress response.

Overexpression and purification of recombinant GTFs was performed successfully for TFB, TFB1 and RNA polymerase (in genome tagging in *S. acidocaldarius*). From TFB2 and TFB3 insoluble protein was obtained and alternative expression/purification strategies are currently established and optimized. The purified proteins were used for in vitro transcription, in vitro phosphorylation assays and EMSAs. Furthermore, reporter gene constructs (lacS) were established to determine promoter activities of the different GTFs in vivo in response to different stress conditions.

AEP23

Identification and effects of potential biofilm modulators on the intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii

“M. Lutz,” C. Bang,” C. Lohmann,” R. A. Schmitz

University of Kiel, Institute of General Microbiology, Kiel, Germany

Question: Methanosphaera stadtmanae and Methanobrevibacter smithii are the most common archaea in the human gut identified in 32.6 % and 99.4 % of 500 individuals, respectively [1]. Despite their significant prevalence, only little is known about their appearance in the human gastrointestinal tract compared to bacterial mucosa-associated representatives [2]. As previously shown, *M. stadtmanae* and *M. smithii* are able to form biofilms and are hence potentially present as such in the human intestine. Elucidating the effect of potential modulators on biofilm structure and identification of functional factors in biofilm regulation will provide a deeper understanding of methanoarchaeal biofilms.

Methods: *M. stadtmanae* and *M. smithii* were grown on plastic µ-dishes™ with 3 mL of minimal medium (DSM medium 120). Cells were fixed to the surface of µ-dishes by 2 % glutaraldehyde. Prior to imaging by confocal laser scanning microscopy (CLSM), cells were stained with a PBS buffer solution containing SYTO 9 and propidium iodide (LIVE/DEAD staining). For extracellular structure investigation, propidium iodide was substituted with DDAO (7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-yl)). The antimicrobial peptide FF24, a derivative of the human cathelicidin LL37, was added to planktonic and biofilm cultures in the exponential growth phase and after 2 days of growth, respectively (*M. stadtmanae* 7.5 μM, *M. smithii* 2 μM). For transcriptional profiling, total RNA was isolated from both, planktonic and biofilm cultures.

Results: DDAO-staining revealed particularly strong fluorescence signals in an area where *M. stadtmanae* cells appeared to be highly accumulated with other structural components. Exposure to the antimicrobial peptide (AMP) FF24 exhibited a deleterious effect on *M. stadtmanae* as well as *M. smithii* which was less pronounced for biofilms compared to planktonically grown cultures. High quality total RNA in high yields has been successfully obtained after establishing a modified RNA extraction protocol for planktonically grown and biofilm cultures of both strains.

Conclusion: Cells within a methanoarchaeal biofilm appear to be embedded in an extracellular matrix-like structure. Using DDAO, which is reported to be a nucleic acid dye completely impermeable to cells, we clearly demonstrated that extracellular DNA is a structural component of *M. stadtmanae* biofilms. Extracellular matrix potentially acts as a diffusion barrier which might explain why the cells grown as a biofilm are less affected than the planktonic ones by the AMP applied in this study. In future, transcriptome analysis of RNA extracts will help identify functional factors in methanoarchaeal biofilm regulation.

AEP25

3-Phosphoglycerate, a novel allosteric activator of pyruvate kinases from Thermoproteales

“A. Reinhardt,” U. Johnsen,” C. Davies,” P. Schönheit

Christian-Albrechts-Universität zu Kiel, Institut für Allgemeine Mikrobiologie, Kiel, Germany

M. Smith II 1

1Karlsruhe Institute of Technology, Applied Biology, Karlsruhe, Germany

2Helmholtz Centre for Infection Research, Computational Biology of Infection, Braunschweig, Germany

Pyruvate kinases (PKs) catalyze the last step of glycolytic pathways in all three domains of life. PKs of bacteria and eukaryata are allosterically activated by sugar phosphates, e.g. fructose 1,6-bisphosphate (1), or by AMP as shown for PK of Thermotoga maritima (2). So far, only a few PKs from archaea, from the hyperthermophiles Pyrobaculum aerophilum, Thermotogae tenax and Aeropyrum pernix, were characterized; these PKs did not respond to classical allosteric effectors (2,3). Recently, we solved the crystal structure of PK from *P. aerophilum* which resulted in the identification of the novel type of allosteric activator, 3-phosphoglycerate (3PG) (4).

Here we report the allosteric properties of PKs from various archaea including PKs of hyperthermophiles, thermocacidophiles, methanogens and halophiles: All PKs were purified as homotetrameric enzymes and exhibited sigmoidal saturation curves with PEP and/or ADP indicating positive cooperative substrate binding. The response of PKs to classical allosteric effectors and to 3PG was analysed: (I) As shown for PK from *P. aerophilum*, PKs from other Thermoproteales, Pyrobaculum islandicum, Thermoproteus ozoniosis and Calediviga maquilensis were activated by 3PG rather than by sugar phosphates or AMP. An exception was the PK from *Thermofilum pendens* which was not activated by 3PG.

The crystal structure of that PK was solved giving an explanation for the absence of 3PG activation. (II) The PKs from thermocacidophiles Sulfolobus solfataricus and Pyrococcus torridus and PK from Methanospirillum hungatei did not respond to either classical allosteric effectors or to 3PG. (III) PKs from haloarchaea and from Methanocaldococcus jannaschii were positively regulated by AMP; these PKs are phylogenetically related to bacterial AMP activated PKs and are likely acquired via lateral gene transfer from bacteria. Together, the data indicate that the novel allosteric regulator 3PG represents an activator of PKs from most Thermoproteales rather than of other archaeal PKs.

AEP25

Insights into the life of nanoarchaosomes

1Christian-Albrechts-Universität zu Kiel, Institut für Allgemeine Mikrobiologie, Kiel, Germany

2Helmholtz Centre for Infection Research, Computational Biology of Infection, Braunschweig, Germany

Microbial nanoarchaosomes thrive using a minimum of genetic information contained in cells with a size that is in some cases just enough to hold the necessary number of enzymes and ribosomes to sustain growth.
Here we present first insights into the life of Archaeal Richmond Mine Acidophilic Nanoorganisms (ARMAN) in highly enriched cultures under laboratory conditions. These enrichment cultures arose from acidophilic, stalconite-like biofilms of an abandoned pyrite mine in the Harz Mountains (Germany) (Ziegler et al., 2013). We designed an acidic, anoxic medium, which contains Fe(II)SO₄ as well as an organic carbon source as necessary compounds. It has a pH of 2.5 and a H₂/CO₂ atmosphere in the head space. According to 454 data only three different species remain in this enrichment cultures: two belonging to the Thermoplasmatiales and one to the ARMAN. Culturing experiments controlled with CARD-FISH show an active phase of the ARMAN and the Thermoplasmatiales after four to eight weeks. In this time a clear Fe(III) reduction is detectable as well as a decline of the pH. QPCR analysis revealed a concentration of 5×10⁷/1 mL for all Thermoplasmatiales and 2×10⁷/1 mL for the ARMAN after seven weeks of growth. First metagenomic analysis of the community revealed three almost complete genomes (99 % or 86 % for the Thermoplasmatiales and 82 % for the ARMAN-species). As one would expect, we found the genome size of the Thermoplasmatiales with 1.9 Mb or 1.6 Mb bigger than the ARMAN-genome with 1 Mb whereas the coding density is likely the same (78 % or 89 % for Thermoplasmatiales and 91 % for ARMAN). Besides the metabolic capabilities contained in the genomes, we will also present transcriptomic data describing the way how the organisms thrive in the enrichment culture.

AEPP6
Acetate formation and acetate activation in the halophilic archaean Haloferax volcanii
*T. Kuprat1, P. Schönheit1
1Christian-Albrechts-Universität zu Kiel, Institut für allgemeine Mikrobiologie, Kiel, Germany

Various halophilic archaea were found to generate acetate during exponential growth on glucose and to utilize acetate as a carbon and energy source [1;2]. Here we report the identification and characterization of enzymes involved in acetate formation and acetate activation in Haloferax volcanii. Transcript analyses of the encoding genes as well as growth studies with deletion mutants were performed.

Acetate formation: It was shown that the formation of acetate from acetyl-CoA is catalyzed by an ADP-forming acetyl-CoA synthetase (ACD, acetyl-CoA + ATP + CO₂ → acetate + ADP + CoA) encoded by HVO_1000. As shown by northern blot analysis this gene was specifically upregulated during exponential growth on glucose. The recombinant protein was purified and characterized as a 160 kDa homodimer. The functional involvement of the ACD in acetate formation was demonstrated by an ACD knockout strain showing an up to 70 % reduction of acetate formation.

Acetate activation: AMP-forming acetyl-CoA synthetase (ACS, acetyl-CoA + AMP + P₃ → acetate + ATP + CoA) that catalyzes the activation of acetate to acetyl-CoA was purified from acetate grown cells and the encoding gene (HVO_0896) was identified by MALDI-TOF. However, deletion of this gene did not affect growth of the mutant on acetate. Since eight additional paralogues ACS-genes are annotated in the genome of Haloferax volcanii, a functional replacement by other ACS is suggested. Transcript analyses and enzyme characterizations of selected ACS-paralogues were performed. Three ACS-paralogues were found to catalyze the activation of acetate in vitro. Single, double or triple deletion mutants of the respective genes were generated and growth on acetate was analyzed. With these methods two ACS-enzymes involved in acetate activation were identified. Further, enzymes involved in phosphoenolpyruvate formation from acetate were identified.

AEPP9
Analysis of the signal transduction by heme-based sensor kinases from the methanogen Methanosarcina acetivorans
*K. Fiege1, B. Molitor2, C. Twittenhoff2, C. Querebillo3, P. Hildebrandt3,4
1Technical University Kaiserslautern, Microbiology, Kaiserslautern, Germany
2Ruhr University Bochum, Physiologie of Microorganisants, Bochum, Germany
3Technical University Berlin, Institute for Chemistry, Berlin, Germany
4Max Planck Institute for Chemical Energy Conversion, Mülheim, Germany

The multidomain protein MsM from Methanosarcina acetivorans is one of the first examples for the biochemical characterization of an archaeal sensor kinase with autophosphorylation activity. It consists of two alternating PAS and GAF domains and a C-terminal H ATPase domain. A homolog to MsM is the putative sensor kinase MA0863, which shares numbers of archaeal 16S rRNA genes in the environmental DNA extracts using Archaea-specific primers. The archaeal diversity was highest in the sediment sample of and water samples; as well the number of bands derived from archaeal DNA was higher in the DGGE profiles of sediment samples than those of water samples. By molecular-based culture-independent analysis, all sequences fell into the phyla Euryarchaeota and Crenarchaeota. The library comprised new phylotypes The library comprised new phylotypes which consisted of five clones that exhibited low 16S rRNA similarity (90 - 95 %). two clones with 94 % and 95 % similarity to Halorgramm and Halalkalkococcus which could represent new species, as well as two unclassified archaeal phylotypes which exhibited 97 - 99 % similarity to uncultured archaeon clone.

AEPP8
Gene knock down in Archaea using CRISPRi
*A.-E. Stachler1, A. Marchfelder1
1Ulm University, Biology II, Ulm, Germany

Currently no methods are available to knock down genes in Archaea, in addition only a few regulatable promoters are at hand. Therefore, to study the function of essential genes in vivo, we developed a CRISPR-Cas based tool for the downregulation of genes in the halophilic archaean Haloferax volcanii. CRISPR-Cas systems can be repurposed as effective tools for genome editing and gene regulation in bacteria and eukarya, using the CRISPR-Cas type II sp. For archaeain Cas9 [1, 2]. Archaea do not possess type II CRISPR-Cas systems, and since H. volcanii is a halophilic archaean, the known bacterial Cas9 proteins might not be active in Haloferax. Therefore, we take advantage of the endogenous type I-B system of H. volcanii to repress gene expression. The endonuclease that degrades the target DNA in this system is Cas3. In a cas3 deletion strain, Cas proteins together with the crRNAs will bind to the target DNA, but since Cas3 is missing, the target DNA is not degraded. If the crRNAs are binding to the promoter region or coding region, transcription initiation or elongation is blocked (3, 4), thus expression of the respective gene is down regulated. Here, we show that CRISPRi can be employed successfully in Haloferax. For convenient and easy design of crRNAs for desired target regions we express the crRNAs independently of the Cas6 pathway using tRNA processing enzymes (5), resulting in so called icrRNAs (indepedently generated crRNAs). For efficient down regulation we use CRISPRi in a cas3/cas6 deletion strain. Deletion of the cas3 gene prevents generation of endogenous crRNAs, therefore the only crRNAs present in this deletion strain are the icrRNAs. Thus Cascade complexes in this strain contain only icrRNAs. We could furthermore show that overexpression of a catalytically inactive Cas3 variant as well as the proteins comprising the Cascade complex can enhance knockdown efficiency.

68% identity and 84% similarity with MsmS and contains an additional PAS domain at the N-terminus. The second GAF domain of both proteins covalently binds a heme cofactor via a cysteine residue. For MsmS, the redox state of the heme cofactor was shown to influence the autophosphorylation activity of the adjacent kinase domain [1]. For the investigation of the function of these archaeal signal transduction systems and their redox sensory function, the heme coordination structure was analyzed using UV-vis and Resonance Raman spectroscopy. Therefore, several variants of truncated MsmS were analyzed to identify the heme coordinating residues. First UV-vis spectroscopic analysis identified a histidine residue as the proximal ligand for the heme cofactor. Furthermore, the redox potential of wild type MsmS-GAF2 and a protein variant lacking the cysteine residue for heme binding were determined to investigate the redox sensory function and the influence of the covalent linkage on the oxidation state of GAF2. In order to increase the efficiency of heme incorporation into recombinant hemoproteins in Escherichia coli, a new procedure was established. Finally, the presented results will be discussed in the light of the putative cellular function of both heme-based sensor kinases.

AEP32
Crystal structure and activity profiles of promiscuous carboxylesterases from the Thauamarchaeon Nitrososphaera garrigensis linked to their metabolic function

Question: The archaeal strains Nitrosopumilus marinus, Methanobrevibacter smithii and Methanolobus sikkimensis cumulonimbus are known to be part of the human gut microbiota. Since the potential impact of these strains on human immune homeostasis was rarely evaluated until now, our study aims to elucidate the interaction of these archaeal gut inhabitants with the human immune system.

Methods: The response of human epithelial as well as immune cells due to the exposure of M. smithii, M. smithii and M. luminensis was elucidated by quantification of released cytokines, CLSM analysis, qRT-PCR and DNA microarray analysis. Isolation and purification of archaeal cell components was performed in order to examine the respective involved archaeal-associated molecular pattern.

Results: Whereas exposure to M. smithii leads to substantial release of pro-inflammatory cytokines after phagocytosis by immune cells, only weak activation was detected after incubation with M. smithii. Although M. luminensis was also found to induce high amounts of pro-inflammatory cytokines, activation by this archaeon was shown to be independent of phagocytosis by immune cells. By studying purified cell components of M. smithii and M. smithii, we found immunogenic properties of cell wall compounds as well as archaeal nucleic acids that might be recognized by known human recognition receptors. Conclusions: Overall, our findings strongly argue that archaeal gut inhabitants are specifically recognized by the human immune system. Interestingly, all examined strains lead to strikingly different immune responses. The discovered high immunogenic potential of M. smithii might argue for its potential involvement in the development of systemic intestinal diseases.

AEP37
Markerless gene deletion in Thermus thermophilus HB27

L. Wang1, J. Hoffmann1, H. Watzlakwie1, J. Altenbuchner1

Institut für Industrielle Genetik, Universität Stuttgart, Stuttgart, Germany

Thermus thermophilus HB27 is a gram-negative, aerobic bacterium growing at temperatures up to 85°C. With its specific amenable characteristics like high growth rates, cell yields, constitutive natural competence, high GC content (69%), and published genome sequence, *T. thermophilus* emerged as a laboratory model for studying the molecular basis of thermophila. The small genome of *T. thermophilus* contains few functional paralogues and consequently studying knock-out mutants is one appropriate approach to elucidate specific gene functions in this organism. The limited number of selection markers and the demand on mutants pushed the development of alternative, counter-selectable systems for markerless genome manipulation in *T. thermophilus*. Cytosine deaminase CoDA (EC 3.5.4.1) catalyzes the deamination of cytosine and its analog 5-fluorocytosine (5-FC) to uracil and 5-FU, respectively which are subsequently converted to UMP and 5-FUMP by Upp. Gene deletion system based on CoDa has been widely used in other organisms. In *T. thermophilus* HB27 no CoDa gene or orthologs have been identified. An application of heterologous coDa as counter-selectable marker for *T. thermophilus* HB27 has the great advantage that the wild type can directly be used because prior construction of a coDa deletion strain is not required.

We developed a new markerless deletion system for *T. thermophilus* HB27 using coDm (Tmar_1477) from Thermusthermobacter marianensis DSM 12885, whose properties are comparable to the GC-content and optimal growth parameters of *T. thermophilus* HB27. The coDm deletion system based on the sensitivity against the antimetabolite 5-FC was used to delete the bgt gene (TT_P0042) encoding a b-glycosidase and three carotenoid biosynthesis genes, CYP175A1, crtY, and cmt (TT_P0059/60/66) encoding a b-carotene hydroxylase of the P450 superfamily, a lycopene b-cyclase, and a phytoene dehydratase, on the megaplasmid pTET27 from the genome of *T. thermophilus* HB27.

AEP32
Crystal structure and activity profiles of promiscuous carboxylesterases from the Thauamarchaeon Nitrososphaera garrigensis linked to their metabolic function

J. Chou1, H. Kaljunen1, E. Nittinger1, M. Raby1, J. Mueller-Dieckmann2, W. Streit3

1University of Hamburg, Microbiology and Biotechnology, Hamburg, Germany
2EMBL Hamburg Outstation, c/o DESY, Hamburg, Germany
3University of Hamburg, Center for Bioinformatics, Hamburg, Germany

Candidatus Nitrosopumilus garrigensis Ga9.2 is a mesophilic member of the phylum Thaumarchaeota and its genome contains six putative α/β hydrolase genes (Spang et al. 2012). In an attempt to elucidate the function of the corresponding enzymes, the putative ORFs were cloned and successfully expressed in *E. coli* Rosetta-gami (DE3). Assays for lipolytic activity resulted in two clones with reproducible esterase activity.

The two carboxylesterases, namely EstN1 and EstN2, were biochemically characterized in detail. They showed a preference for para-nitrophenol esters with short-chained residues (C2; C4; C6), were cofactor-independent and had a temperature optimum of 40°C with an optimal pH at 7. Interestingly, the two esterases did not show any homology based on blast-searches (blastin, blastp, blastx) to already known esterases of other genus than *Nitrososphaera* and not more than 76% identity to putative α/β hydrolases from its closest relatives *Nitrososphaera evergladensis* SR1 and *Nitrososphaera viennensis* EN76 and their function is not known. While conserved domain searches suggest that EstN1 could be involved in the depolymerisation of polyhydroxalkanoates, the role of EstN2 remained unclear. The crystal structure of EstN2 was solved and diffraction X-rays to 1.5 Å resolution (Kaljunen et al. 2014). EstN2 revealed a classical α/β hydrolase fold. A structural alignment did not result in any similar enzyme structure, but a virtual substrate screening, i.e. a docking study against 3000 molecules of the BRENDA database, indicated a rather promiscuous binding pocket for various ester substrates. Furthermore, transmission electron microscopy (TEM) after immunogold labelling of an EstN2-specific antibody revealed that the enzyme is present both within and outside the N. garrigensis cells indicating also a possible function as an exoenzyme.

Synthetic polymers, commonly known as plastics, are a widespread and severe factor of pollution in natural environments. Their solid nature and their chemical inertness are both known to be important contributors towards their recalcitrance against biodegradation [1]. Recently, we reported the biodegradation of the water-soluble synthetic polymer polystyrene sulfonate (PSS) by the brown-rot fungus Gloeophyllum trabeum via a hydroquinone-driven D. Additionally, oxidative attack by white-rot fungi producing lignin-modifying exoenzymes was inefficient [2].

Here, we focused on the applicability of this biodegradation mechanism to solid polystyrene (PS), the fourth-most widespread synthetic polymer. No lignin-modifying exoenzymes was inefficient [2].

In order to elucidate reasons for the apparent inability of G. trabeum to substantially attack PS in contrast to PSS, low molecular weight model compounds were also applied. We found that PS likely gains its recalcitrance against biodegradation [1]. Recently, we reported the construction of the Fenton reaction. In contrast, the presence of sulfonate groups led to substantial degradation of their recalcitrance against biodegradation [1]. Recently, we identified the key pathways that were established with synthetic polymers.

Results:

All together, these results establish novel constraints for the biodegradation of synthetic polymers.

References:

Beta beware – microbial degradation of aromatic β-amino acids

S.-M. Dold 1, D. Litty 1, J.* Radul 1

1 Karlsruhe Institute of Technology (KIT), Chemical and Process Engineering, Karlsruhe, Germany

The metabolism of proteinogenic ω-amino acids is well investigated with respect to uptake, enzymatic conversion reactions and degradation as well as production and excretion. By contrast, little is known about the fate of β-amino acids (β-aa) which are often included in peptide-based natural compounds, presumably not least due to the high protease resistance of such “p-peptides”.

So profound knowledge of the biodegradation mechanisms of β-aa is essential in terms of (A) understanding defense mechanisms of microorganisms affected with these natural compounds (B) environmental aspects referring to the persistence of β-aa in soil and water (C) pharmacokinetics of these natural compounds when used as a drug, e.g. γ-cystostatics containing aromatic β-aa. Using β-phenylalanine as model substrate, we were able to calculate growth parameters, substrate usage and product formation during the fermentation of Burkholderia sp., thus gaining a first quantitative insight in the biodegradation of this β-aa [1] which is initiated by a transaminase reaction [2].

We are now testing additional β-aa as substrates and started to purify the responsible transaminase in order to investigate the substrate spectrum of our model organism and its enzymes.

References:

Conclusion: Physiologically active and dead mycelia both enhance PAH translocation in unsaturated porous media. Mycelia-based transport processes may be of particular importance at interfaces of air-, liquid- and solid-phases as often found in the vadose zone above NAPL contaminated groundwater.

BDP07

Anaerobic acetate degradation by Desulfococcus biaucatus – identification and characterization of potentially involved enzymes

J. Frey, D. Schleheck, B. Schink

University of Konstanz, Konstanz, Germany

In acetate degradation by aerobic and nitrate-reducing bacteria an ATP-dependent carboxylation reaction activates acetate to acetoacetate, which is subsequently converted to acetoclastic-CoA. In sulfate-reducing bacteria, a similar activation is energetically not possible and also acetoclastic-CoA was ruled out as a reaction intermediate [1]. Recent studies on the sulfate-reducing, acetone-utilizing bacterium Desulfococcus biaucatus exhibited an ATP- and TDP (thiamine diphosphate)-dependent activation, leading finally to acetoclastic-CoA [2, 3]. Furthermore, the genome of *D. biaucatus* was sequenced and comparative 2D-PAGE revealed some proteins which are specifically induced during growth with acetone, and therefore are potentially involved in acetate degradation [4]. Several candidate enzymes (two dehydrogenases, a TDP-dependent enzyme and a B1-dependent mutase) were successfully cloned and overexpressed in Escherichia coli. Purified recombinant enzymes were used for further analysis. One of these enzymes exhibited an aldehyde/ketone oxidoreductase activity, another enzyme showed acetoclastic-CoA reductase activity. Further characterization of each of these enzymes is supported by elucidation of the respective mechanism of acetate activation in *D. biaucatus*, which would represent a new biochemical pathway of acetate degradation.

References

BDP08

Applying immobilized laccase for removing pharmaceuticals from wastewater

E. Jahangiri, H. Cabana, A. Schulze, I. Thomas, D. Schlosser

1Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

2Université de Sherbrooke, Civil engineering, Sherbrooke, Canada

3Leibniz Institute of Surface Modification, Leipzig, Germany

Questions: An emerging issue of the 21st century is related to micro-pollutants increasingly detected in waters. Such compounds are typically found in the ng/L to the lower µg/L range and are often not or not sufficiently removed in conventional wastewaster treatment plants [1]. The development of innovative (waste) water treatment methods using enzymes offers the possibility to overcome known drawbacks of conventional wastewater treatment processes. The use of free enzymes in solution is limited due to lake of reusability, rapid denaturation and requirement of large quantities which will impact the overall cost of their use [2]. Immobilization is one of the most effective methods used to circumvent these drawbacks.

Methods: The present study addresses the immobilization of produced laccase from the aquatic ascomycete *Phoma* sp. UFH 5-1-03 on commercial membranes via electron beam irradiation [1]. The efficiency of immobilized and free laccase in the removal of environmentally highly relevant pharmaceuticals was investigated and compared using batch reaction mixtures at laboratory scale. A mixture of acetaminophen, mefenamic acid, naproxen, fenofibrate, bezofibrate, indomethacin, and ketoprofen was applied in influent, effluent from the WWTPs located in Magog (Quebec, Canada), buffer and Milli Q pure water. The (apparent) catalytic parameters, k_a and V_{MAX}, and the catalytic efficiency (in terms of V_{MAX}/k_a) between immobilized and free laccase for transformation of acetaminophen as a model micro-pollutant was assessed.

Results: Both free and immobilized laccase were quite efficient in the removal of pharmaceuticals under the conditions of real wastewater, without the need for buffering the respective reaction system. Acetaminophen and mefenamic acid removal by immobilized laccase in influent and effluent was around 60 % and more than 75 % for rest of batch incubation mixtures by immobilized and for all batches by free laccase. The immobilized laccase clearly showed higher V_{MAX} and V_{MAX}/k_a values despite displaying a higher k_a for acetaminophen.
Conclusions: The application of immobilized laccase for treatment of drugs in wastewater was efficient. The kinetic parameters indicated a higher catalytic efficiency for immobilized laccase than the non-immobilized.

BPD09 Anaerobic phenanthrene degradation by a sulfate-reducing enrichment culture
*A. Himmlerb1, Z. Farmani2, J. Kölschbach1, T. Bruls3, R. U. Mecnstocke1
1Helmholtz Zentrum München, Institut für Grundwasserökologie, Neuherberg, Germany
2Universität Duisburg Essen, Biofilm Centre, Essen, Germany
3Genoscope, Evry, France

Polycyclic aromatic hydrocarbons (PAHs) are among the most recalcitrant substances occurring in nature. They have a high toxicity which can result in negative health effects for living organisms. However, the anaerobic degradation pathways for polycyclic aromatic hydrocarbons are poorly investigated. For biological cleaning purposes it would be most useful to further expand the knowledge of the degradation pathways, especially in contaminated groundwater aquifers that serve as a resource for drinking water. With the world’s biggest natural asphalt lake, Pitch Lake in La Brea, Trinidad and Tobago, we had a source for a range of microorganisms able to degrade PAHs. We isolated a culture growing on phenanthrene as sole electron source and carbon source and with sulfate as terminal electron acceptor. First steps of phenanthrene degradation were assessed by metabolite analysis. We identified phenanthroic acid with LC-MS and GC-MS analysis, indicating a carboxylation as initial activation reaction. Metagenome sequencing of the enrichment culture produced an almost closed genome which is currently analyzed for phenanthrene degradation genes. Together with a biochemical characterization of the culture this will broaden our knowledge on anaerobic degradation of PAHs. Our long-term goal is the detection of novel marker genes for PAH degradation in PAH-contaminated aquifers and sediments and a more holistic understanding of the ecology of PAH-degrader populations in the pitch lake which can be taken as a proxy for oil-reservoirs.

BPD10 Elucidation of the metabolic pathway for SDS (sodium dodecyl sulfate) degradation in Pseudomonas aeruginosa
*G. Panasial, B. Philipp
1Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Münster, Germany

Question: Pseudomonas aeruginosa is an ubiquitous environmental bacterium that can act as an opportunistic and nosocomial pathogen. Its metabolic versatility and pronounced resistance against toxic chemicals enables it to survive and grow in hygienic environments where it can cause outbreaks in clinical settings. In this context, the frequently utilized toxic detergent sodium dodecyl sulfate (SDS) is used by P. aeruginosa as a growth substrate [1]. Previous studies demonstrated cell aggregation of P. aeruginosa during growth with SDS as a specific survival strategy [2]. Despite of the initial hydrolysis of the sulfate ester, the metabolic pathway including responsible enzymes for the SDS degradation remains unclear. In this study we address these unknown enzymatic steps.

Methods & Results: Based on a DNA-microarray analysis comparing SDS- and succinate-grown cells several genes with a plausible function in SDS degradation were identified. These candidate genes encode alcohol dehydrogenases, aldehyde dehydrogenases and enzymes for beta-oxidation. Currently, deletion mutants of the respective candidate genes are being constructed and analyzed in physiological experiments. So far, the deletion of a special alcohol dehydrogenase system exhibits a strong and interesting phenotype during growth with SDS.

Conclusion: The analysis of this catalytic pathway will give insight in how P. aeruginosa copes to grow with SDS and potentially other similar toxic substrates.

BPD11 Novel polyester-degrading enzymes from plant compost metagenomes
*J. Schmidt1, P. Hille1, R. Oeser1, R. Wei1, W. Zimmermann1
1Leipzig University, Institute of Biochemistry, Microbiology and Bioprocess Technology, Leipzig, Germany

Question: Synthetic polyesters are present in many aspects of our life. Because of their valuable properties, synthetic polyesters such as polyethylene terephthalate (PET) and polyurethane (PU) are applied in automotive, furniture, bedding, textile, packaging and other industries. The high amounts of industrially produced synthetic polyesters have resulted in a massive increase in plastic wastes. The related environmental pollution as well as the decreasing availability of raw materials require novel solutions for the recycling and degradation of these synthetic polyesters. Various thermostable actinomycetes growing in plant-containing compost material produces enzymes capable of hydrolyzing synthetic polyesters [1].

Methods: A metagenomic approach was used to isolate novel polyester hydrolases. Metagenomic DNA was extracted from different composting sites located in Leipzig, Germany. The DNA was used as a template for the construction of fosmid libraries as well as for PCR using degenerate primers. The resulting clones were screened on turbid agar plates containing the polyester substrates PET dimer (2PET), PU or PET polymer, respectively.

Results: With both methods, fosmid libraries and degenerate primers, several novel polyester degrading enzymes could be identified which showed differences in their substrate specificities as well as in their optimum reaction temperatures. The enzymes have been purified and characterized with respect to their polyester-hydrolyzing activity.

Conclusion: Several previously unknown polyester hydrolases have been isolated from plant compost metagenomes. The use of degenerate primers was shown to be a useful approach for the identification of novel polyester-degrading enzymes.

BPD12 Controls of anaerobic hydrocarbon degrader community structure along a longitudinal contaminant plume transect
*A. R. Szalay1, M. Farkas2, Á. Táncsics2, T. Luenders1
1Helmholtz Zentrum München, Institute of Groundwater Ecology, Neuherberg, Germany
2Szent István University, Department of Environmental Protection and Environmental Safety, Gödöllő, Hungary
3Szent István University, Regional University Center of Excellence in Environmental Industry, Gödöllő, Hungary

Hydrocarbons are among the major pollutants endangering groundwater quality. They occur as typical point source contamination and develop into a long contaminant plume on top of the groundwater table by spreading with the groundwater flow. Microbes can oxidize these compounds in presence of electron acceptors such as oxygen, nitrate, ferric iron or sulfate, but since they are used up rapidly, they have limited availability at the contaminant plume, compared to the amount of hydrocarbons. To understand these biogeochemical gradients along the plume shape the structure of specialized degrader communities and also determine biodegradation rates. Evidence from a vertical plume section supports this hypothesis [1], but longitudinal plume transects are more difficult to access and therefore less investigated until now.

In this study, we collected samples from a longitudinal transect of an aromatic hydrocarbon plume, along the groundwater flow path. We measured the concentration of typical electron acceptors and hydrocarbons and linked these to the diversity of the hydrocarbon degrader and total bacterial community via T-RFLP and sequencing of the benzylsuccinate synthase (bssA) and 16S rRNA genes. We also performed qPCR to quantify the abundance of respective populations.

Our results show clear shifts of electron donor (BTEX) and acceptor (oxygen, sulfate, nitrate, ferric iron) concentrations along the plume transect. We observed the highest diversity of degraders at the upstream and downstream fringes of the contaminant plume, where electron acceptors were more available. In contrast, we found a very specialized low-diversity community in the plume core, where the environment causes high selection pressure on the bacteria: electron acceptors are hardly available and high hydrocarbon concentrations may also have a toxic effect as well. We also observed great shifts in overall bacterial community composition along the contaminant plume, which was also clearly linked to changing electron acceptor and donor availability. Based on these findings, we propose a conceptual model of how these
geochemical gradients affect degrader community diversity and performance at the different plume compartments, complementing current concepts of controls for biodegradation in contaminated aquifers [2]. These results suggest that monitoring bacterial or degrader abundance and diversity as a proxy of biodegradation rates can be challenging, if spatially resolved data on the whole plume system are not considered.

BDP13

Global transcriptome changes in *Aromatoleum aromaticum* strain EbN1

L. Clermont, D. Han*1, W. Liesack*2, A. Becker*3, J. Heider*4

Philippus-Universität Marburg, Microbiology, Marburg, Germany

Max Planck Institute, Marburg, Germany

Philippus-Universität Marburg, LOEWE Center for Synthetic Microbiology and Faculty of Biology, Marburg, Germany

The facultative anaerobic denitrifying bacterium *Aromatoleum aromaticum* strain EbN1 is able to distinctively degrade hydrocarbons and phenolic compounds anaerobiically (1). The anaerobic degradation of the very similar compounds toluene, phenol and *p*-ethylbenzene is separately regulated for each substrate (2,3). Based on earlier experiments, sequence alignments and similarities to other hydrocarbon degrading organisms putative regulators have been assigned to the different degradation clusters (4). It was proposed that tolC, ethylbenzene and acetophenone degradation in EbN1 are under the control of the two component systems tdiRS, edhRS and adhRS, respectively. On the other hand, sigma-dependent regulators are probably responsible for the activation of the degradation of *p*-ethylbenzene (EtPh) and phenol (PdPh) (5). All of these proposed regulators can be found directly adjacent to the respective degradation operon. Recent results show a complex network of interactions between the regulators (6). To gain further insight into the matter EbN1 was cultivated with different carbon sources and the isolated mRNAs from these cultures were analyzed in a high-throughput sequencing approach. The results identify expected and unexpected changes in gene expression between the different conditions and shed new light on the complexity of the regulation network.

BDP14

Regulation of rdh gene expression by two-component system regulators in *Dehalococcoides mccartyi*

F. Greiner-Haas, J. Gleiche*1, U. Lechner*1

Martin-Luther-Universität Halle Saale, Microbiology, Halle (Saale), Germany

Reactive dehalogenases are the key enzymes in organohalide respiration, whereby halogenated compounds serve as electron acceptors for energy conservation. The genome of the strictly anaerobic bacterium *Dehalococcoides mccartyi* strain CBDB1 contains 32 different reductive dehalogenase homologous (rdhA) genes, reflecting its capacity to dehalogenate a broad range of halogenated compounds. Two types of regulators are encoded adjacent to rdhA genes: MarR-type and two-component-system (TCS) regulators, suggesting a tight control of rdhA transcription. For one of the MarR regulators we have shown that it acts as transcriptional repressor (Wagner et al. 2013). The aim of the current study was to elucidate the role of TCS regulators in rdhA gene transcription in *D. mccartyi*. We focused on the rdhA gene cdbdA80, which is part of a conserved gene cluster in *D. mccartyi* strain CBDB1 and DCMBS and comprises two TCS genes, cdbdA79-78 and cdbdA82-83, located directly upstream or more distantly downstream, respectively, of cdbdA80. *D. mccartyi* is not accessible to genetic manipulation. Therefore, the promoters of the rdhA gene cdbdA80 (P*rdhA*) and the TCS-encoding genes cdbdA79-78 (P*tec*) were transcriptionally fused to lacZ and each was integrated in single copy into the *E. coli* host. Plasmids carrying the TCS genes cdbdA79-78 or cdbdA82-83 were transformed into these reporter strains. The promoter activity was assessed by beta-galactosidase assays. In addition, the number of rdhA transcripts was quantified in strains CBDB1 and DCMBS.

The results indicated activity of promoters P*rdhA* and P*tec*, suggesting their recognition by the RNA polymerase of the heterologous *E. coli* host. Upon transformation with the TCS-encoding plasmids the P*rdhA* activity increased further compared to empty-vector controls providing first hints to an activating function of both TCS on rdhA gene transcription. Transcription analyses of cdbdA80 and its orthologue in strain DCMBS revealed two orders of magnitude higher transcript levels in strain CBDB1 compared to strain DCMBS. A natural mutation was detected in the response regulator-encoding gene cdbdA78 not present in the orthologous gene in DCMBS, leading to the exchange of a conserved arginine to methionine within the dimerization domain. This might influence the activating function of the response regulator and thereby the observed constitutive synthesis of CdbdA80 on a variety of halogenated electron acceptors (Yang et al. 2015) in contrast to the orthologue DcmbB1 in DCMBS (Pöritz et al. 2015). The data confirm the importance of transcriptional regulation for organohalide respiration and for the expression of strain-specific dehalogenation properties.

BDP15

Analysis of the regulation of the lipopoly saccharide biosynthesis in *Escherichia coli* using quantitative mass spectrometry

Ruhr Universität Bochum, Medizinisches Proteom Center, Bochum, Germany

Ruhr Universität Bochum, Biologie der Mikroorganismen, Bochum, Germany

Leibniz-Institut für Analytische Wissenschaften, Dortmund, Germany

The ATP-dependent, membrane anchored and essential AAA̶ATPases associated with various cellular activities̶protease FtsH degrades the LpxC enzyme to regulate the lipopoly saccharide (LPS) biosynthesis in *Escherichia coli* (E.coli). LpxC is an essential deacetylase in *E. coli* and catalyzes the first committed step in the biosynthesis of Lipid A, which forms the membrane anchor of LPS. An imbalance between LPS and phospholipids leads to an accumulation of membrane stacks in the periplasm, which subsequently results to a growth defect of the cell. The LpxC degradation is strictly regulated in a growth-rate dependent manner. We assume that additional factors (e.g. interaction partner or modulator proteins) are involved in the LpxC degradation by FtsH. However, a direct influence of already known LpxC interaction partners on the LPS regulation could not be shown so far.

In this study we established a SILAC (Stable Isotope Labeling by Amino acids in Cell culture) approach in *E. coli* to improve the identification and quantification of the dynamic LpxC and FtsH interaction at different growth-rates. SILAC labeling drastically improves the quantification of co-purified proteins from the LpxC and FtsH complex. To maximize the labeling efficiency we used an auxotroph *E. coli* BL21 strain and tested different growth conditions. Furthermore we optimized the LpxC and ftsH expression and the respective purification protocols. After LpxC and FtsH purification and LC-Mass Spectrometry (Liquid Chromatography Tandem Mass Spectrometry) analysis 107 proteins were enriched in slow and 525 in fast growth-rates co-purified with LpxC and 327 proteins were enriched in slow and 64 in fast growth-rates co-purified with FtsH. By comparing highly enriched and overlapping proteins of the LpxC and FtsH interactome we identified 34 (slow growth-rates) and 23 (fast growth-rates) putative LpxC modulators which can provide us new insights into the regulation of the LPS biosynthesis. The influence of the identified, putative modulator proteins were validated in LpxC stability tests followed by biochemical characterization. Concluding, we were able to analyze the dynamic LpxC and FtsH interactome and enhanced the number of putative LpxC interaction partners and modulator proteins specific for different growth-rates with this quantitative mass spectrometry approach.

BDP16

2-Naphthol-CoA reductase – key enzyme in anaerobic naphthalene degradation

M. Willstein, M. Boll

Albert-Ludwigs-Universität Freiburg, Biologie, Freiburg, Germany

Question: Polyaromatic compounds (PAH) are a serious threat to human health and the environment. While the degradation of PAH under aerobic conditions has been studied in great detail, little is known about the mechanisms of enzymatic anaerobic PAH metabolism.

The anaerobic degradation of the model compound naphthalene has been studied in sulfate-reducing bacteria and is initiated by carboxylation to 2-
naphthoic acid. The latter is then activated by ligation to coenzyme A and further metabolized by three consecutive reductive steps\(^1\). In the sulfate-reducing enrichment culture N47, two homologous enzymes are involved in the key step of ring reduction, each belonging to the old yellow enzyme family of flavoproteins and catalyzing individual two-electron reductions\(^2\). The 2-naphthoyl-CoA reductase (NCR) is the first member of a novel class of deorganicizing reductases and catalyzes the two-electron reduction of 2-naphthoyl-CoA (2-NCOx) at an unusually low potential of -493 mV\(^2\). We studied the function of NCR, the so far only isolated and characterized enzyme involved in anaerobic PAH degradation.

Methods: Cofactors of NCR were characterized by EPR and UV/vis spectroscopy. Redoxtitration in the presence of mediators was performed to investigate the roles of the cofactors in catalysis.

Results: EPR data strongly suggests the presence of a [4Fe-4S]\(^1\)/\(^2\) cluster in accordance with the conserved binding motif in NCR. UV/vis spectroscopy indicated the presence of a neutral flavin semiquinone state of the semi-reduced enzyme that could be confirmed by EPR spectroscopy. Redoxtitration in the presence of mediators monitored by UV-Vis spectroscopy revealed two distinct redox transitions of the enzyme, one of which is in good accordance to the potential determined for the substrate/product pair.

Conclusion: The presence of two flavin cofactors in NCR with similar spectral features prevents unambiguous assignment of features to individual cofactors. Future work will focus on the generation of mutants for characterization of individual cofactors. The determination of the crystal structure is in progress and should give detailed insights to possible mechanisms of the challenging deorganicization catalyzed by NCR.

BDP17

Enzymes involved in anaerobic ortho-phthalate degradation

M. Mergelsberg, C. Ebenau-Jehle, S. Fischer, L. Eisenmann, M. Boll
Universität Freiburg/Institut für Biologie II, Mikrobiologie, Freiburg, Germany

Question: Esters of o-phthalate are widely used as plasticizers and significant amounts are constantly released into the environment. Primary degradation of these esters yields o-phthalate both under aerobic and anaerobic conditions (1). Aerobic o-phthalate degradation with oxygenases as key enzymes is well understood (1) while little is known for anaerobic bacteria. Different metabolic routes have been proposed (2, 3) however, in vitro evidence was missing.

Methods: We investigated anaerobic o-phthalate degradation by establishing an *in vitro* assay using cell-free extracts of three denitrifying bacterial cultures. Key enzymes were identified by differential protein induction/mass-spectrometry and genome analysis.

Results: Cell extracts of all tested denitrifiers catalyzed the succinyl-CoA-dependent conversion of o-phthalate to benzoic-CoA, whereas o-phthalate degradation with oxygenases as key enzymes is well understood (1) while little is known for anaerobic bacteria. Different metabolic routes have been proposed (2, 3) however, in vitro evidence was missing.

Conclusion: Anaerobic degradation of o-phthalate in denitrifying bacteria proceeds via activation to o-phthaloyl-CoA with succinyl-CoA as CoA donor followed by a decarboxylation to benzoic-CoA. Decarboxylation is catalyzed by a putative class of UbiD-like enzymes. In vivo the highly instable intermediate o-phthaloyl-CoA may be stabilized by complex formation between the CoA transferase and the decarboxylase.

BDP18

Characterization of 1,2-dichloroethene dehalogenation in Dehalococcoides mccartyi using compound-specific stable isotope analysis

S. Franke, C. Li, M. Elsner, I. Nijenhuis
Helmholtz Centre for Environmental Research Leipzig – UFZ, Isotope Biogeochemistry, Leipzig, Germany

Chlorinated ethenes and ethanes belong to the most common ground water and soil contaminants as they were widely applied in agriculture, e.g. as pesticides, or produced industrial and even naturally. While certain compounds, as e.g. cis-dichloroethene (cDCE), accumulate in the environment as a result of incomplete reductive dehalogenation of higher chlorinated ethenes under anaerobic conditions, dichloroethene (DCA) is an exclusively man-made contaminant released due to improper waste treatment at versatile production sites. Nevertheless, both are persistent, toxic or carcinogenic and influence the ground water and soil quality. In the last years, however, several *Dehalococcoides mccartyi* strains were described, known to be capable of complete dehalogenation of these compounds to non-toxic ethene, under strictly anaerobic conditions.

Compound-specific stable isotope analysis (CSIA) can be applied to gain knowledge about microbial transformation reactions. The technique is based on measurements of changes in isotopic ratios of selected substrates and products, which occur during reactions. The rate of the bond-cleavage is thereby affected by the nature of the isotope - heavy or light. Therefore, with the state-of-the-art technique, carbon, hydrogen, and chlorine isotope ratios can be used to investigate transformation mechanisms on a multi-element basis.

In this study we aimed to investigate the anoxic transformation of 1,2-DCA by *Dehalococcoides mccartyi* strain 195, isolated from an anoxic digester sludge, and BTF08, which was enriched from a contaminated groundwater in Bitterfeld (Germany). Dihaloelimination of 1,2-DCA to ethene was observed with relatively higher conversion rates for strain 195 compared to strain BTF08, similar to previous observations (1). Furthermore, the compound-specific carbon, chlorine and hydrogen stable isotope composition was analyzed for both the substrate, 1,2-DCA, and ethene to obtain information on the dehaloelimination reaction.

BDP19

A steroid dehydrodimerase from Novosphingobium sp. strain Chol11 as a key enzyme for determining the degradation pathway of the steroid compound cholate in a homogenous and a heterologous system

S. Franke, B. Philipp
University of Münster / Institute of Molecular Microbiology and Biotechnology, Münster, Germany

Question: Bile salts are surface-active C\(_{24}\)-steroid compounds which aid the digestion of lipophilic nutrients in the intestinal tract of vertebrates. A considerable part of them is excreted into the environment. Bacteria from different phylogenetic groups are able to degrade bile salts and use them as growth substrates. The degradation of the 3,7,12-trihydroxy bile salt cholate has been studied with *Pseudomonas* sp. strain Chol1. The metabolic pathway is initiated by oxidation reactions at the A-ring of the steroid skeleton followed by the degradation of the carboxylic side chain. The resulting C\(_{19}\)-steroid with a \(\Delta^4,5\)-structure is converted by DHADD into \(\Delta^3\)-dihydroxyrostadienedione (DHADD), which is further degraded via the so-called 9,10-seco pathway. The initiating reactions appear to be very widespread among steroid-degrading bacteria. However, recently we found that cholate degradation can be initiated by a slightly modified reaction sequence in *Novosphingobium* sp. strain Chol11. There, water is eliminated from C7 leading to the steroid degradation intermediate hydroxyrostostadienedione (HATD) with a \(\Delta^1,4\)-3-keto structure of the A-ring [1]. In this study we investigated this modified degradation pathway for cholate in strain Chol11.

Methods and Results: Growth experiments with different bile salts showed that 7-hydroxy group is required for the introduction of the \(\Delta^1\) double bond. Strain Chol11 could also grow with DHADD by transforming it into HATD. Based on this reaction we established an enzymatic assay for the purification of the respective enzyme. The pure enzyme encoded by the gene *nov2c400* has a molecular mass of 19 kDa and showed similarities to steroid dehydrodimerases from enteric bacteria. Assays with recombinant Nov2c400 indicated that 3-keto-\(\Delta^1\)-structure and

an unmodified side-chain are required for the dehydration of the steroid skeleton. Deletion of nov2c400 resulted in a prolonged lag phase during growth with cholate. Interestingly, this deletion mutant of strain Chol11 degraded cholate via DHADD. Moreover, heterologous expression of nov2c400 in Pseudomonas strain Chol1 led to formation of HATD, which did not support further growth of this strain.

Conclusion: In summary, the activity of the 7α-dehydroxylase Nov2c400 is responsible for channelling cholate degradation to the triene intermediate HATD in Novosphingobium strain Chol11. The enzyme could exhibit this activity also in the heterologous host Pseudomonas sp. strain Chol1, in which it caused a growth arrest.

BDP21
Biodegradation of pesticides in soils

1A. Muskaš, M. Käßner*, U. Hamer*, K. Nowak*
*2Helmholtz Centre for Environmental Research – UFZ, Environmental Biotechnology, Leipzig, Germany
*3WU Münster University, Institute of Landscape Ecology, Münster, Germany
*4RWTH Aachen University, Institute for Environmental Research, Aachen, Germany

Objectives of the Study: To study the turnover mass balance (CO2 evolution, extractable contaminant residues and non-extractable residues) of 13C-labeled 2,4-D and 13C15N-labeled Glyphosate in soils under different environmental conditions.

To investigate the incorporation of 13C-labeled into microbial fatty acids, and 13C15N-labels into amino acids from 13C-labeled 2,4-D and 13C15N-labeled Glyphosate in soils.

To quantify the extent of “biogenic residues” formation during the degradation of two pesticides under different environmental conditions.

To define how the environmental conditions (e.g. temperature, soil organic matter and soil pH) the biodegradation of pesticides and the extent of “biogenic residues” formation.

Material and Methods: Soil samples were collected from the 0 to 5 cm soil layer in the agricultural field located in Bad Lauchstädt, Germany. The soil organic matter (OM) of the soil and the pH were modified reaching 3 %OM and 4 %OM and pH 5.5 and 6.0, accordingly. Thereafter, the soil was spiked with a labeled pesticide (13C15N-Glyphosate or 13C2,4-D) and incubated according to the OECD 307 and at different temperatures (10 °C, 20 °C and 30 °C). The 13C15N evolution was quantified by Inorganic Carbon Analyzer and the isotopic composition (amino acids) were extracted and quantified and identified using UHPLC (Glyphosate) or GC-MS (2,4-D, amino acids) and the isotopic composition was measured by GC-IRMS.

Results: After 39 days of incubation, mineralization of 13C-Glyphosate in soil containing 3 %OM, 4 %OM and pH 6 at 10 °C, 20 °C and 30 °C was higher than 20 %, 45 % and 50 %, respectively. In the same experiment with soil at pH 6 and pH 5.5 at 10 °C, 20 °C and 30 °C the mineralization of glyphosate was lower and reached about 16 %, 35 % and 40 % of 13C-Glyphosate equivalents, respectively. Mineralization of 13C2,4-D in soil containing 3 %OM after 32 days of incubation constituted more than 18 %, 50 % and 70 % of 13C2,4-D equivalents at 10 °C, 20 °C and 30 °C, respectively. In the soil at lower pH (5.5 and 6), mineralization of this herbicide was lower and reached accordingly 2 %, 20 % and 20 % at 10 °C, 20 °C and 30 °C.

Conclusion: The first results showed a positive influence of the environmental conditions like temperature and OM content of soil on the extent of glyphosate and 2,4-D mineralization in soil.

BDP22
Evaluation of microbial degradation of organic matter in Kupferschiefer

2F. Giebner, S. Schopf*, M. Schöllmann*
1Technical University Bergakademie Freiberg, Institute of Bioscience, Kupferschiefer
2MTU Münster University, Institute of Landscape Ecology, Münster, Germany

The so called Kupferschiefer, originating from the late Zechstein Sea, is the most important source for copper and silver in middle Europe. Even though the only industrial exploitation is performed pyrometallurgically, biologically important potential for environmentally-friendly processing. Due to high carbonate loads in the host rock, flotation is strictly necessary prior to microbial leaching. Unfortunately, the organic matter leads to a decreasing flotation efficiency. Consequently a possible degradation of the organic matter has to be done beforehand to enhance the flotation efficiency and thus the leaching. Furthermore the OM degradation might lead to a release of valuable elements like vanadium bound to the organic matrix.

Due to the complex composition of the OM, degradation is hard to follow, let alone quantify. However, with the OxTop system we found not only a relatively easy approach to follow the degradation, but also to quantify the amount of degraded organic matter in terms of tetradeacene equivalents.

Using *Rhodococcus jostii* RHA1 and up to 75 %wt copper shale (Mansfeld area, Germany) as sole carbon source, we were able to follow the degradation in regard to consumed oxygen. A simple calculation of the degraded OM by using just the oxygen depletion is, in contrast to iron-oxi-disers, not possible. Hence we have chosen to use differing amounts of
n-tetradecane as an exemplary hydrocarbon, which is also naturally present in the shale.

Checking whether degradation occurred or not is easily achievable by using the OxidTop system. This allows to investigate the influence of an increasing pulp density as well as the degradation rate. Furthermore the automated measurement provides a tool for comparison of several strains with respect to their overall degradation capacity as well as their degradation rate. Additionally to the highest possible pulp density, both parameters will play a key role in future industrial applications.

BDP23

Characterization of the cellulolytic bacterial community in mesophilic and thermophilic biogas reactors

A. Pecht1, D. E. Körck2, V. V. Zverlov3, W. H. Schwarz4, W. Liebl1

1Technische Universität München, Department of Microbiology, Freising, Germany

Anaerobic biomass digestion in biogas plants is carried out by a microbial consortium that still lacks deeper insights. Its key players and cellulolytic activities are still insufficiently characterized. In culture-based and independent approaches we identified cellulolytic species and assessed their role and presence in the anaerobic biomass fermentation progress for biogas production. Therefore in vivo enrichment experiments were carried in biogas fermenters in nylon bags filled with crystalline cellulose (in sacco). Initially, the diversity of adherent microorganisms was characterized by 16S rRNA amplicon sequencing. To further characterize members of the enriched community we isolated cellulolytic species in selective culture media. Finally the identified bacteria were monitored by (RT)-qPCR in two mesophilic and thermophilic, constantly stirred tank reactors (CSTR) under ideal and stressed process conditions.

A 16S rRNA-gene analysis of the enriched microbial community revealed the presence of exclusively uncultured species distinctly related to formerly isolated cellulolytic species. In the probed thermophilic digesters two major taxonomic groups, related to *Halocella cellulolytica* (90-95 % 16S rRNA sequence homology) and *Clostridium thermocellum* (91-96 %), were strongly represented among other species out of the phylum Firmicutes. The enrichment in the mesophilic fermenter showed a more diverse taxonomic distribution of different *Firmicutes* species with 16S rRNA sequence homology to known cellulolytic species, e.g. *Acetivibrio cellulolyticus* (91 %), *Clostridium clariflavum* (90 %), *Clostridium straminislovenis* (98 %) and *Halocella cellulolytica* (95 %). Selective anaerobic cultivation under thermophilic conditions first showed an enrichment of the taxonomic unit related to *Clostridium thermocellum* but none of the species represented in the 16S RNA library was finally isolated under the chosen conditions.

With our new in sacco approach we identified potential key players among the cellulolytic bacteria that are promising target candidates for the development of (RT)-qPCR-based marker systems to monitor the cellulolytic community in anaerobic digestion processes. Several taxonomic groups were strongly represented in the in vivo enrichments but were outgrown by other species when cultivated ex vivo for isolation.

BDP24

Powerful interactions – Effect of electric fields on bacterial deposition and transport

Y. Shan1, J. Qin1, L. Wick1

1Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

Question: There has been increasing interest in employing electrokinetic phenomena to homogenize immobilized microorganisms and diffusion-retarded chemicals and to promote the biotransformation of chemicals, respectively. Here we tested the hypothesis whether the shear force induced by electrokinetic phenomena (electrohydrodynamic flow (EOF), electrophoresis) over a collector allows overcoming the attractive interaction energy of initial cell adhesion and promote bacterial transport. Different to a parabolic profile of pressure driven hydraulic flows, the plug-shaped velocity profile of EOF is quasi planar and starts above the electrical double layer at as well as the degradation rate. Furthermore at a distance to the collector surface, where initial bacterial adhesion takes place.

Methods: By varying the electrokinetic conditions in laboratory percolation columns we quantified the deposition and transport of bacteria of different physico-chemical surface properties (surface charge, contact angle, physiology). Transport and deposition data were analysed using the clean bed filtration theory and discussed in the frame of the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) theory of colloid stability.

Results: We found that the presence of DC may reduce bacterial surface coverage and initial adhesion efficiency of the cells in a range from 0 to 90 % depending on bacterial and electric field properties. Based on the data we present a model to predict electrokinetic-induced prevention of bacterial adhesion as based on XDLVO theory and the electrokinetic-induced shear forces acting on a bacterium.

Conclusion: We propose that DC fields may be used to electrokinetically regulate the interaction of bacteria with collector surfaces and, hence, also to possibly bridge the distance between bacteria and contaminants in biotechnological applications.

BDP25

Mixing of enantiomer and carbon isotope fractionation due to membrane transport in Sphingobium indicum strain B90A for α-hexachlorocyclohexane

Y. Liu1, P. Kohli2, R. La1, I. Nijenhuis1, H.-H. Richnow1

1Helmholtz Centre for Environmental Research – UFZ, ISOBIO, Leipzig, Germany

2University of Delhi, Department of Zoology, Delhi, India

In recent years, compound specific isotope analysis (CSIA) has become a routine approach for monitoring and quantification of in situ biodegradation of contaminants at polluted sites. This application is based on the stable isotope fractionation upon bond cleavage during the first irreversible reaction which leads to an enrichment of heavier isotopologues in the residual substrate fraction during biodegradation. Similarly, as biological pathways can be enantioselective, for chiral compounds biodegradation can lead to enrichment of one enantiomer over the other. Therefore, enantiomer fractionation (EF) can also be used as a tool for analyzing biodegradation of enantiomeric chemicals and it can be combined with CSIA. As mass transfer steps prior to the catalytic bond cleavage may mask the real magnitude of isotope and enantiomer effects of the reaction, we aimed to compare the isotope enrichment and enantomer enrichment of pure enzyme, crude extract and cells.

In order to model different mass transfer steps, *Sphingobium indicum* strain B90A was used for the degradation experiments, capable of the degradation of α-hexachlorocyclohexane (HCH). In this study, three sets of experiments were conducted. Intact cells (*Sphingobium indicum* strain B90A which contain both enzymes, LinA1 and LinA2), crude extract (cells of B90A disrupted via French press) and the pure enzymes LinA1/LinA2 were used for α-HCH degradation experiments, respectively.

During dehalogenation, both carbon isotope fractionation and EF were observed. Rayleigh equation was applied for describing isotope fractionation and EF. Comparing the EF factor, the absolute values were decreasing from protein over crude extract to intact cells. This was also in agreement with the enrichment factors of these three sets of experiments. Therefore we can conclude that the mass transfer steps affected the EF and isotope fractionation.

BDP26

Accumulation of N-acetyluramic acid-6-phosphate in nur2 mutants demonstrates peptidoglycan recycling in Gram-positive bacteria

M. Borisova1, A. Duckworth2, A. Schneider2, 3C. Mayer3

1Universität Tübingen, Mikrobiologie & Biotechnologie, Tübingen, Germany

Question: Bacteria degrade a substantial proportion of their peptidoglycan cell wall within one generation during vegetative growth. In Gram-negative bacteria, peptidoglycan turnover products mostly are trapped within the periplasm, whereas they are salvaged in a process called peptidoglycan recycling. Differently, turnover fragments in Gram-positive bacteria mostly are released into the growth medium. Whether they are recovered/recycled in these organisms is currently questioned. Here we show that *Bacillus subtilis, Staphylococcus aureus*, and *Streptomyces coelicolor*, differently growing and shaped Gram-positive model bacteria, recycle their own peptidoglycan wall during vegetative growth. They all possess orthologs of the *Escherichia coli N-acetyl-muramic acid-6-
phosphate (MurNAc-6-P) etherase MurQ, responsible for the reutilization of the cell wall sugar MurNAc. We showed accumulation of MurNAc-6-P in markerless chromosomal murQ deletion mutants but not the parental strains using mass spectrometry. This accumulation must be due to the recovery of the own peptidoglycan, i.e., recycling proceeds, and could be prevented by expressing MurQ in trans. MurNAc-6-P accumulation occurs during exponential growth, reaches a maximum in the late exponential/early stationary phase and remains at high level during stationary phase. Our findings indicate that in Gram-positive bacteria peptidoglycan recycling already occurs during vegetative growth, but is of major relevance during nutrient limitation, when growth is stalled and recycling may be used to overcome a shortage of peptidoglycan precursors. Accordingly, growth rates in exponential phase were not affected upon impairment of the MurNAc recycling but were reduced in stationary phase when growing in nutrient limited medium.

BIO27
Veterinary antibiotics: How to enhance their degradation in soils?

* N. Hirth1, U. Dörfler2, E. Topp3, J. C. Munch1, R. Schrödl1
1 Helmholtz Zentrum München, Research Unit Microbe-Plant Interactions, Neuherberg, Germany
2 Southern Crop Protection and Food Research Centre, London, Ontario, Canada
3 Western University, Biology, London, Ontario, Canada

Question: Sulfamethazine (SMZ) is a veterinary antibiotic, intensively used in Germany. By animal excretion it is transported to the fields via manure application. Once introduced into the soils, SMZ can pose several risks: The antibiotic can be taken up via the crops, the antibiotic can leach and contaminate ground and drinking water, the number of antibiotic-resistant bacteria may increase. To avoid or minimize these adverse effects on human health, it is a challenge to develop methods for the enhanced elimination of SMZ from the environment. Therefore the question is: How to enhance the biodegradation of veterinary antibiotics in agricultural soils?

Methods: Soil incubation experiments were conducted. A microbial community that possesses the ability to mineralize SMZ was extracted from a soil, established on a carrier material, inoculated into new soil, and degrading microbes on carrier material seem to be a highly promising approach for remediating agricultural soils. The microbial community on the carrier material was very stable after being inoculated to new soil and didn’t lose the SMZ mineralisation ability for a long time.

BIO28
Cyclohexane biodegradation using Acidovorax sp. CHX100: a novel strain for biocatalytic synthesis of valuable products?

*D. Salamanca Velandia1, R. Karande1, K. Bühler2, K. Engesser2, A. Schmid3
1 Helmholtz-Zentrum für Umweltforschung – UFZ, Solar Materials, Leipzig, Germany
2 University of Stuttgart, Biological Air Purification, Stuttgart, Germany

The primary aim of biodegradation is either the complete mineralization of hazardous organic compounds or their conversion to less toxic ones. Cyclohexane is a volatile calciner chemical which is widespread in air, soil and water through refinery processes and petroleum spills and thereby causing several hazardous issues in the environment [1]. In this context, we investigated the biodegradation pathway of cyclohexane in Acidovorax sp. CHX100 and analyzed the novel genes responsible for the respective enzymes oxidizing cyclohexane to cyclohexanol.

Question: Evaluate and analyze the most important enzymes of the cyclohexane degradation pathway and evaluate their biocatalytic potential.

Methods: A novel strain able to use cyclohexane as sole source of carbon and energy was isolated using a biotrickling filter as enrichment system. The complete pathway for cyclohexane degradation was analyzed using transposon mutagenesis, multiple alignment sequences and genome analysis. The functionality of some enzymes and biotransformation capabilities were verified in a heterogenous host.

Results: The novel strain Acidovorax sp. CHX100 showed a remarkable growth rate using cyclohexane as a sole carbon and energy source (generation time of 3.5 h) [2]. The strain CHX100 degraded 99.5 % of 7.5 mM cyclohexane within a period of 24 hours. Additionally, Acidovorax sp. CHX100 is able to use other short cycloalkanes (C5 - C8) as a sole carbon source. Metabolites analysis and alignment sequence suggested that Acidovorax sp. CHX100 has the enzymes for the transformation of the main cyclohexane metabolites (cyclohexanol and cyclohexanone) in a gene cluster [2]. Genetic analysis showed that Acidovorax sp. CHX100 possesses a novel cyclohexane monoxygenase (CYP_enox) belonging to CYP450 class I [3]. Gene expression and enzyme activity of CYP_enox were studied in the recombinant host Pseudomonas taiwanensis VLB120, analyzing the oxidation of cyclohexane to cyclohexanol [4]. Biotransformation of cycloalkanes (C5 - C8) to their respective cyclic alcohols was analyzed and studied by enzymatic activity [3].

Conclusion: The results demonstrate the potential applicability of Acidovorax sp. CHX100 and its native genes encoding enzymes converting cycloalkanes into value added compounds.

BEFP01
Comparative diversity of myxomycetes in two lowland forests in Mindoro Island, Philippines

*M. Pecundo1, M. Schnittler2, N. H. Dagamac2, T. E. dela Cruz1,3,4
1 University of Santo Tomas, Graduate School, Manila, Philippines
2 Ernst Moritz Arndt University Greifswald, Institute of Botany and Landscape Ecology, Greifswald, Germany
3 University of Santo Tomas, Department of Biological Sciences, Manila, Philippines
4 University of Santo Tomas, Research Center for the Natural and Applied Sciences, Manila, Philippines

Mindoro Island is one of the Philippines’ top tourist destinations. In 1973, UNESCO declared the Puerto Galera peninsula in Mindoro as part of the Man and Biosphere program as a result of an increase in human presence near its forest habitats. However, until today its forests remain poorly documented for its microbial flora, particularly the plasmodial slime molds or myxomycetes. Thus, this research study assesses the diversity, distribution and ecology of myxomycetes in two lowland forests in Mindoro Island - in Mt. T. N. H. Dagamanc1, Puerto Galera and in Mt. Siburan (MS), Sablayan. A total of 1,260 moist chambers (540 for MM, 720 for MS) were set-up from the collected substrata, i.e. aerial (AL) and ground (GL) leaf litter, woody vines (WV), and twigs (TW). In the study, a higher MC productivity (80 %) was observed from samples collected in Mt. Malasimbo than in Mt. Siburan. Among the collected substrata, AL had the highest MC productivity. Based on different diversity indices, higher species diversity was noted for Mt. Siburan (H’=1.27; H’=6.94; E=0.46) than in Mt. Malasimbo (H’=1.05; H’=4.56; E=0.41). However,
when the taxonomic diversity was computed between the two forest sites, a lower SG ratio, hence, a higher taxonomic diversity was observed for Mt. Malasimbo (SG=2.00) than Mt. Siburan (SG=2.65). In summary, a total of 52 species of myxomycetes belonging to 6 taxonomic orders and 17 genera were counted from this study. Although both study sites have almost the same type of vegetation, a relatively high number of species (45) was recorded in Mt. Siburan than in Mt. Malasimbo (28). Perhaps the anthropogenic activities in Puerto Galera may have influence the species composition in Mt. Malasimbo. Our study is the first to extensively document myxomycetes in Mt. Siburan in Sablayan Watershed Forest Reserve and the first to compare the myxomycete assemblages in two lowland forests in Mindoro Island.

BEFP02 Gut-derived Coriobacteriaceae increase white adipose tissue deposition in mice
S. Just1, K. Wegner2, P. Gerard3, P. Lepage4, S. Rohr1, T. Clavel1
1Technical University Munich, Chair for Nutrition and Immunology, ZIEL – Institute for Food and Health, Freising, Germany
2Universität Hamburg, Hamburg School of Food Science, Hamburg, Germany
3INRA, Micalis, Jouy-en-Josas, France

Introduction: Coriobacteriaceae are dominant members of the human gut microbiome and can metabolize cholesterol-derived metabolites such as bile acids. However, consequences of these bacterial functions for the host are unknown. The aim of the present study was to characterize effects of Coriobacteriaceae on lipid metabolism in vivo.

Methods: Male germ-free (GF) C57BL/6N mice were associated at week 5 of age with a consortium of four Coriobacteriaceae strains (Corio). At week 10, mice were randomly divided (n=12) into 3 groups fed different diets for 16 weeks (control, high-fat; control supplemented with 0.1 % primary bile acids). GF and specific-pathogen free (SPF) mice were used as controls. Colonization and GF status were analyzed by cultivation and 16S rRNA probe-based qPCR. Quantification of bile acids was performed using a LC-ESI-QqQ system.

Results: High-fat feeding resulted in significantly increased body weight (in g: GF, 42±3; Corio, 44±3; SPF, 49±5; p <0.001), and mice in all three colonization groups developed steatosis. All mice fed the bile acid diet stayed lean, but those colonized by Coriobacteriaceae were characterized by a significant increase in white adipose tissue (WAT) depots (in mg/g body weight: GF, 37±15; Corio, 65±15; SPF, 26±16, p<0.001). WAT gene expression of leptin was significantly higher and expression of the bile acids receptor TGR5 and the transcription factor FXR was lower in Corio vs. SPF mice fed the bile acid diet. Measurement of bile acids in the caecum and WAT revealed increased levels of taurine-conjugates in GF and Corio mice in contrast to higher levels of free primary, secondary and oxo-bile acids in SPF mice.

Conclusion: Interactions between Coriobacteriaceae and bile acids influence fat tissue deposition in mice primarily due to hyperplasia and not hypertrophy. The authors received financial support from the DFG and the French ANR.

BEFP03 Application of different Pseudomonas aeruginosa strains in bioelectrochemical systems
C. Berger1, E. M. Bosire1, M. A. Rosenbaum1
1RWTH Aachen, iAMB, Aachen, Germany

Among other virulence factors Pseudomonas aeruginosa, produces a range of redox active mediators called phenazines. These compounds have been shown to enable P. aeruginosa to interact with the anode of a bioelectrochemical system (BES), which leads to the generation of electrical current [1].

Question: Here we want to characterize the electroactive physiology of distinct P. aeruginosa strains with regard to the substrate and further investigate changes in the transcriptome, responsible for the observed behavior.

Methods: Using a three electrode setup, the electrochemical performance of P. aeruginosa PA14, PA01 and a BES isolate (KRPI) were investigated. Thereby chronoamperometry technique was used to measure current generation and cyclic voltammetry to assess the redox activity of the cultures. Cultivation was performed under micro aerobic conditions to allow interaction with the anode as terminal electron acceptor. The phenazines quantification was done through HPLC analysis. The physiological evaluation of the planktonic and biofilm fraction of the BES active cultures was performed by transcriptome analysis via RNA sequencing.

Result: The three strains of P. aeruginosa exhibit a distinct behavior in the BES setup. On average, the BES isolate KRPI generated higher current densities, which were mediated by increased amounts of phenazine-1-carboxylate (PCA). PA14, on the other hand, generated increased current densities when provided with the fermentation product 2,3-butanediol. Hereby the PCA derivate pyocyanin (PYO) was produced in prevalent amounts.

Interestingly the widely studied strain PA01 generated low current densities. While having the same genetic ability for phenazine production (two almost identical phz-operons for PCA generation) almost no redox mediators were produced. Hence, only low interactions with the electrode were possible. Due to the lack of full aerobic conditions, a thick biofilm was formed at the headspace-media interface, leading to two metabolic subpopulations within the reactor. To elucidate their contribution to mediator production and to back up the link to current generation, RNA profiles were investigated.

Conclusion: Due to its phenazine production P. aeruginosa is able to interact with the anode in a BES setup and thereby produces different current densities, depending on the given substrate. Even though the different strains have the same genetic capacities for phenazine production, big differences in their levels and spectra occur. Due to the complex quorum sensing network of P. aeruginosa these physiological changes are not limited to phenazine production but also have a substantial effect on biofilm formation along with other alterations. This study provides insight into the applicability of the different P. aeruginosa strains in redox mediated current production.

BEFP04 Ecological functions of microbial communities in the enigmatic desert Fairy Circles

J. Pascual1, A. Geppert1, J. Sikorski1, A. Yurkov1, K. J. Huber2, B. Bunk3, N. Juergens2, J. Overmann1
1Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Department of Microbial Ecology and Diversity Research, Braunschweig, Germany
2University of Hamburg, Biocenter Klein Flottbek, Hamburg, Germany

Questions: Fairy Circles (FCs) are vegetation-free circular areas with diameters up to 40 m that occur in Subsahara Africa in the arid grassland belt extending from southern Angola through western Namibia, to northern South Africa. The origin and maintenance of FCs has recently been linked to the activity of the sand termite Psammotermes allocerus that removes grass plants by localized herbivory [1]. Alternative hypotheses exist [2]. Whereas soil microbial communities differ between FCs and the surroundings, their role for the transformations in FCs is entirely unknown [3]. In the present study, a series of FCs were studied with respect to (i) the composition of microbial community structure, (ii) the spatial and temporal dynamic of microbial communities, and (iii) the role of particular taxa of microorganisms in the origin and development of FCs.

Methods: High throughput sequencing of bacterial 16S rRNA and rRNA genes and of fungal internal transcribed spacer sequences were conducted along transects across different FCs. Sandy soils as well as the tapetum (the organic layer covering the tunnels) of termite nests were analyzed. Bacteria and fungi from the tapetum and surrounding grasses were also recovered by high throughput cultivation techniques.

Results: The microbial communities present in the sandy soils of the circle center were highly similar for different FCs whereas the community composition changed markedly across single FCs. Even more pronounced was the difference between the microbial communities of the tapetum that contained mainly lignocellulose and hydrocarbons-degrading bacteria (Planomicrobium-Planococcus, Flavobacterium) and those found in the consolidated sandy soils (Bacillus, Geodermatophilus).

Conclusions: Particular bacterial groups were associated with the different environments, indicating their participation in the origin and development of FCs. One of the prominent microorganisms that might be involved is the fungal plant pathogen Cuvularia sp. which could be isolated from dead grasses.

Phosphate solubilization and multiple plant growth promoting properties of rhizobacteria isolated from chickpea (Cicer arietinum L.) producing areas of Ethiopia

C. R. Löscher1, R. A. Schmitz1, F. Assefa2, *M. J. Midekssa3

1Christian-Albrechts-Universität, Institut für Allgemeine Mikrobiologie, Kiel, Germany
2Addis Ababa University, College of Natural Sciences, Microbial, Cellular and Molecular Biology, Ethiopia
3Wellege University, Biology, Nekente, Ethiopia

Chickpea is one of the major legume crops widely grown in Ethiopia. The low availability of phosphorus in soil is one of the stresses that constrain the production of this crop in the country. However, there are bacteria which capable of solubilizing insoluble form of phosphorus in soil and make it available to the plant. Thus, this study was aimed at isolation and characterization of phosphate solubilizing bacteria from the chickpea rhizosphere. Fifty phosphate solubilizing bacterial strains were isolated from the soil samples, characterized biochemically and identified by 16S rDNA sequences analysis. The results indicated the presence of genera Bacillus, Bacillus, Brevibacillus, Burkholderia, Enterobacter, Enterobacter, Pseudomonas, Ralstonia, Sphingomonas and Stenotrophomonas. Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results showed that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes showed that 44 % and 18 % of them were capable of producing indole acetic acid and inhibiting the growth of Fusarium oxysporum in vitro conditions. A direct impact of several strains (Bacillus flexus, PSBC17), Pseudomonas fluorescens (PSBC33), Enterobacter sp. (PSBC35), Enterobacter sakazakii (PSBC79) and Enterobacter sp. (PSBC81)) on the growth of chickpea in pot culture has been demonstrated by the increase in the number of nodules, shoot dry matter, nitrogen and phosphorus concentration of shoot. Based on the results, we conclude that chickpea rhizosphere harbor phosphate solubilizing bacteria which are diverse in taxonomy and phosphate solubilizing efficiencies. Thus, consecutive studies should focus on field studies on those strains due to their potentially high importance for the nutrition in this area and in this context for the improvement of the sustainability of land use in the country.

Deep sequencing of V3 16S rRNA amplicons reveals the diversity of gut-associated Planctomycetes

* T. Kohn1, P. Rast1, J. Vollmer2, M. Jogler2, *A. K. Kaster2, C. Jogler2
Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Microbial Cell Biology and Genetics, Braunschweig, Germany
*Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Single Cell Genomics, Braunschweig, Germany

Planctomycetes are a phylum of bacteria inhabiting a variety of different environments. First detected from fresh water lake next generation sequencing revealed the ubiquitous presence of Planctomycetes in various habitats including marine and terrestrial environments. In addition, various microbiome projects have shown that even in the gut of different animals planctomycetal sequences can be found. In aquatic habitats, Planctomycetes are believed to play an important role in global carbon- and nitrogen-cycles e.g. the degradation of organic debris from higher organisms such as marine snow. Analogous functionality could be assumed for gut-associated Planctomycetes, as different phyla have been found to encode chitinases in their genomes. As wild boars are omnivores, their diet contains various sources of chitin e.g. fungi and insects. Since Planctomycetes are able to degrade a variety of other complex polymers, an involvement in the degradation of complex biopolymers in animal guts was proposed. Playing crucial roles in the gut flora of animals, it is also likely that Planctomycetes are associated with disease, should a shift in the gut microbiome e.g. triggered by antibiotic treatment occur. Although all currently described Planctomycetes are classified as non-pathogenic, recent case reports point towards pathogenic members of this phylum as planctomycetal DNA profiles were found in immunocompromised patients, suffering from pneumonia previous to antibiotic treatment. Here we present deep sequencing data of the gut microbiome of wild boar (Sus scrofa) and roe deer (Capreolus capreolus), giving an insight into gut-associated planctomycetal genera. The phylogenetic reconstruction based on near full-length 16S rRNA sequences reveals a distinct group of gut-associated Planctomycetes. With this approach we go one step further to reveal the relevance of Planctomycetes in the animal gut and their potential as crucial degraders in mammal-associated bacterial communities.

Taxonomic characterization of Corynebacterium isolates from bulk tank raw cow milk of different German dairy farms

* J. Zimmermann1, T. Schorle1, S. Rathmann1, M. Weber1, A. Lipski1
*Rheinische Friedrich-Wilhelms-Universität Bonn, Lebensmittel mikrobiologie und -hygiene, Bonn, Germany

Pathogenic and non-pathogenic species of the genus Corynebacterium are found frequently in raw milk and raw milk products. Among the raw milk associated Corynebacterium species are the human and animal pathogenic Corynebacterium amycolatum, Corynebacterium bovis, Corynebacterium ulcerans and Corynebacterium minutissimum, and the non-pathogenic species Corynebacterium casei that is well known as a starter culture for the production of smear ripened cheese. Routine identification to species level is difficult for Corynebacterium species because of high 16S rRNA similarity values, limited phenotypic markers and the presence of yet undescribed species in this habitat. The incompleteness of data about the genus Corynebacterium in raw milk is partly due to the low abundance and the lack of selective media for this genus. In this study, we used a tellurite containing selective medium to isolate Corynebacterium species from raw milk samples from seven dairy farms in Germany during a seven-month period, in order to complete the information about the diversity of Corynebacterium species in raw milk. We detected Corynebacterium species in raw milk samples from three farms. In samples from four dairy farms, no Corynebacterium were detected. Some of the isolated strains could not be reliably identified based on their 16S rRNA gene sequences and needed further identification by sequencing of their partial rpoB gene sequences. Corynebacterium xerosis and Corynebacterium variabile were detected in the samples of three resp. two different dairy farms. Corynebacterium callunae and Corynebacterium confusum were detected in several samples of the same dairy farm, whereas Corynebacterium lactis and Corynebacterium glutamicum were isolated from just one sample of one farm. The isolated strains showed the typical chemotaxonomic features for the genus. The 16S rRNA gene sequence of one of 25 isolates indicated the presence of a yet undescribed species, which demonstrates the underestimated diversity of this genus in raw milk. With these data, we were able to identify species associated with raw milk as well as farm-specific species and we could complement yet missing chemotaxonomic data of some Corynebacterium species. Although growth below 20 °C is rarely detected within this genus, we were able to demonstrate growth at 10 °C for single Corynebacterium strains from raw milk.

Growth at low temperature increased biomass production of food-associated bacteria

* W. Seel1, J. Derichs1, A. Lipski1
*Rheinische Friedrich-Wilhelms-Universität Bonn, Lebensmittel mikrobiologie und -hygiene, Bonn, Germany

For several psychrophilic species, an increased biomass yield was described at temperatures lower than the optimum growth temperature, which is defined by the highest growth rate (μmax). This effect is deviant to the prevailing conception for mesophilic bacteria that will have the largest cell yield at the temperature with the maximum growth rate. In contrast, various studies of our group with isolates from chilled food showed clearly increased biomass formation at low temperatures as well. All of these isolates were characterized as mesophiles by their growth rates, which are significantly higher at 30°C than at 10°C. Five isolates from chilled food and refrigerators and closely related reference strains of the species Escherichia coli, Listeria monocytogenes, Staphylococcus xylosus, Bacillus cereus, Pedobacter nutrimenti and Pedobacter panacaei were tested for the effect of growth temperature (30 °C and 10 °C) on the following parameters in complex and defined media: optical density, viable cell count, total cell count, cell dry weight, whole cell protein concentration and cell morphology, in order to determine at which temperature maximum biomass formation is obtained. Growth was monitored via OD625nm, and culture parameters were measured at the early stationary phase and then used for statistical calculation and analysis of the data. In addition defined media were used to determine glucose and ammonium consumption related to maximum cell yield. Except for the protein content, temperature had a significant (LSD, P < 0.05) effect on all growth parameters for each strain. The results showed a significant difference between the isolates and their related reference strains. Isolates achieved...
an increase in biomass production up to 110 % at low temperatures. In contrast, some reference strains showed only a maximum increase of about 25 % whereas some reference strains showed no increase or a decrease of approximately 25 %. As expected, growth rates for all strains were higher at 30 °C compared to growth at 10 °C, while biomass production for isolates was higher at 10°C than at 30°C. In contrast, the reference strains showed similar growth yield at both temperatures. The quantification of the residual content of carbohydrates and ammonium in defined media at the stationary phase, demonstrate an enhanced conversion rate of nutrients into biomass at low temperature and therefore a more efficient use of nutritional resources also for mesophilic organisms.

BEFP09

Aridocatalytic key players of subdivision 4 and 6 liberate limited nutrients in subtropical savannah soils of Namibia, Angola and Botswana

*K. Huber1, P. Wäsi1, G. Wanner2, A. Gröngröft3, J. Overmann1

1Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Microbial Ecology and Diversity Research, Braunschweig, Germany

2Ludwig Maximilians University Munich, Department of Biology I, Planegg-Martinsried, Germany

3University of Hamburg, Department of Geosciences, Hamburg, Germany

Questions: Acidobacteria are abundant in different habitats like hot springs, wastelands, and polar deserts. Soils represent a typical habitat where Acidobacteria constitute on average 20 % and in some instances even 70 % of the bacterial community. So far, the environmental determinants of Acidobacteria community composition and the role of Acidobacteria in the biogeochemical cycles are little understood. Especially in semiarid areas, which cover 40 % of the Earth’s surface the implications of the high abundance of Acidobacteria is unclear.

Methods: V3-high-throughput-sequencing of 138 African different savannah soils was performed. The soils differed in physicochemical parameters and land use type. Diversity analyses were combined with the analysis of environmental parameters and the physiological characterization of novel isolates from the major Acidobacteria subdivisions.

Results: Up to 14 % of the active microbial community of the examined savannah soils were Acidobacteria. Most were affiliated with subdivisions (sd)1, 3, 4 and 6. The independent parameters included in the multivariate statistical analysis explained 80.1 % of acidobacterial abundance patterns and identified pH and C/N ratio as the main drivers of the acidobacterial community composition. While sd1 and sd3 Acidobacteria dominated soils with (slightly) acidic pH, sd4 and sd6 Acidobacteria prevailed in soils with a neutral or (slightly) basic pH. Additionally, the abundance patterns of sd1 and sd3 Acidobacteria positively correlated with the soil carbon content and the patterns of sd4 and sd6 Acidobacteria with the soil nitrogen and phosphorus content.

The physiological characterization of novel isolates from the subdivisions provided more detailed insights in their potential role in the nutrient cycles. Sd1 Acidobacteria play an important role in the degradation of complex carbon compounds (cellulose, starch), while sd4 and sd6 Acidobacteria mostly secrete degradation enzymes of complex nitrogenous and phosphorus compounds.

Conclusions: Due to their high abundance in subtropical savannah soils and their broad degradation potential of complex organic compounds, Acidobacteria play an important role in the carbon, nitrogen and phosphorus cycling of nutrient limited subtropical savannah soils. The results presented within this study suggest that the ecological functions fulfilled by the Acidobacteria can be separated along the different acidobacterial subdivisions.

BEFP10

Abundance and community structure of groundwater microorganisms that pass through 0.2 μm pore size filters

*M. Hermann1, L. Carstens2, P. Langel1, C. Lazar1, M. Gaspar2, K. U. Totsche3, K. Küsel1

1Friedrich Schiller University Jena, Inst. of Ecology, Chair of Aquatic Geomicrobiology, Jena, Germany

2Friedrich Schiller University Jena, Institute of Geosciences, Chair of Hydrogeology, Jena, Germany

**Analyses of microbial community structure in samples of aquatic environments are traditionally based on microbial biomass collected on 0.2 μm pore size filters. However, the abundance, diversity and taxonomic affiliation of microorganisms smaller than 0.2 μm that may escape standard molecular surveys, especially in oligotrophic environments such as the terrestrial subsurface, have rarely been addressed. We evaluated the abundance and community composition of bacteria and archaea <0.2 μm in groundwater samples from two superimposed limestone aquifers in the Harz region (Thuringia, Germany), obtained from seven wells along a transect with sampling depth ranging from 12 to 88 m. Groundwater samples were filtered through 0.2 μm pore size filters and the flow-through was subsequently filtered through 0.1 μm pore size filters. Quantitative PCR targeting bacterial and archaeal 16S rRNA genes revealed that about 0.6 to 8.8 % of the total bacterial population and 0.5 - 7.9 % of the total archaeal population was found in the 0.1 μm filter fraction. Across sites, this percentage fraction did not appear to be linked to sampling depth nor oxygen availability. qPCR-based quantification was complemented with flow cytometry experiments, showing corresponding population sizes in non-filtered and 0.2 μm-filtered water, respectively, after staining with SYBR Green. Quantification of genes involved in ammonia oxidation (amoA) and CO2-fixation via the Calvin-Benson-Bassham cycle (chlb, cbbM) indicated that the genetic potential for nitrification and RubisCO-based CO2-fixation was also represented in the microbial communities of the 0.1 μm filter fraction. DGGE-fingerprinting of 16S rRNA genes revealed distinct differences in the community composition between the 0.2 μm and 0.1 μm filter fractions at each site and pointed to more pronounced differences for archaea than for bacterial communities. Our results have clearly shown that a substantial fraction of microorganisms in groundwater may be overlooked in standard analyses and that this fraction may harbour an unknown diversity of organisms involved in processes such as carbon and nitrogen cycling. Ongoing investigations using Illumina MiSeq amplicon sequencing of bacterial and archaeal 16S rRNA genes will provide more insight into the taxonomic affiliation of the community members of this overlooked fraction.

BEFP11

The bacterial diversity of the phyecosphere

*S. Pradella1, B. Wemheuer1, O. Päuker1, O. Frank1, R. Daniël2, J. Petersen1

1Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Microbial Ecology and Diversity, Braunschweig, Germany

2Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany

Question: Many marine bacteria live in symbiotic association with eukaryotic microalgae. We investigated the composition of the bacterial communities accompanying non-axenic algal cultures in order to quantify the amount of epibionts and to reveal specific associations.

Methods: Partial bacterial 16S rRNA gene sequences from 23 non-axenic marine algal cultures, including Apicolepsis (n=3), Dinophyta (n=7), Haptophyta (n=7), Cryptophyta (n=3) and Bacillariophyta (Diatoms; n=3), were amplified with V3/V5-specific primers; amplicons were pyrosequenced on a Roche 454 Life Sciences Titanium platform andtaxonomy classified [1]. Bacterial isolates were retrieved from the cultured algae, grown on Marine Agar 2216 (Difco) and classified on basis of their nearly complete 16S rRNA gene sequences.

Results: 48,093 partial 16S rRNA gene sequences (~ 500 bp) were obtained from the non-axenic algae cultures by barcoded pyrosequencing and analyzed. With a relative abundance of 61 %, Alphaproteobacteria clearly dominated the phyecosphere of the algae, followed by Cytophaga (11 %), Flavobacteria (10 %) and Gammaproteobacteria (8 %). Among Alphaproteobacteria members of the Rhodobacteraceae (52 %) and Sphingomonadaceae (18 %) revealed highest abundances. Approximately 450 bacterial strains were isolated from the cultured algae. Phylogenetic 16S rRNA gene sequence analyses assigned various isolates to putative novel taxa, i. e. a putative novel order related to Rhizobiales as well as putative novel genera and species within the Rhodobacteraceae, Rhodopirellulaceae, Flavobacteriaceae and Cytophagiae. In case of the apicomplexan alga Chromera velia CCCAP1602/2 - a free-living relative of the malaria parasite [2] - the nearly complete accompanying bacterial flora consisting of seven strains could be isolated. We determined the physiological characteristics of the epibionts and use their antibiograms to establish an axenic culture of this evolutionarily key species [3].

Conclusions: The marine phyecosphere of representative microalgae is dominated by Alphaproteobacteria. The isolation of the epibionts of the apicomplexan model organism Chromera velia offers the promising perspective to develop a test system and to study algal-bacterial interactions on the ‘omics level.

BEPF12
Diversity of anaerobic fungi in horse digestive tract
1University of Sassari, Department of Veterinary Medicine, Sassari, Italy
2Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, German National Reference Center for invasive Mycoses, Jena, Germany
3Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
4Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute, Jena Microbial Resource Collection, Jena, Germany
5Universität Prag, Institute of Animal Physiology and Genetics, Prag, Czech Republic

In the class Neocallimastigomycetes (Neocallimastigomycota) seven genera of anaerobic fungi are known, that could be cultivated. These genera are the monocentric Neocallimastix, Pirromyces, Buiischläromyces, the polycentric Orpinomyces, Anaeromyces, and the bulbous Caeomyces, Cyllamiyces. Yet, those genera represent only a minor part of gut fungi as indicated by a large number of uncultured species in public databases. A recent study on available ITS1 sequences revealed 37 clusters with 19 clusters not related to the known genera, presumably representing new groups of gut fungi [1]. Some of these new groups seem to be host specific like Black rhino cluster, or clusters AL1 and AL3 found in fecal samples of horses, zebras and donkeys. Isolates from Equidae cluster apart from other hindgut animals share a very low percentage of OTUs with non-Equidae samples. Moreover, horses, zebras, and donkeys share a similar fungal community composed mostly of the new groups AL1 and AL3. The numbers of sequences belonging to these new groups make up to 99 % [2]. These results indicate that the digestive tract of horses is occupied by completely unknown anaerobic fungi, which differ substantially from known rumen fungi. Cultivable anaerobic fungi from the equine were commonly isolated from feces and belonged to the genera Pirromyces and Caecomyces. The present study is focused on samples obtained directly from different anatomical segments (caecum, right ventral colon, left ventral colon, left dorsal colon, and right dorsal colon). Here we report the results of a molecular assessment of gut fungi in different parts of a healthy horse digestive tract to elucidate the effect of anatomical region on Neocallimastigaceae intestinal diversity. The luminal content of five segments of the equine gastrointestinal tract were compared with a rectal sample. Changes in the anaerobic fungal community composition along the equine hindgut were monitored using ITS1 rDNA amplicon clone libraries, revealing differences in the diversification of anaerobic fungi along the horse hindgut.

BEPF13
Potential impact of salinity changes on bacterial isolates and their phages from the deep biosphere of the Baltic Sea

V. Vandieken1, I. P. G. Marshall2, O. Voigt3, B. Engelen1, T. Engelhardt2
1University of Oldenburg, Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
2Aarhus University, Center for Geomicrobiology, Aarhus, Denmark

Subsurface sediments from the Baltic Sea have undergone alterations between limnic, brackish and marine conditions due to repeated glaciations. While the immense prokaryotic diversity within deep sediments has been assessed by molecular methods, adaptations to specific environmental conditions often only emerge from cultivation-based approaches. We have isolated new bacterial strains from deep-sea subsurface sediments of the Baltic Sea sampled during Expedition 347 of the International Ocean Discovery Program (IODP) with the aim to investigate the potential impact of salinity changes on bacterial and viral communities. Four new isolates are affiliated to the genus Marinifilum within the Bacteroidetes (93-94 % 16S rDNA gene sequence similarities), potentially representing two novel species. All strains grow by fermentation of sugars, glycerol, lactate and pyruvate, with one strain exhibiting a wider substrate spectrum. The strains also differ in their growth range and optima for NaCl, one being adapted to marine conditions, while the other strains favor lower salinities. Genome sequencing showed that one of the strains might have integrated a temperate phage (siphovirus) in its genome. Three of the four strains produce virus-like particles upon induction by mitomycin C. We hypothesize that salinity changes during the paleoenvironmental history of the Baltic Sea had major impacts on the structure of the microbial communities by i) influencing their energy metabolism, ii) resulting in induction of temperate phages and finally lysis of infected cells and iii) the release of labile organic compounds by the lysis of cells and thus stimulation of the remaining cells via the viral shunt.

BEPF14
Metagenome-based metabolic reconstruction reveals the ecophysiological function of Epsilonproteobacteria in a hydrocarbon-contaminated sulfidic aquifer

A. H. Keller1,2, K. Schleinitz3, C. Vogt2, S. Kleinsteuber2
1Helmholtz Zentrum für Umweltforschung UFZ, Leipzig, Germany
2Helmholtz Zentrum für Umweltforschung UFZ, Iotope Biogeochemistry/Environmental Microbiology, Leipzig, Germany
3Helmholtz Zentrum für Umweltforschung UFZ, Environmental Microbiology, Leipzig, Germany

The population genome of an uncultured bacterium distantly related to the genus Sulfurovum (Epsilonproteobacteria) was reconstructed from a metagenome dataset obtained by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from a sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwater of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacterial phylotype has previously been detected in toluene- or benzene-mineralizing, sulfate-reducing consortia enriched from the same site. Previous stable isotope probing experiments with 13C-labeled benzene suggested that this phylotype assimilates benzene-derived carbon in a syntrophic benzene-mineralizing consortium that uses sulfate as terminal electron acceptor [1]. However, the type of energy metabolism and the ecophysiological function of this epsilonproteobacterium within aromatic hydrocarbon-degrading consortia and in the sulfidic aquifer are poorly understood.

Annotation of the epsilonproteobacterial population genome suggests that the bacterium plays a key role in sulfur cycling as indicated by the presence of a sqr gene encoding a sulfide quinone oxidoreductase and psr genes encoding a polysulfide reductase. It may gain energy by using sulfide or hydrogen/formate as electron donors. Polysulfide, fumarate, as well as oxygen are potential electron acceptors. Auto- or mixotrophic carbon metabolism seems plausible since a complete reductive citric acid cycle as well as an acetate import system were detected. Thus the bacterium can thrive in pristine groundwater as well as in hydrocarbon-contaminated aquifers. In hydrocarbon-contaminated sulfidic habitats, the epsilonproteobacterium may generate energy by coupling the oxidation of hydrocarbon or formate and highly abundant sulfide with the reduction of fumarate and/or polysulfide, accompanied by efficient assimilation of acetate produced during fermentation or incomplete oxidation of hydrocarbons. The highly efficient assimilation of acetate was recently demonstrated by a pulsed 13C2-acetate protein stable isotope probing experiment [2]. The capability of nitrogen fixation as indicated by the presence of nif genes may provide a selective advantage in nitrogen-depleted habitats. Based on this metabolic reconstruction, we propose acetate capture and sulfur cycling as key functions of Epsilonproteobacteria within the intermediary ecosystem metabolism of hydrocarbon-rich sulfidic sediments.

ABSTRACTS – POSTER PRESENTATIONS

BEEF15

Impact of increased surface temperature on the abundance and diversity of culturable bacteria living in the phyllosphere of grasslands

O. Budich1, E. L. Aydogan1, L. Anweiler1, M. Hardt1, A. Jansen-Willems1, G. Moser2, C. Müller34, P. Kämpfer2, S. P. Glaeser1

1Justus Liebig University, Institute of Applied Microbiology, Gießen, Germany
2Justus Liebig University, Biomedical Research Center Seltersberg-Imaging Unit, Gießen, Germany
3Teagasc Johnstown Castle, Wexford, Ireland
4University College Dublin, School of Biology and Environmental Science, Belfield, Dublin, Ireland

Current changes of the global climate lead to an increase in surface temperature. This will effect plants and microbes colonizing the aerial part of plants (phyllosphere), separately, and in consequence the interaction among both. The aim of this study was to gain a first insight into the effects of increased surface temperature on the composition and diversity of phyllosphere bacteria in a six year long IR-lamp field-experiment. The experiment was performed at the permanent grassland of the „Environmental Monitoring and Climate Impact Research Station Linden“ near Gießen, Germany. Two abundant plant species, Arrhenatherum elatius and Galium album, were selected as a representative grass and herb, which showed clear differences with respect to surface colonization as shown by scanning electron microscopy. Leaves were collected from four control and four warmed plots, exposed to +2 °C surface temperature. A cultivation-dependent approach was applied to monitor changes in the abundance and diversity of "general" heterotrophic bacteria using 3/8 R2A agar and a more specialized group, abundant in the phyllosphere, methylotrophic bacteria, using a mineral medium with methanol as sole carbon source. SybrGreen I staining and subsequent epifluorescence microscopy counting of bacteria detached from leaf material showed as expected clear differences in the abundance of phyllosphere bacteria between plant species but not within a plant species if plants were grown under different surface temperatures. A similar result was obtained for the concentration of culturable heterotrophs and methylotrophs, except for G. album, which showed a decreased concentration of culturable methylotrophs, if plants grew under elevated temperature. Differences among most abundant culturable heterotrophs and methylotrophs were investigated by Denaturing Gradient Gel Electrophoresis (DGGE) of PCR amplified 16S rRNA gene fragments from cultured bacteria. For this, bacterial biomass was collected from agar plates of the highest positive dilutions that showed bacterial growth. Principal component analysis (PCA) of DGGE profiles of cultured heterotrophs showed clear differences among the plant species and for G. album also between plants grown at normal and increased surface temperature. In contrast, no clear differences were obtained for the DGGE profiles of cultured methylotrophs of the two plant species. In comparison to the control plants, the DGGE patterns of cultured methylotrophs were much more diverse among plants derived from different plots exposed to increased surface temperature. These results are a first indication, that increased temperature affects the structure and abundance of different metabolically active bacteria of the phyllosphere.

BEEF16

Impact of elevated atmospheric CO₂ on the diversity and abundance of culturable bacteria living in the phyllosphere of a permanent grassland

L. Aydogan1, M. Hardt1, G. Moser1, C. Müller14, P. Kämpfer1, S. P. Glaeser1

1Justus Liebig University Gießen, Institute of Applied Microbiology, Gießen, Germany
2Justus Liebig University Gießen, Biomedical Research Center Seltersberg-Imaging Unit, Gießen, Germany
3University College Dublin, School of Biology and Environmental Science, Belfield, Dublin, Ireland

Free air carbon dioxide enrichment (FACE) experiments in a permanent grassland showed, that elevated atmospheric carbon dioxide (eCO₂) increased plant biomass production (Kammann et al. 2005). The effect of eCO₂ on the abundance and the community structures of bacteria inhabiting the phyllosphere was not investigated so far. Phyllosphere colonizing bacteria can strongly affect plant growth, health and yield, among those pink pigmented facultative methylotrophic bacteria (PPFM) of the genus Methylobacterium are well known plant growth promoting bacteria and heterotrophic bacteria of the species Sphingomonas are known for their antagonistic activity. The aim of this study was analyzing the effects of eCO₂ on bacterial communities inhabiting the phyllosphere of two different plant species, Arrenatherum elatius and Galium album. For this purpose leaves were collected at two time points (spring/summer) in 2014 and 2015 from the permanent grassland of the Gießen FACE system, which is continuously exposed to eCO₂ (+20 %) since 1998. Leaves were collected from plants grown in FACE rings exposed to eCO₂ compared to ambient (aCO₂) conditions. A cultivation dependent approach was applied to compare the concentration and diversity of culturable bacteria grown on a lower concentrated complex media (two-fold diluted R2A-agar, here called "heterotrophs") and bacteria grown on mineral medium with methanol as sole carbon source (methylotrophs). The concentrations of both culturable heterotrophs and methylotrophs always showed significant differences between plant species. Depending on the time of sampling and the plant species, the exposure to eCO₂ significantly increased the concentration of culturable methylotrophs and or an cultured heterotrophs in selected eCO₂ - aCO₂ FACE ring pairs (with specific soil moisture content). A total of 1763 of the most abundant cultured bacteria were isolated and identified by partial 16S rRNA gene sequencing. Bacteria of the genus Sphingomonas were most often identified among cultured bacteria grown on low concentrated complex media and Methylobacterium spp. highly abundant among methylotrophic bacteria. A high diversity of genetically different Sphingomonas spp. and Methylobacterium spp. were obtained among those phenotypes that occurred only on plants which were exposed to eCO₂. This indicates the adaptation of bacterial ecotypes inhabiting the phyllosphere exposed to atmospheric eCO₂ concentrations as predicted for the upcoming global climate change. The role of those adapted ecotypes on plant fitness needs to be investigated in future studies in more detail.

BEEF17

Description of Backasella constricta sp. nov. isolated from the Brazilian Atlantic Forest

D. X. Lima1, K. Voigt2, C. A. F. de Souza3, R. J. de Oliveira3, C. M. Souza-Motta1, A. Santiago3

1Federal University of Pernambuco, Micology, Recife, Brazil
2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena Microbial Resource Collection, Jena, Germany
3University of Brasilia, Department of Biology, Brazil

The Atlantic Forest can be found all along the Brazilian coastline and is known for its biodiversity and endemic species of several taxonomic groups. One group of fungi frequently found in the Atlantic Forest, known as Mucorales, is ecologically important as it covers saprobes and facultative parasites of both vertebrates and invertebrates. The Basakelleaceae family was first described as referring to mucoralean saprobes that inhabit soil and form transitorily curved (when young, erect at maturity) sporangiophores arising from aerial hyphae or directly from the substrate. The family is monogenic and currently contains 10 species. During a study on Mucorales in soil from an Atlantic Rainforest in Pernambuco, Brazil, B. constricta sp. nov. was isolated and is being described as new to science. Morphological description were performed in triplicate in malt extract agar and in potato dextrose agar at 15, 20, 25, 30 and 35°C for 15 days. Phylogenetic analyses of ITS (ITS1-5.8S-ITS4) and LSU, (D1 and D2 domains) regions of rDNA showed that B. constricta sp. nov. formed a distinct clade with other species of Backasella. This novel species exhibits morphological characteristics that differs from other species of the genus, such as the presence of conical (mostly) and cylindrical columellea possessing a central constriction, and the production of subglobous sporangiophores, 7.5-15 x 5.5-10 μm in size, serving as synapomorphic characters for the new species, which of the description in conjunction with a taxonomic key for species of this genus are provided.
BEFP18
Visiting the Black Queen – the metabolic dependencies in soil bacterial communities
G. Yousif, C. Kost
Max Planck Institute for Chemical Ecology, Bio-Organochemistry, Jena, Germany
Microbial interactions are essential for maintaining genotypic biodiversity and shaping the bacterial community in soil habitats. However, little is known what drives the emergence of such interactions. The Black Queen hypothesis (BQH) provides a mechanistic explanation for the evolution of metabolic interactions: community members tend to lose biochemical functions that are costly, when the corresponding metabolites are sufficiently provided by other members in the community. As a consequence of this process, bacteria are expected to lose seemingly essential functions and become metabolically dependent on other organisms producing these metabolites for them. To test this prediction, we quantified the number and identity of metabolic auxotrophies within soil bacterial communities. For this we applied a hierarchical sampling design in which we sampled nine soil columns from different habitats (i.e. coniferous forests, deciduous forests, and meadows) in Jena, Germany. Three soil particles (1 mg) from each column were screened for the presence of bacteria that were auxotrophic for one or more of twenty amino acids, five vitamins, and four nucleosides. Six thousand bacterial strains were isolated, purified, and subjected to the auxotrophy test, in which their ability to grow on minimal media without any metabolite supplementations was verified. Interestingly, 5-15% of all cultivable bacteria were auxotroph for one or several amino acids, vitamins, or nucleosides. Moreover, the analysis of the soil samples indicated the presence of free amino acids which would be available for the auxotrophs. The obtained data is consistent with the predictions of the Black Queen hypothesis. Amino acids production is likely a leaky function and other community members benefit from loosing the ability to produce these amino acids autonomously and instead rely on a supply by others. Ultimately, the results of this work suggest that metabolic interactions within natural microbial communities might be more common than previously thought and imply that the environmentally-compensated gene loss is an important evolutionary force that significantly shapes microbial communities.

BEFP19
Drainage and its effects on paddy soil microbial communities – a metatranscriptomic approach
R. Abdallah, C.-E. Wegner, W. Liesack
Max Planck Institute for Terrestrial Microbiology, Biogeochemistry, Marburg, Germany
Methane is the most abundant hydrocarbon on earth and a major greenhouse gas. Rice cultivation is one of the main sources of atmospheric methane. Therefore, mitigation strategies are needed to reduce its emission from rice paddies. One of these is drainage, which is a common practice in rice cultivation. It results in a loss of water and proliferation of oxygen into the rice field soil. The aim of our study is to understand how drainage affects the structure and functioning of paddy soil microbial communities. Using paddy soil from the Italian Rice Research Institute in Vercelli, flooded microcosms amended with grinded rice straw were set up and incubated for 7 or 28 days, followed by 9 days of drainage. The addition of rice straw is a common practice to improve soil fertility. Metatranscriptome libraries were generated using total RNA extracted from flooded and drained soil at 2 cm depth. Libraries were sequenced using Illumina HiSeq 2500. Our results showed that after 9 days of drainage, oxygen concentration reaches ~240 μmol/L across all soil depths (atmospheric concentration = 283 μmol/L). Comparative analysis of bacterial 16S rRNA reads (ribo-tags) revealed that drainage induced major changes in the community rRNA pool. *Firmicutes* decreased, while *Proteobacteria* increased in relative abundance. On family level, *Comamonadaceae*, *Nocardioidae*, and *Streptomycetaceae* increased in ribo-tag and mRNA abundance, while *Clostridiaceae*, *Bacillaceae*, *Lachnospiraceae*, and *Ruminococaceae* decreased. Among methanogens, ribo-tag abundance of the *Methanosarcinaeae* remained fairly constant during drainage, yet their relative mRNA abundance strongly declined. Functional annotation of the mRNA showed that community-wide gene expression affiliated with certain SEED level 2 categories was highly affected by drainage. Transcripts involved in ‘oxidative stress’, ‘sulfur metabolism’, and ‘phosphorus metabolism’ were overrepresented in response to drainage, while those related to ‘sporulation’, ‘flagellar motility’, and ‘fermentation’ were underrepresented. In particular, transcripts encoding reactive oxygen species (ROS)-scavenging enzymes were highly enriched in the mRNA datasets from drained soil, while those of methanogen-specific *mcrA* were strongly underrepresented. We conclude that oxygen availability is the main driving force for the observed community dynamics. Apparently, drainage selects for microbial populations that are able to combat oxidative stress through the expression of ROS-scavenging enzymes, thereby resulting in a complex community composed of aerobes and anaerobes.

BEFP20
Biodiversity and strategy perspectives for Glomeromyctea conservation in four egyptian protected area
N. Nafady, A. Abdel-Azeem
Assiut University, Botany and Microbiology Department, Assiut, Egypt
Jace Canal University, Botany Department, Ismailia, Egypt
Protected areas represent an appropriate place for the *in situ* conservation of AMF where they are under the care of national and international authorities, providing them with adapted situations together with established complex networks of interactions with different components within each specific ecosystem. The diversity of AMF communities in Egyptian Protectorates can decline due to natural and/or anthropogenic disturbance and many valuable ectotypes could become extinct before they are even discovered. In order to investigate the effect of edaphic factors and anthropogenic disturbance on diversity and conservation of AMF, spore density and mycorrhizal colonization of rhizospheric soils and plant roots of the dominant plant species in El-Omamyed, Saint Catherine, Wadi El-Alaqi and Wadi El-Assiut Protectorates were analyzed. The results showed that the majority of wild plants could form strong symbiotic relationships with AM fungi. There existed obvious differences in AM fungal colonization status among the four protectorates (*Pp* *in situ* conservation of wild plants reserves and ecological riches though awareness campaigns of local Bedouin tribes. Here, we shed the light on the current status of AMF diversity and the main present-day threats to AMF conservation and the current state of knowledge about their occurrence in four protected areas in Egypt. Consequently, long-term strategies are urgently needed as Egyptian conservation legislation is strongly focused on protecting animals and plants and their habitats. Fungi are still neglected and to solve such problems there should be collaboration between mycologists, amateur fungal groups, fungal conservation societies, regional natural parks and environmental agencies.

BEFP21
Comparative genomics on Acidithiobacillus ferrooxidans
S. Schopf
Technical University Freiberg, Environmental Microbiology, Freiberg, Germany
Introduction: Recently, isolation of bacteria from Thiessen sludge, a fine grained by-product of former copper smelting, was successful. Thiessen sludge contains remarkable amounts of heavy metals and metalloids. Furthermore, Thiessen contains 10 % total organic carbon among which are toxic compounds (biphenyls). The 16S rRNA gene of the isolate showed > 99 % similarity to *Acidithiobacillus ferrooxidans* DSM 14882. The new strain was designated as *A. ferrooxidans* Hel18. These indigenous microorganisms are supposed to be especially adapted in terms of resistances against zinc, lead, cadmium, mercury, arsenic, and toxic organics. Therefore, the genome of *A. ferrooxidans* Hel18 was sequenced and compared with the genome of *Acidithiobacillus ferrooxidans* DSM 14882.
Metadatas: DNA was extracted using the UltraClean Microbial DNA Isolation Kit (MO BIO Laboratories, Inc.). PCR amplification of the bacterial 16S rRNA genes was with 0.25 μM (final concentrations, respectively) of primers 27F and 1387R using a PCR master mix from Thermo Scientific Fisher. The mix was supplemented with 5 % (v/v) DMSO and 0.2 μg μL-1 bovine serum albumin. PCR program was the following: 2 min initial denaturation, 30 cycles of 30 sec at 94 °C, 30 sec at 55 °C, 90 sec at 72 °C and a final incubation at 72 °C for 5 min. PCR products were purified with UltraClean PCR Purification Kit (Mo Bio Laboratories Inc). The sequence of the 16S rRNA gene was deposited at NCBI (accession number KL/057357). Next generation sequencing of the genome was with Illumina Miseq using the Nextera DNA library preparation kit, resulting in paired-end reads of 300 bp. Quality check, trimming of adapters, and assembly was with the web-based platform Galaxy (http://galaxy.uni-freiburg.de). Quality assessment of the genome
assembly was with QUAST. RAST (http://rast.nmpdr.org) was used for genome annotation. Genome alignment for comparative genomics was with the program Mauve.

Results: Comparative genomics lead to the following findings: The genome of *A. ferrooxidans* Hel18 is greater (3,103,965 bp) than the genome of *A. ferrooxidans* DSM 14882 (2,982,397 bp). Large parts of both genomes consist of homologous genes. However, regions with genes could be identified which occur only in Hel18. Among them are genes belonging to the mercury resistance operon, and genes involved in zinc and cadmium resistance. Furthermore, genes for the degradation of biphenyls could be found.

Conclusions: The findings indicate a special adaption of *A. ferrooxidans* Hel18 to conditions that prevail in Theisen sludge, which are high heavy metal contents and presence of toxic organic compounds. Further cultivation dependent studies can underline these findings.

BEFP22
The brackish bacterial sediment community has a distinct bacterial community compared to marine and freshwater sediment communities

1. D. P. Herlemann, J. Klöver, O. Dellwig, T. Leipe, K. Jürgens
*2. Leibniz-Institut für Ökosystemforschung (IOW), Biological Oceanography, Rostock, Germany

While there are various studies about marine and freshwater sediment bacterial communities, only few studies investigated the transition between these environments. Here we focus on the bacterial community in the Baltic Sea that covers a stable salinity gradient from marine to almost freshwater conditions over a large geographic distance. These conditions allow autochthonous brackish sediment bacterial communities to establish.

We studied six silty sediment samples from marine (salinity 32) to oligohaline conditions (salinity 3), which were compartmentalized in five layers (0.5 cm steps) and analyzed for abundances of 16S rRNA amplicon sequencing reads, total organic carbon, total sulfur and nitrogen, grain size and pore water nutrients. A non-metric multidimensional scaling plot indicated that the primary environmental factor structuring the bacterial communities was salinity and the second most important factor total organic carbon. However, a parallel increase in total sulfate concentration with salinity and a change in organic matter quality (indicated by decreasing C/N ratio) may also have influenced shifts in the bacterial composition. Especially in the marine - brackish sediments (salinity >7) Gammaproteobacteria and Deltaproteobacteria were the dominant classes that were often represented by families involved in sulfate reduction. In contrast, the bacterial communities in brackish - oligohaline sediments (salinity <7) were a rather diverse combination of Bacteroidetes, Chloroflexi, Alphaproteobacteria. Nitrospirae, Gemmatimonadetes, and the Candidate phyla BRC1, WS3. Moreover, opposed to what is known for macrozoobenthos, highest numbers of bacterial taxa were detected at brackish conditions. This study provides a first framework for understanding of the bacterial community in brackish- oligohaline sediments, revealing clear differences to freshwater and marine sediment bacterial communities.

BEFP23
Effects of high ammonia concentration on microbial community composition and transcription in a biogas reactor

*1. University of Kiel, Institute of General Microbiology, Kiel, Germany
*2. University of Bonn, Institute for Microbiology and Biotechnology, Bonn, Germany

Question: As fossil fuels are a finite resource the production of biogas from renewable sources or biological waste in terms of energy production becomes more and more into public focus. The process of biogas production is carried out by a diverse microbial community under anaerobic conditions. This complex food web can be disturbed by increased ammonia concentration introduced into the system by insufficient nitrogen removal or imbalanced “feeding” of the system. In this experiment we simulated an increased ammonia concentration of a biogas plant in a small scale biogas reactor addressing the questions how does the microbial community react to such changes in the environment and how is the transcriptional profile, reflecting metabolic activity, altered under such conditions.

Methods: This approach combines two up-to-date methods for monitoring microbial communities and ecosystem function. 16S rRNA gene amplicon sequencing shows high potential for monitoring large numbers of environmental samples while metatranscriptomic analysis allows the investigation of potential active pathways under different conditions. By the combination of these two methods we aim to link taxonomy to function and vice-versa. We incubated small scale experimental reactors (1L) as previously described by Refai and Wassmann et al. 2014 over 10 days with two experimental conditions, high ammonia and control conditions, each with 4 replicates. 16S rRNA gene region was analysed by MiSeq amplicon sequencing and using mothur. RNA was isolated from an experimental reactor running under similar condition converted to cDNA and sequenced by NextSeq. The obtained reads were analyzed using an in-house pipeline.

Results: The community composition as well as the transcriptional profile differed strongly between the two experimental conditions. Several OTUs in the amplicon sequence set showed potential behavior as marker species for the two conditions (ammonia concentration high/low). The transcriptional activities of the selected marker species were investigated under the different experimental conditions by their corresponding contigs and reads in the metatranscriptome. We observed quite different specific transcriptional activity for the taxa themselves and in response to the increased ammonia concentrations.

Conclusion: Combining the applied methods might be an improvement from the sheer observation of taxa and their abundance towards a linking of taxonomy to function within an ecosystem. The transcriptional activity of selected marker species will be compared and discussed.

BEFP24
Mineralogical control on microbial N cycling in soils

S. Turner, S. Meyer-Stüve, A. Schippers, G. Gugenberger, R. Dohrmann, R. Mikutta
*1. Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
*2. Leibniz Universität Hannover, Institute for Soil Sciences, Hannover, Germany
*3. Martin-Luther-Universität Halle-Wittenberg, Soil Sciences, Halle (Saale), Germany

Question: Present ecological concepts in N-cycling largely ignore the role of mineral-organic associations, although, minerals are relevant for ecosystem productivity by directly and indirectly influencing microbial carbon (C) and nutrient cycling. Therefore our main research questions were i) if mineral-bound organic N (ON) is an important bioavailable N source for soil microorganisms, and, ii) which soil parameters control the bioavailability of mineral-bound ON?

Methods: To clarify these questions we set up a microcosm experiment with bulk soil and the mineral-associated organic matter fraction (MOM) of four soil ages (different mineralogical assemblage) under oxic and anoxic conditions. Thereby, we tested the effect of different nutrient additions (without, phosphate, cellulose, and phosphate + cellulose). During a 125 d incubation CO₂ and N₂O production as parameters for microbial activity were measured regularly, and at the end the net N mineralization and gene copy numbers of phylogenetic and N-cycle related marker genes were determined, as well as the microbial community composition pattern by T-RFLP.

Results: Most of the measured microbial activity and molecular parameters showed distinct pattern between oxic and anoxic conditions. The CO₂ production was highest with cellulose addition under oxic conditions, whereas under anoxic conditions higher values were determined for bulk than for MOM samples. A detectable N₂O production was only determined for bulk samples under anoxic conditions and here P addition resulted in higher values. The net N mineralization tended to be higher in MOM than in bulk samples. The 16S and 18S rRNA gene copy numbers differed significantly between oxic and anoxic conditions for *Bacteria* and *Fungi*, but not for *Archaea*. Interestingly, bacterial 16S rRNA gene copy numbers were higher for MOM samples under oxic conditions, whereas bulk sample copy numbers were higher under anoxic conditions. Archaeal amoA gene copy numbers were higher in bulk samples of older soils under oxic conditions. Surprisingly, the range of *narG* gene copy numbers was similar under oxic and anoxic conditions, and cellulose had a clear negative effect on numbers under anoxic conditions.
Conclusion: Our results demonstrate that the soil mineralogy has a pronounced effect on microbial ON cycling. Most ON cycling processes and corresponding microorganisms were inhibited in the mineral fraction suggesting that soil microbes could less efficiently use mineral-bound ON in agreement with our findings to enzyme activities (Turner et al. 2014). In addition, the redox regime is the most important factor in determining microbial C and N cycling. Nevertheless, the mineralogical effect varied between processes and was related to the nutrient situation.

BEFP25 Accurate detection and quantification of anammox bacteria using specific primers

C. Ding, J. He
Helmholtz Centre for Environmental Research – UFZ, Department Isotope Biogeochemistry, Leipzig, Germany
University of Singapore, Singapore, Singapore

Anammox bacteria are ubiquitous in the environment and play an important role in the global nitrogen cycle. However, the identification and quantification of Anammox bacteria are sometimes problematic due to the fact that the 16S RNA gene sequences of Anammox strains share low identity (ranging from 89 % to 97 %). In this study, we aim to validate the accuracy of a pair of Anammox-specific primers with a set of 29 DNA samples that come from various geographical origins and possess different levels of diversity in their microbial communities. Based on alignment with 16S rRNA gene sequences of all currently known Anammox species, this pair of primers is able to match all Anammox species except Scalindua marina. With this primer pair, quantitative real-time PCR (qPCR), 16S-DGGE, 16S-clone library, and Illumina sequencing of PCR amplicons all showed satisfactory results in detection and quantification of Anammox populations and agree well with each other. Based on sequences similarity, new Anammox species were found through Illumina sequencing. Detection and quantification using this primer pair may prove useful in monitoring Anammox community in reactors and in the natural environment.

BEFP26 Activated sludge harbours a novel moderately thermophilic Nitrospira

E. Spieck1, A. Schwabauer1, A. Martirosyan1, K. Weinig1, B. Nowka1
Centre for Environmental Research, Helmholtz Centre for Polar and Marine Research, Section of Periglacial Research, Potsdam, Germany
University of East Anglia, School of Environmental Sciences, Norwich, Great Britain

Nitrospira is a crucial step in the treatment of wastewaters with nitrogen oxidation being more sensitive than ammonia oxidation. Today, there is a growing interest in the development of thermophilic nitrogen removal processes for the treatment of warm wastewaters up to 50 °C, but only mesophilic nitrifiers have been detected so far in activated sludge of municipal full-scale plants. Members of the genus Nitrospira are the most dominant NOB in activated sludge as well as in thermophilic environments, such as hot springs. At least six sublineages of this highly diverse genus are known; nevertheless the diversity seems to be much higher. Apart from temperature, oxygen was identified as one selective factor for the dominance of single sublineages of Nitrospira. The objective of this study was to search for novel NOB by enriching the latter from activated sludge under modified cultivation conditions. Identification of dominant members was done by specific PCR as well as electron microscopy.

A new Nitrospira grew up in mineral salts media containing nitrite, after the initial enrichment was performed under denitrifying conditions. It forms a separate 16S rRNA- as well as nxrB- cluster with N. bockiana and N. calida as next taxonomically described organisms, whereas both strains are characterized as (moderately) thermophilic. Fastidious nitrite oxidizing activity of the new culture at 28 °C could be enhanced, when the incubation temperature was shifted to 35-42 °C. The same organism was selectively enriched, when activated sludge was directly incubated at elevated temperature with nitrite as sole energy source. Growth of the highly enriched culture was accelerated by the addition of an additional nitrogen source or by heterotrophic “helper” bacteria, derived from other nitrite oxidizing enrichments. The new Nitrospira could be further purified by use of an optical tweezers system coupled with a micromanipulator. This study reveals that activated sludge in Köllbrandshöft / Dradenau, Hamburg has the potential for nitrite oxidation in a broad temperature spectrum between 4 and 46 °C, caused by highly specialized microorganisms. The new Nitrospira is highly resistant to elevated temperature and probably to low dissolved oxygen concentrations. Further characterization of the phenotypic properties is in progress.

BEFP27 Anaerobic oxidation of methane (AOM) at the thaw front of subsea permafrost

M. Winkel1, J. Magritz2, H. Horn1, P. Overduin3, C. Knoblauch4, D. Wagner4, S. Lieben4
GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section of Geomicrobiology, Potsdam, Germany
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Section of Periglacial Research, Potsdam, Germany

Introduction: Thawing arctic subsea permafrost is a source of organic carbon in deep sediment layers. The permafrost that is at its thermal equilibrium releases biologically produced methane and a deep sulfate-methane transition zone (SMTZ) is formed due to sulfate-rich overlaying marine sediment layers. The process of methane oxidation in this anaerobic environment has been suggested but AOM associated microbial communities remain to be identified.

Objectives: We aimed at providing evidence for anaerobic methanotrophic (ANME) archaeal communities at the deep SMTZ of the north-east Siberian Laptev Sea shelf.

Material and methods: Two sediment cores were retrieved (77 m and 47.4 m deep) from the coastal shelf north of Cape Mamontov Klyk ‘C2’ (11.5 km offshore) and west to the Buor Khaya Peninsula ‘BK2’ (800 m offshore), respectively. Methane and sulfate concentrations as well as 13C isotope values of CH4 were measured and correlated with molecular analysis of microbial communities along the thaw front.

Results: At the thaw front of BK2, at 23.7 meters below sea floor (mbsf) biologically produced methane (13C=-70‰ VPDB) gets oxidized (13C=-29.8 % VPDB). At the same depth, we found an increase in functional genes of methanogenic archaea (mcRA) and sulfate reducing bacteria (dsrB) analysed by quantitative PCR. Massive parallel tag-sequencing of the 16S rRNA gene showed an increase of ANME-2a/2b and ANME-2d sequences towards the thaw front in both cores. At the thaw front of the BK2 core, typical ANME-2 partners of the Desulfobacteriia were found to dominate the sulfate reducing bacterial community, whereas Desulfovibacea sequences dominate in all samples of the C2 core. Theoretical methane oxidation rates (0.4-6 mmol cm-2 d-1) based on estimated methane fluxes showed higher values than typically found in subsurface sediments and are more similar to rates of margin SMTZs.

Conclusion: Our data indicate that active anaerobic methane oxidizer communities at the thaw front of subsea permafrost prevent methane from being released into the water column and subsequently to the atmosphere. Further analyses on ANME-2 biomarkers and 13C-CH4 isotope rate measurements will determine how active these communities are in situ.

BEFP28 Differential utilisation of methylamine as a nitrogen source by marine microorganisms

M. Tauber1,2, C. Grob1, A. Howat1, O. Burns1, J. Pratscher1, Y. Chen1, N. Jeh mlisch1, M. van Bergen2, C. Murrell1
Friedrich Schiller University Jena, Aquatic Geomicrobiology, Jena, Germany
University of East Anglia, School of Environmental Sciences, Norwich, Great Britain
University of East Anglia, School of Biological Sciences, Norwich, Great Britain
University of Warwick, School of Life Sciences, Warwick, Great Britain
Helmholtz Centre for Environmental Research – UFZ, Dept. of Proteomics, Leipzig, Germany

Methylamine is a breakdown product of osmolytes produced by marine animal and plant species like glycine betaine and trimethylamine N-oxide, and is typically present in concentrations up to a few 100 nM in marine habitats. As a volatile organic compound, methylamine can enter the atmosphere, where it is involved in aerosol formation (1) and consequently influences climate patterns. Certain microorganisms have the ability to...
break down methanol to CO2 and ammonia, recycling the contained carbon and nitrogen. This biodegradation plays a major role in modulation of methane emission from aquatic habitats. Microorganisms using methanol as sole carbon source belong to the methylophilicides, and have been identified in various aquatic environments. However, also non-methylophilic organisms have the ability to degrade methanol, using it as nitrogen source. Little is known about the diversity and activity of the latter.

Stable isotope probing (SIP), the metabolic labeling of microbial communities using substrates enriched with heavy, nonradioactive isotopes, is a powerful tool in environmental microbiology. (2) Using SIP, the microorganisms that actively contribute to the metabolic processes of interest can be identified against the background of a complex microbial community, directly within environmental samples. A combination of the SIP approach with mass spectrometric analysis, named protein-SIP, has been introduced recently, and uses mass spectrometry to identify peptides and simultaneously assess their enrichment in heavy isotopes (3). This approach also allows the detection of 15N labeled biomolecules, and consequently is an ideal tool to study assimilation of nitrogen in a microbial community.

Here we report the first application of a 15N-SIP approach combined with metagenomic and metaproteomic analysis of a marine microbial community. Multiple microorganisms assimilating methanol derived nitrogen in environmental samples were identified. These organisms showed a correlation between the mode of nitrogen assimilation and the employed pathway for methanol degradation. Only one organism detected was using the methylene dehydrogenase pathway typically found in methylophils. In contrast, multiple microbial species from the Alpha- and Gammaproteobacteria were found using the Glutamylmethylamide pathway, which is also present in non-methylophilic. Draft genomes of two of these organisms were recovered by 15N-DNA SIP, showing a diverse metabolic potential. We conclude that various microbial species employing the GMA pathway are present in the investigated environment, playing a dominant role in methanol degradation and are potentially involved in a variety of biogeochemical processes.

BEPO1

Active site amino acid composition determines the catalytic bias of [NiFe] hydrogenase

S. Frielingsdorf1, A. Schmidt2, S. Katz1, C. Teutloff1, I. Ziegler1, P. Scheerer1, O. Lenz1
1Technische Universität Berlin, Institut für Chemie, Berlin, Germany
2Charité – Universitätsmedizin Berlin, Institut für Medizinische Physik und Biophysik, Berlin, Germany
3Freie Universität Berlin, Fachbereich Physik, Berlin, Germany

Question: Hydrogenases catalyse the reversible splitting of H2 into 2H+ and 2e−. There are two main types of hydrogenases which are discriminated according to their active site metal composition 1. [FeFe] hydrogenases operate mainly in the direction of H2 reduction and are extremely sensitive towards O2. [NiFe] hydrogenases are generally less sensitive towards O2 and are either biased towards H2 oxidation or H2 reduction. Tolerance towards O2 is a prerequisite for the biotechnological applicability of hydrogenases. Fortunately, nature has evolved O2-tolerant variants of [NiFe] hydrogenases. A well characterised example of such an oxygen-tolerant enzyme is the membrane-bound hydrogenase (MBH) from *Ratstonia etropha* H16 2,3. MBH is strongly biased towards H2 oxidation and shows strong product inhibition upon H2 reduction 4. [NiFe] hydrogenases possess an invariant arginine residue at their active site forming salt bridges with two aspartate side chains. One of these aspartate residues is replaced by serine in those [NiFe] hydrogenases biased towards H2 reduction. The question was whether replacement of Asp117 for serine MBH alters the catalytic bias of MBH.

Methods: We generated a mutant strain synthesising the protein variant MBH^{117S}. The recombinant strain was grown with H2 and CO2 under varying O2 levels to analyse its oxygen tolerance. Isolated MBH^{117S} protein was compared to native MBH using activity assays for H2 oxidation and H2 reduction.

Results: The MBH^{117S} variant showed <1 % of the native enzyme’s H2 oxidation activity. Despite this low catalytic activity the mutant strain grew well lithoautotrophically in the presence of 1 % O2. However, growth was strongly diminished at 5 % O2 and not detectable at 10 % O2, indicating higher sensitivity towards O2 than the wild-type strain.

Comparing the relative ratios of H2 oxidation and H2 reduction of purified native MBH vs MBH^{117S}, the D117S variant showed strongly elevated H2 production capabilities. This is also manifested in the apparent inhibition constant (K_i) for H2 which increased fourfold in case of MBH^{117S} compared to native MBH.

Conclusion: The bias towards H2 oxidation of [NiFe] hydrogenases is obviously related to the presence of an aspartate residue forming a salt bridge with an invariant arginine residue at the [NiFe] active site. Exchanging this aspartate for serine enables significantly higher H2 production rates. This knowledge has implications on biotechnological H2 production and the design of efficient H2 producing catalysts.

BEPO2

Ethanol and ethylene glycol metabolism in Acetobacterium woodii
J. Bertsch1, D. Trifunovic2, V. Müller
1Goethe University Frankfurt, Molecular Microbiology and Bioenergetics, Frankfurt a. M., Germany

Question: Acetogenic bacteria can grow lithoautotrophically on H2+CO2 but also heterotrophically on a variety of different substrates like sugars, alcohols and carboxylic acids. Here, we have studied the enzymology and bioenergetics of ethanol and ethylene glycol metabolism in the model acetogen *Acetobacterium woodii*.

Methods: Pathways were constructed by activity measurements in cell free extracts, gene expression was monitored by RT-PCR. Protein levels were quantified by Western blotting and the key enzyme was purified by chromatographic steps.

Results: The endergonic oxidation of ethanol to acetaldehyde is catalyzed by a bifunctional alcohol/alddehyde dehydrogenase (AdhE) that also catalyzes the next step, the oxidation of acetaldehyde to acetyl-CoA. The purified enzyme is subject to regulation by CoA [1]. AdhE is also involved in ethylene glycol metabolism which yields acetalate and ethanol first and the latter is then oxidized to acetate.

Conclusion: Ethylene glycol is first dehydrated to acetaldehyde that is further disproportionated to ethanol and acetate. In the stationary phase, ethanol is further converted to acetate in a reaction sequence that involves AdhE as initial enzyme and the Wood-Ljungdahl pathway as sink for electrons. Metabolism of ethanol requires reverse chemiosmosis to reduce ferredoxin.

BEPO3

Domain structure-function of the rhodopin 3,4-desaturase (CrtD) of Rhodospirillum rubrum
C. Autenrieth1, R. Ghosh1
1University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Department of Bioenergetics, Stuttgart, Germany

The carotenoid present in the light-harvesting (LH) 1 complex of *Rhodospirillum rubrum* is in the all-trans configuration and transverses the photosynthetic membrane. However, it has been demonstrated that in *situ* modification of the carotenoid “ends” e.g. the 3,4,3,4-dehydrogenation can occur during LH1 maturation, despite the fact that only a single enzyme, rhodopin desaturase (CrtD) is present exclusively in the cytoplasm. In this study, we focus on the functional domain structure of CrtD to cast light upon this question. The crtD gene, separated by gene synthesis into different functional domains, was cloned into a pBlK404-derived broad-host range vector and then used to complement a crd deletion mutant (*R. rubrum* strain ST4) [1]. Here, we focus on the C-terminal domain, which we recently showed to be important for catalytic function [2]. Additionally, as a comparison, the crd gene from *Rhodobacter sphaeroides*, which only catalyzes a chain-asymmetric dehydrogenation, was also used for ST4 complementation. The results of these studies will be presented.

BIOspektrum

Tagungsband 2016
The enzymes of the thiosulfate dehydrogenase (TsdA) family are widespread: diheme c-type cytochromes [1]. TsdA proteins catalyze the irreversible formation of a sulfur-sulfur bond between the sulfane atoms of two thiosulfate molecules, yielding tetrahydrothiuronium and releasing two electrons. All TsdA enzymes characterized to date catalyze both the oxidation of thiosulfate to tetrahydrothiuronium and the reduction of tetrahydrothiuronium to thiosulfate at measurable rates, albeit with very different catalytic bias depending on the source organism [1, 2, 3]. Here, we posed the question which redox carriers mediate the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia, Sideroxydans lithotrophicus and Pseudomonas stutzeri, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments [1] in combination with enzyme assays in solution showed that TsdB is not itself reactive with thiosulfate but that it acts as an effective electron acceptor of TsdA in vitro even when TsdA and TsdB do not originate from the same source organism. While TsdA covers a range from -300 mV to +150 mV, TsdB was found to be redox active between -100 mV to +50 mV, thus acting as an electron transfer between these hemoproteins. The three-dimensional structure of a TsdB-TsdA fusion protein from the purple sulfur bacterium Allochromatium vinosum (Av) was solved by X-ray crystallography providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome contains three hemes with axial His/Met ligation, while heme 1 exhibits the His/Cys coordination typical for the active site of TsdA proteins. In several purple sulfur bacteria including All chromatium vinosum (Av), TsdB is not present, precluding a general and essential role for electron flow. Both, AvTsdA as well as the MpfTsdBA fusion protein react efficiently with high potential iron sulfur protein from A. vinosum (AvHiPIP: E° +350 mV) in vitro. HiPIP not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.

suitable established in our laboratory. A replicative plasmid equipped with a denitrificans oxidation. Previously reported methods for plasmid transfer into hdrC1B1AhyphdrC2B2 for proteins potentially involved in dissimilatory sulfur oxidation. Besides Appreciable cell yields necessitate repeated feeding of cultures. The concentrations above 1.5 mM proved toxic for strain DSM 1869. While DMS is consumed, sulfate is formed as the end product. DMS the only carbon source. In addition, this strain as well as the type strain of organic sulfur compound, further strengthening the notion that this grown on DMS. Thus, formation of the HdrA-like protein and probably reactive with the antiserum. In contrast, bands exactly corresponding in B. globals are proposed to pursue an alternative sulfur oxidation pathway involving a heterodisulfide reductase (Hdg)-like protein complex [1, 2]. However, direct biochemical evidence for this suggestion has not been published. We established Hyphomicrobium denitrificans as a new model organism for elucidating dissimilatory sulfur metabolism via the Hdg-like complex. Hyphomicrobium species are well known for their capacity to grow on C1 compounds like methanol or methylamine. Here, we verified previous reports that Hyphomicrobium strain EG can grow on dimethylsulfoxide as the only carbon source. In addition, this strain as well as the type strain of the species H. denitrificans (DSM 1869) grows on dimethylsulfide (DMS). While DMS is consumed, sulfate is formed as the end product. DMS concentrations above 1.5 mM proved toxic for strain DSM 1869. Appreciable cell yields necessitate repeated feeding of cultures. The H. denitrificans DSM 1869 genome sequence contains several sets of genes for proteins potentially involved in dissimilatory sulfur oxidation. Besides a complete Sox system for thiosulfate oxidation, a tsdA gene for a thiosulfate dehydrogenase was detected, indicating the capacity for tetrahtionate formation from thiosulfate. A cluster of hdg-like genes, hdcC1B1AhyphdC2B2, is not only linked with genes encoding sulfur- trafficking and liponamide-binding proteins but also with a gene for a cytochrome P450. The latter may be involved in the first step of DMS oxidation. Previously reported methods for plasmid transfer into H. denitrificans DSM 1869 via conjugation and electroperoration were established in our laboratory. A replicative plasmid equipped with a suitable H. denitrificans promoter was used to drive production of the Strep-tagged hypothetical protein encoded in the hdg-like gene cluster. Methods for targeted protein knock-out were developed. A highly specific antisera was generated against recombinant H. denitrificans Hdg-A-like protein (HdE_0091). In both Hyphomicrobium strains studied, crude extracts of cells grown on methylamine hardly contained any protein reactive with the antisera. In contrast, bands exactly corresponding in size with the Hdg-like protein (37.7 kDa), were clearly present in cells grown on DMS. Thus, formation of the Hdg-A-like protein and probably the complete Hdg-like complex is specifically induced upon growth on the organic sulfur compound, further strengthening the notion that this complex is involved in a process functionally replacing the Dsr system.

BEP08
Dimethylsulfide induces expression of heterodisulfide reductase-like proteins in different Hyphomicrobiun strains
T. Koch, J. Jobb, C. Dahl
Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Mikrobiologie & Biotechnologie, Bonn, Germany

A wide array of chemo- and phototrophic sulfur-oxidizing prokaryotes lacks the well-established Dsr pathway. These organisms are proposed to enable the endergonic reduction of ferredoxin by NADH driven by the electron bifurcation with electron transferring flavoprotein (Etf) and flavodoxin [2]. Venceslau, S. S. BEP08
Acidaminococcous fermentans

The main sulfur oxidizing strains studied, crude preparations of H. fermentans were obtained. Kinetic data show that the reduction of the quinone to the semiquinone (ΔE0″ = -60 mV) is about 3-times slower than that of the semiquinone to the quinol (ΔE0″ = +430 mV), though the opposite is expected when considering the redox potentials. Re-oxidation of the quinone is achieved by hydrogenase resulting in the equation: Crotonyl-CoA + 2 NADH + 2 H+ → Butyryl-CoA + 2 NAD+ + H2. Membrane preparations of A. fermentans, containing a very active ferredoxin-NAD reductase (Rnf), catalyze the re-oxidation of the quinone to the semiquinone by NAD+. Due to the high redox potential of the semiquinone, further oxidation to the quinone is not possible. The combination of Etf, Bcd and Rnf recycles not only the semiquinone but also half of the NAD+, resulting in the simple equation: Crotonyl-CoA + NADH + H+ → Butyryl-CoA + NAD+. In this system the apparent Km of flavodoxin was determined as 9 μM, 45-times higher than that of ferredoxin by recycling with hydrogenase, $K_m = 0.2 \mu M$. [1]. Furthermore, this assay allowed to demonstrate the postulated dependence of Rnf from A. fermentans on Na+ or Li+ [3], which has been already verified for Rnf from Acetobacterium woodii [4,5]. Following values were measured: $K_m = 120 \mu M$ Na+ or 275 μM Li+. Etf contains two FAD, one of which exhibits normal redox potentials, $E_0″ < E_0″ < E_0″$, whereas those of the other are similar to the potentials of flavodoxin, $E_0″ > E_0″$ (see above). This inverse behavior leads to a model of flavin-based electron bifurcation.

BEP10
Cell biology of a purple sulfur bacterium – in vivo localization of a new sulfur globule protein in Allochromatium vinosum by fluorescence microscopy
Z. Riganni, F. Grein”, C. Köpme”, W. Jan, T. Weissgerber, C. Dahl*
Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Mikrobiologie & Biotechnologie, Bonn, Germany

Many sulfur-oxidizing bacteria form conspicuous sulfur globules as intermediates during the oxidation of reduced sulfur compounds. The sulfur globules are deposited either intracellularly in the periplasm or outside of the cells. The anoxygenic phototrophic purple sulfur bacterium Allochromatium vinosum is a well-studied example for intracellular sulfur deposition. So far, three extremely hydrophobic structural proteins have been established as components of the proteinaceous sulfur globules envelope: SgpA and SgpB are very similar and can functionally replace each other. SgpC participates in sulfur globule expansion [1]. Presence of a fourth major sulfur globule protein, SgpD (Alvin_2515), was indicated by comparative transcriptronic profiling and a proteomic study of enriched sulfur globules [2]. Here, we obtained three experimental proof for a function of SgpD as a sulfur globule protein in vivo by coupling its carboxy-termiinus to a fluorescent protein. This enabled targeting of the fusion to the bacterial periplasm via the original Sec-dependent signal peptide of SgpD. mCherry was chosen as the reporter protein for subcellular localization of SgpD, because red fluorescent protein derivatives are known to be effectively transported to the bacterial periplasm through the Sec system. Usually, the use of fluorescent reporter proteins as non-invasive molecular tools for in vivo imaging is restricted to aerobic systems, as the formation of their chromatophores strictly requires oxygen. However, A. vinosum is grown under anoxic conditions. This problem was overcome by incubation of embedded A. vinosum cells on microscope slides for approximately one hour at ambient oxygen concentrations before fluorescence microscopy. While a mCherry-SgpD fusion lacking a signal peptide led to an evenly distributed low fluorescence of the whole cell, the fusion protein targeted to the periplasm co-localized exactly with the sulfur deposits apparent in sulfide-fed A. vinosum cells as highly refractile globules by light microscopy. Insertional inactivation of the sgpD gene in A. vinosum showed that the protein is not essential for the formation and degradation of sulfur globules when cells are exposed to sulfide (range 2-6 mM) or thiosulfate (range 4-10 mM). At very high sulfide concentrations (9 mM), sulfur globule formation appeared slightly delayed in the A. vinosum sgpDΔ-Lk4K strain.

BEPII
Membrane topology of AtpI in *Escherichia coli*

D. Klütsch, C. Hübert, G. Deckers-Hebestreit

Universität Osnabrück, Osnabrück, Germany

AtpI, encoded by the first gene of the atp operon of *E. coli*, is a hydrophobic, chloroform/methanol extractable protein of 14 kDa, which is present in substoichiometric amounts in purified F$_0$ and F$_0$F$_1$-ATP synthase preparations, although not necessarily part of the functional enzyme complex. Whereas AtpI is essential for the oligomerization of the c ring in Na$^+$-translocating F$_0$F$_1$-ATP synthases during assembly of F$_0$F$_1$, it is not absolutely required for the assembly of H$^+$-translocating F$_0$F$_1$-ATP synthases, although in its presence, stability and activity of the membrane-bound ATPase activity is modestly increased (Deckers-Hebestreit, 2013; and references therein). Nevertheless, the atp gene is highly conserved in most bacterial atp operons, although the protein exhibits a high variability in sequence and length. Hydrophathy plots as well as the positive-inside rule suggest a membrane topology of AtpI with four transmembrane segments and a N-terminus towards the cytosol. Hydropathy plots as well as the positive-inside rule suggest a membrane topology of AtpI with four transmembrane segments and a N in-C terminus. Our analysis verifies the presence of four transmembrane helices as predicted. At the periplasmic side of the membrane only a few amino acid residues were accessible to the non-permeable thiol reagent indicating the presence of small loops only. While at the cytoplasmic side of the membrane, the accessibility of both termini as well as of the cytoplasmic loop is more extended as initially expected. Furthermore, hydrophobic, membrane-spanning segments shorter than 20 amino acids in length indicate the presence of a hydrophobic cavity probably comparable to the one observed for F$_0$ subunit a in the Na$^+$-F$_0$F$_1$-ATP synthase of *Propionigenium modestum* (von Ballmoos et al, 2002) or the H$^+$-pumping F$_0$F$_1$-ATP synthase of *Polytomella* sp. mitochondria (Allegretti et al, 2015). Further investigations are necessary to describe the interaction between these membrane-spanning segments of AtpI as well as the interface between AtpI and the subunit c ring.

BEPIII
Towards the structure of an anammox nitrite oxidase complex

Max-Planck-Institut für medizinische Forschung, Biomolekulare Mechanismen, Heidelberg, Germany

Radboud University Nijmegen, Department of Microbiology, Institute for Water and Wetland Research, Nijmegen, Netherlands

Delft University of Technology, Department of Biotechnology, Delft, Netherlands

The discovery of anammox bacteria in the 1990’s has dramatically changed our understanding of the global nitrogen cycle. These bacteria perform ANaerobic AMMonium OXidation, combining ammonium with nitrite into molecular dinitrogen (N$_2$) and water, yielding energy for the cell (see [1] for a review). In marine ecosystems, the anammox process is estimated to be responsible for up to 50 % to the total N$_2$ production [2]. We are studying the structure of the nitrite/nitrate oxidoreductase (Nxr) multienzyme complex from the anammox organism *Kuenenia stuttgartiensis* using protein crystallography. We have obtained large crystals containing all three subunits that diffract to 3.5 Å resolution. The ongoing analysis of the diffraction data is greatly complicated by the extremely large unit cell. However, it has already revealed large supercomplexes of Nxr. In addition, we have localized five iron-sulfur clusters as well as a heme and a molybdoenzyme site in each promotor. The positions of these reduct-enzyme sites reveal a path for electrons through the multienzyme complex. Further analysis is being performed.

BEPIV
CO and syngas metabolism in the thermophilic acetogen
Thermoaerobacter kivui

M. Weghoff, V. Müller*[1]

Goethe University Frankfurt, Molecular Microbiology and Bioenergetics, Frankfurt a. M, Germany

Question: *Thermoaerobacter kivui* is an acetogenic bacterium that is able to grow autotrophically on H$_2$ + CO$_2$ [1]. A genetic system is available for some *Thermoaerobacter* strains making *T. kivui* a good candidate for a strain to be used for the production of bio-commodities from CO$_2$ at high temperatures [2,3]. Another interesting feedstock for 3rd generation biofuels is synthesis gas or syngas that contains carbon monoxide, carbon dioxide and molecular hydrogen in variable proportions. Unfortunately, it was reported that *T. kivui* is unable to grow on carbon monoxide which would exclude syngas as a feedstock for this bacterium [4]. The capability of *Thermoaerobacter kivui* to adapt to growth on CO was re-investigated.

Methods: Growth experiments were conducted to elucidate adaptation to CO. Product formation from CO and/or in combination with H$_2$ was investigated by gas-chromatography. Cellular activity and the effect of the ionophore TCS was studied in cell suspension experiments. Photometric assays were conducted to shed light on key enzyme activities.

Results: *T. kivui* can be adapted to grow on CO when adapted from a culture grown on H$_2$ + CO$_2$ but not from glucose. The final optical density increases with increasing CO concentrations and reaches a maximum at 50 % CO. Growth on CO is optimal at 50 °C. Growth with CO as the sole carbon source is not affected by omission of vitamin solution. The organism forms acetate as the main end product along with molecular H$_2$. When subjected to synthesis gas, CO and H$_2$ can be co-utilized by a growing culture. The main end-product is acetate. As shown in cell suspension experiments, the oxidation of CO is coupled to ATP synthesis and acetate formation. The presence of a protonophore abolishes ATP and acetate synthesis. Hydrogenase activity is highest in CO-grown cells and carbon monoxide dehydrogenase activity is highest in H$_2$ + CO$_2$-grown cells.
Conclusion: T. kivui can be adapted to grow on CO. CO oxidation leads to acetate and H₂ formation and is coupled to energy conservation.

BTP01

Hydrogen production by Escherichia coli wild type and hydrogenase mutants are observed in formate and formate fermentation under different growth conditions

*A. Poladyan1, S. Mirzoyan1, K. Trchounian1, A. Trchounian1

Yerevan State University, Microbiology, Plant and Microbes Biotechnology, Yerevan, Armenia

One of the fermentation end products during glycerol and glucose fermentation in Escherichia coli is formate, which is decomposed by the formate hydrogen lyase (FHL) complex leading to H₂ production. FHL is formed by formate dehydrogenase H (FDH-H) and hydrogenase (Hyd). Escherichia coli possesses four (Ni-Fe)-hydrogenase (Hyd) enzymes, encoded by the hya, hyb, hyc and hyf operons. In this study H₂ production was investigated with the help of two redox Pt (sensitive to H₂) and Ti-Si electrodes. From the end of the log growth phase the drop of two redox Pt and Ti-Si electrodes form positive to low negative (Pt) - 450 ± 0.05 values was detected in E. coli BW25113 wild type upon hydrogen fermentation at permissive medium point out H₂ formation. E. coli BW25113 wild type growth and H₂ production were also observed in minimal salt growth medium at pHs 5.5 to 7.5. H₂ production was delayed and observed after 24 h growth, moreover, the bacterial growth and H₂ production reached their maximal values at 72 h at pHs 6.5 and 7.5. Our previous findings identified the conditions when formate alone or with glycerol had stimulatory effect on H₂ production and growth were investigated in double massac HOST-AK15 protease stability in variety of organic solvents, surfactants, and environmental conditions when formate alone or with glycerol had stimulatory effect on H₂ production and growth were investigated in double massac HOST-AK15 protease stability in variety of organic solvents, surfactants, and environmental conditions.

BTP02

Construction of a recombinant biocatalyst for the production of phenylacetic acids and phenylethanol from styrenes

*S. Hoffmann1, A. Drechel1, M. Schloßmann1, M. Oeschschläger1

1Technical University Bergakademie Freiberg, Institut für Biowissenschaften, Freiberg, Germany

Question: Numerous soil bacteria have been reported to be able to metabolize styrene via the pathway of side-chain oxygenation. This pathway comprises a styrene monoxygenase (SMO), which oxidizes styrene to styrene oxide, a styrene oxide isomerase (SOI), which converts styrene oxide into phenylacetaldehyde, and a phenylacetaldehyde dehydrogenase (PAD). The latter enzyme enables the oxidation of the aldehyde to the central metabolite phenylacetic acid. Further enzymatic steps allow subsequently the degradation of the acid to intermediates of the tricarboxylic acid cycle [1,2]. In this study the construction of a recombinant biocatalyst under consideration of suitable SMOs, SOIs and PADS was intended because this pathway is of potential relevance for the biotechnological production of phenylacetic acids and similar compounds.

Methods: During our present study various enzymes of this pathway from different microorganisms (Rhodococcus opacus 1CP, Sphingopyxis flavescens KS5,2, Fariantorax paradoxus EPS, Pseudomonas fluorescens ST) were investigated with respect to their applicability for the transformation of styrenes to phenylacetic acids. The most active and stable ones were combined to an enzyme cascade which was expressed in suitable Escherichia coli strains. Enzyme assays and whole cell biotransformation were used to evaluate these putative biocatalysts.

Results: Remarkably, the integration of a styrene monoxygenase and a styrene oxide isomerase in E. coli BL21(DE3) and T7Express resulted in the accumulation of phenylethanol instead of - as expected - phenylacetaldehyde. It can be assumed that most probably the phenylacetaldehydes are transformed immediately into the alcohols by unspecified alcohol dehydrogenases. But, additional transformation of a gene encoding a phenylacetaldehyde dehydrogenase resulted in the formation of significant amounts of phenylacetic acids. Both biotransformations are mainly affected by the activity of the SMO. During this study some SMOs were identified which convert styrene to styrene oxide with high relative activities and allow a stable transformation rate over a period of several days.

Conclusion: Both, phenylacetic acids and phenylethanol, are important chemicals for various industries and these biocatalysts reported herein offer environment-friendly alternatives to common chemical strategies in order to synthesize such compounds.

BTP03

Optimisation of the bioleaching of REE from FP with chemoenzymo-heterotrophic microorganisms

*S. Hopfe1, S. Kutschke1, K. Pollmann1

1 Helmholtz-Institut Freiberg für Ressourcetechnologie, Processing, Freiberg, Germany

Rare earth elements (REE) are used in mostly all new technologies and until now, there is nearly no recycling of REE containing end-of-life products [1]. Furthermore, only poor information is available regarding interactions of microorganisms with REE and there are almost no studies describing the bioleaching of REE. However, it can be assumed that microorganisms play an important role in the biogeochemistry of REE. This study investigates the potential of organic acid and metal binding molecules producing microbes to aid REE extraction from technical waste. During recycling of energy-saving bulbs fluorescent phosphor (FP) is collected as a distinct fraction. It contains about 10 % REE-oxides bound in the hardly water-soluble triband dyes as oxides, phosphates, aluminates and silicates [2]. Previous experiments showed, that the chemoenzymo-heterotrophic, organic acid producing microorganisms Yarrowia lipolytica, Komagatella aurantia xylimus and Lactobacillus casei as well as the mixed culture Kombucha are in principle suitable for the bioleaching of REE from FP. In this presentation the solubilisation process is investigated regarding the leaching metabolites and optimised with respect to maximal REE release.
Thereto, the results are transferred from shake flasks to bioreactor and the media were adjusted. Furthermore, the influence of metal binding molecules like siderophores was tested. It could be shown, that biotreatment is a potential alternative to technical leaching approaches even though, the leaching efficiency is still low. This provides the basis for the development of an eco-friendly alternative to the currently applied methods.

Question: How to design a biocatalyst, which continuously produces value added compounds from sunlight, CO₂ and water?

In the course of the debate regarding fossil carbon and energy, a lot of research is invested into the development of biological catalysts fuelled by sunlight, CO₂ and H₂O. Besides focussing on the biofinery approach and maximizing biomass, photautotrophic microorganisms are harnessed for directly producing a whole bunch of interesting compounds. However, low activities, low stabilities, and slow growth are problems these approaches are facing. Here we report on utilizing a biofilm based concept to realize a truly continuous bioprocess as these microbial communities feature extraordinary robustness and permanent regeneration.

Method: In this study we investigate the ability of the photo-autotroph microbe *Synechocystis* sp. PCC6803 for biofilm formation with the long-term goal to develop a biofilm catalytic system able to produce value added compounds fuelled by sunlight, CO₂ and H₂O. As a first step it was necessary to find a system, allowing the long-term cultivation of a tightly attached biofilm under continuous flow conditions. In parallel a heterologous pathway for the synthesis of 1,2-propanediol directly from CO₂ was introduced into *Synechocystis* sp. PCC6803 applying a plasmid based as well as a genomic based approach.

Results: We successfully grew *Synechocystis* sp. PCC6803 as biofilm in a capillary microreactor. However, the biofilm was characterised by the formation of long streamers (filaments) and the whole system was prone to clogging. Upon introducing air segments into the system in a segmented flow fashion, the architecture changed significantly towards a flat and homogenous structure. It was possible to operate this system for five weeks, before the experiment was actively terminated. The biofilm developed up to a thickness of 70 - 120 μm. The biofilm stopped growing at this thickness and stayed constant without any detachment events occurring afterwards. The substrates CO₂ and light were supplied in a counter-current fashion. Confocal microscopy revealed a throughout photosynthetically active biofilm, indicated by the red fluorescence of the photopigments. In addition, first fermentations have been conducted yielding final product titers of 4 mM 1,2 propanediol. Strikingly, the production of the 1,2 propanediol seemed to be clearly coupled to the stationary phase of the organism, as production started when cell growth ceased.

Conclusion: Our findings indicate an uncoupling from cell growth and 1,2-propanediol synthesis. In addition, biofilms of *Synechocystis* sp. PCC6803 seemed to stall growth at an optimal biofilm thickness of about 100 μm. Thereby the reaction format of applying a phototroph as a catalytic biofilm for the generation of value added compounds fuelled by sunlight and CO₂ seems to be a perfect match for continuous solar driven catalysis.

References:

Question: How to design a biocatalyst, which continuously produces value added compounds from sunlight, CO₂ and water?

In the course of the debate regarding fossil carbon and energy, a lot of research is invested into the development of biological catalysts fuelled by sunlight, CO₂ and H₂O. Besides focussing on the biofinery approach and maximizing biomass, photautotrophic microorganisms are harnessed for directly producing a whole bunch of interesting compounds. However, low activities, low stabilities, and slow growth are problems these approaches are facing. Here we report on utilizing a biofilm based concept to realize a truly continuous bioprocess as these microbial communities feature extraordinary robustness and permanent regeneration.

Method: In this study we investigate the ability of the photo-autotroph microbe *Synechocystis* sp. PCC6803 for biofilm formation with the long-term goal to develop a biofilm catalytic system able to produce value added compounds fuelled by sunlight, CO₂ and H₂O. As a first step it was necessary to find a system, allowing the long-term cultivation of a tightly attached biofilm under continuous flow conditions. In parallel a heterologous pathway for the synthesis of 1,2-propanediol directly from CO₂ was introduced into *Synechocystis* sp. PCC6803 applying a plasmid based as well as a genomic based approach.

Results: We successfully grew *Synechocystis* sp. PCC6803 as biofilm in a capillary microreactor. However, the biofilm was characterised by the formation of long streamers (filaments) and the whole system was prone to clogging. Upon introducing air segments into the system in a segmented flow fashion, the architecture changed significantly towards a flat and homogenous structure. It was possible to operate this system for five weeks, before the experiment was actively terminated. The biofilm developed up to a thickness of 70 - 120 μm. The biofilm stopped growing at this thickness and stayed constant without any detachment events occurring afterwards. The substrates CO₂ and light were supplied in a counter-current fashion. Confocal microscopy revealed a throughout photosynthetically active biofilm, indicated by the red fluorescence of the photopigments. In addition, first fermentations have been conducted yielding final product titers of 4 mM 1,2 propanediol. Strikingly, the production of the 1,2 propanediol seemed to be clearly coupled to the stationary phase of the organism, as production started when cell growth ceased.

Conclusion: Our findings indicate an uncoupling from cell growth and 1,2-propanediol synthesis. In addition, biofilms of *Synechocystis* sp. PCC6803 seemed to stall growth at an optimal biofilm thickness of about 100 μm. Thereby the reaction format of applying a phototroph as a catalytic biofilm for the generation of value added compounds fuelled by sunlight and CO₂ seems to be a perfect match for continuous solar driven catalysis.

References:

isolate *Sphingopyxis fribergensis* Kp5.2 were initially investigated with respect to their applicability to produce substituted phenylacetic acids. Therefore, cultivation and inducing conditions were optimized and biotransformation strategies were developed to accumulate the products to high concentrations and yields. Products formed were quantified by HPLC. Further optimization of the process was performed in a 5L fermenter.

Results: This study has shown that all strains differ in substrate specificity and product yields. Remarkably, the synthesis of smaller amounts of the pharmaceutical 4-isobutyl-3-oxo-4-butyrylphenylacetic acid (ibuprofen) could also be shown for *Gordonia* sp. CWB2 while all other strains were not able to form this product. Furthermore, a stereoselective potential of this multi-step biotransformation was demonstrated for some strains using 4-chloro-o-methylstyrene as substrate. *Pseudomonas fluorescens* ST has been identified as a promising biocatalyst for the synthesis of 4-chloro-, 3-chloro-, 4-fluoro-, o-methyl-, and 4-chloro-o-methylphenylacetic acid. Additionally, whole-cell biotransformation of 4-chlorostyrene with cells of strain ST yielded about 27.5 mmol 1\(^{-1}\) product after nearly 350 days. In the next step of this study, this first result was optimized to >7 mmol 1\(^{-1}\) product per day applying concentrated styrene-adapted biomass under improved culture conditions. It was shown that a decreasing pH limits the transformation efficiency in some extent. This limitation was subsequently overcome by using a pH-regulated fermenter and the product amounts could be improved again.

Conclusion: A promising strategy to produce various substituted phenylacetic acids was established when using native strains, especially *Pseudomonas fluorescens* ST. In contrast to non-substituted phenylacetic acid, the substituted products were enriched during the process in the medium because the substitution reduces or prohibits the further degradation.

BTP09

Biochemical characterization and stability improvement of ‘thermophilic-like’ ene-reductases by site-directed mutagenesis

*A. Scholtissek\(^1\), M. Schlömann\(^1\), D. Tischler\(^1\)

Technical University Bergakademie Freiberg, Interdisciplinary Ecological Center/Waste Biotechnology Group, Freiberg, Germany

Ene-reductases are widely applied flavoproteins for the asymmetric reduction of activated C=C-bonds through a trans-hydrogenation reaction of relevant industrial chemicals. The characterization of novel biocatalysts for the reduction of activated C=C-bonds through a trans-hydrogenation reaction is reasonable. The characterization of novel biocatalysts is from great interest regarding to their stability against temperature and organic solvents.

Two novel ‘thermophilic-like’ ene-reductases OYERo2 and FOYE from the actinobacterium *Rhodococcus opacus* 1CP and from the iron-oxidizing betaproteobacterium *Ferrovum myxofaciens* JA12 were discovered by genome mining and subsequent multiple sequence alignment [Riedel et al. (2015)]. Both enzymes were overexpressed in *Escherichia coli* BL21 and biochemically characterized and classified by bioinformatically methods.

Both, OYERo2 and FOYE use non-covalently bound FMNH; as reduction equivalent and are strongly NADPH dependent. They were also active in organic solvents.

Conclusion: Clearing of agar plates turbid by immobilized droplets of tributyrin is three times faster than expected. A single hydrolysis reaction into butyric acid and dibutyrin is sufficient because both products, butyric acid and dibutyrin are diffusing into the water phase.

BTP10

25-Hydroxyvitamin D\(_3\) synthesis using a bacterial Mo-enzyme for steroid side chain reduction with water

*M. Warnke\(^1\), T. Jung\(^1\), J. Dermer\(^1\), K. Hipp\(^1\), N. Jehmlich\(^2\), M. von Bergen\(^2\), S. Ferlaino\(^3\), A. Fries\(^3\), M. Müller\(^3\), M. Boll\(^3\)

University of Freiburg, Microbiology, Freiburg, Germany

*Helmholtz Centre of Environmental Research – UFZ, Proteomics, Leipzig, Germany

University of Freiburg, Pharmaceutical Sciences, Freiburg, Germany

Question: Vitamin D\(_3\) (VD\(_3\), cholecalciferol) is generally known for its regulatory function in calcium and phosphorous homeostasis, but is also recognized as an anti-proliferative factor for dividing cells and tissues. VD\(_3\) is formed from the theoretical maximum [2]. VD\(_3\) was detected by a specific enzymatic test, by HPLC, or by titration. On the other hand up to 80 % of the expected glycerol was found when tributyrin was replaced with rapeseed oil in shake flasks where recombiant *Thermomyces lanuginosus* lipase was incubated with the triacylglyceride for more than 20 hours. In the case of tributyrin an accumulation of 1,2 dibutyrin and 1,3 dibutyrin was detected by thinlayer chromatography. Both products of partial hydrolysis were purified in gram scale from 50 ml shake flask lipase hydrolysis experiments by chromatography and identified by NMR.

At the moment solubility experiments and kinetic studies with water-dissolved dibutyrin forming a second phase at the critical micelle concentration (cmc) are performed. It is expected that interphase activation causing a conformational change of the lipase is also true for dibutyrin with substrate concentrations above cmc. Furthermore, it is assumed that in the turbid agar plates or microtiter cavities the concentration of dibutyrin is below its cmc. Soluble dibutyrin is a poor substrate for the lipase and therefore a low end concentration of glycerol is reasonable.

Conclusion: Clearing of agar plates turbid by immobilized droplets of tributyrin is three times faster than expected. A single hydrolysis reaction into butyric acid and dibutyrin is sufficient because both products, butyric acid and dibutyrin are diffusing into the water phase.

Question: Vitamin D\(_3\) (VD\(_3\), cholecalciferol) is generally known for its regulatory function in calcium and phosphorous homeostasis, but is also recognized as an anti-proliferative factor for dividing cells and tissues. VD\(_3\) is formed from the theoretical maximum [2]. VD\(_3\) was detected by a specific enzymatic test, by HPLC, or by titration. On the other hand up to 80 % of the expected glycerol was found when tributyrin was replaced with rapeseed oil in shake flasks where recombiant *Thermomyces lanuginosus* lipase was incubated with the triacylglyceride for more than 20 hours. In the case of tributyrin an accumulation of 1,2 dibutyrin and 1,3 dibutyrin was detected by thinlayer chromatography. Both products of partial hydrolysis were purified in gram scale from 50 ml shake flask lipase hydrolysis experiments by chromatography and identified by NMR.

At the moment solubility experiments and kinetic studies with water-dissolved dibutyrin forming a second phase at the critical micelle concentration (cmc) are performed. It is expected that interphase activation causing a conformational change of the lipase is also true for dibutyrin with substrate concentrations above cmc. Furthermore, it is assumed that in the turbid agar plates or microtiter cavities the concentration of dibutyrin is below its cmc. Soluble dibutyrin is a poor substrate for the lipase and therefore a low end concentration of glycerol is reasonable.

Conclusion: Clearing of agar plates turbid by immobilized droplets of tributyrin is three times faster than expected. A single hydrolysis reaction into butyric acid and dibutyrin is sufficient because both products, butyric acid and dibutyrin are diffusing into the water phase.

Question: Vitamin D\(_3\) (VD\(_3\), cholecalciferol) is generally known for its regulatory function in calcium and phosphorous homeostasis, but is also recognized as an anti-proliferative factor for dividing cells and tissues. VD\(_3\) is formed from the theoretical maximum [2]. VD\(_3\) was detected by a specific enzymatic test, by HPLC, or by titration. On the other hand up to 80 % of the expected glycerol was found when tributyrin was replaced with rapeseed oil in shake flasks where recombiant *Thermomyces lanuginosus* lipase was incubated with the triacylglyceride for more than 20 hours. In the case of tributyrin an accumulation of 1,2 dibutyrin and 1,3 dibutyrin was detected by thinlayer chromatography. Both products of partial hydrolysis were purified in gram scale from 50 ml shake flask lipase hydrolysis experiments by chromatography and identified by NMR.

At the moment solubility experiments and kinetic studies with water-dissolved dibutyrin forming a second phase at the critical micelle concentration (cmc) are performed. It is expected that interphase activation causing a conformational change of the lipase is also true for dibutyrin with substrate concentrations above cmc. Furthermore, it is assumed that in the turbid agar plates or microtiter cavities the concentration of dibutyrin is below its cmc. Soluble dibutyrin is a poor substrate for the lipase and therefore a low end concentration of glycerol is reasonable.

Conclusion: Clearing of agar plates turbid by immobilized droplets of tributyrin is three times faster than expected. A single hydrolysis reaction into butyric acid and dibutyrin is sufficient because both products, butyric acid and dibutyrin are diffusing into the water phase.

Question: Vitamin D\(_3\) (VD\(_3\), cholecalciferol) is generally known for its regulatory function in calcium and phosphorous homeostasis, but is also recognized as an anti-proliferative factor for dividing cells and tissues. VD\(_3\) is formed from the theoretical maximum [2]. VD\(_3\) was detected by a specific enzymatic test, by HPLC, or by titration. On the other hand up to 80 % of the expected glycerol was found when tributyrin was replaced with rapeseed oil in shake flasks where recombiant *Thermomyces lanuginosus* lipase was incubated with the triacylglyceride for more than 20 hours. In the case of tributyrin an accumulation of 1,2 dibutyrin and 1,3 dibutyrin was detected by thinlayer chromatography. Both products of partial hydrolysis were purified in gram scale from 50 ml shake flask lipase hydrolysis experiments by chromatography and identified by NMR.

At the moment solubility experiments and kinetic studies with water-dissolved dibutyrin forming a second phase at the critical micelle concentration (cmc) are performed. It is expected that interphase activation causing a conformational change of the lipase is also true for dibutyrin with substrate concentrations above cmc. Furthermore, it is assumed that in the turbid agar plates or microtiter cavities the concentration of dibutyrin is below its cmc. Soluble dibutyrin is a poor substrate for the lipase and therefore a low end concentration of glycerol is reasonable.
for the specific hydroxylation of VD₃ at C25 by water, requiring only a regenerative electron acceptor such as ferricenium.²

Methods: Crude extracts of *S. denitrificans* grown with different steroids were tested for the *in vitro* conversion of VD₃ and proVD₃ to the corresponding C25-hydroxylated forms in the presence of various solubilizing agents. The VD₃, hydroxylating enzyme was purified and the encoding gene identified. Products of hydroxylation reactions were analyzed by MS- and MNR-techniques.

Results: Extracts of *S. denitrificans* catalyzed the ferricenium-, and cyclohexenol-dependent specific hydroxylation of VD₃ (1 mM) to 25OHVD₃, with >99% yield and selectivity. The VD₃ hydroxylating enzyme was purified by four chromatographic steps and identified as the previously described cholesterol C25 dehydrogenase. We demonstrate that the specific role of cyclohexenol was to alter the equilibrium between VD₃ and proVD₃, to right side, and that proVD₃ is the actual substrate for the water-dependent hydroxylation reaction. Once formed the product 25OHPreVD₃ is released from cyclohexenols and isomerizes back to the desired product 25OHVD₃.

Conclusion: The facile and robust method developed is a novel example for the concept of substrate-engineered catalysis and offers an attractive alternative to chemical or O₂/electron donor-dependent enzymatic procedures and may be useful for treatments of 25OHVD₃, deficiencies and to satisfy the high demand for monitoring its plasma levels as a result of an increasing number of VD₃-linked disorders.

BTP11 Fate of sulfonamide and trimethoprim resistant bacteria and resistance genes in constructed wetlands

Helmholz Centre for Environmental Research – UFZ, Leipzig, Germany

Martin-Luther-Universität Halle-Wittenberg, Halle, Germany

University of Ibadan, Ibadan, Nigeria

Question: The current extensive release of antibiotic resistant bacteria (ARB), respectively antibiotic resistance genes (ARG), into the environment is of significant concern. Here, we asked whether constructed wetlands (CWs) are suitable to treat domestic wastewater containing ARB/ARG; i.e. which mechanisms are governing whether ARG are eliminated, maintained, mobilized, or distributed in near-natural habitats like CWs?

Methods: Two pilot-scale horizontal subsurface flow CWs, planted with common reed (*Phragmites australis*) and receiving the same inflow (secondary clarifier effluent from a nearby wastewater treatment plant), were investigated over a sampling period of almost 2 years. One CW was aerated, the other was not. Abundances of sulfamethoxazole and trimethoprim resistant bacteria (SMX₃ and TMP₃) along the CWs’ flow paths were quantified by plating coupled with phylogenetic identification of resistant isolates. Concomitantly, respective resistance genes (sulI, sul-II, dfrA1) were enumerated by qPCR analysis. Those genes were selected as ARG indicators since they can be abundant in indigenous genotypes but are rare in native aquatic and terrestrial ecosystems as well have frequently different linkages to mobile genetic elements. In addition, standard wastewater parameters incl. numbers of *Escherichia coli* (quantified by MPN counting and qPCR) were recorded and bacterial community profiling was carried out via 454 pyrosequencing.

Results: The inflow displayed microbiological features typical of secondary treated wastewater, including abundances of the selected ARG ranging from ca. 10⁵ to 10⁶ copies/100 ml. In the non-aerated wetland there was a roughly steady decline of the ARB/ARG by about 1 to 1.5 log units along the flow path. In contrast, in the aerated CW the numbers of SMX₃, sul-I, and sul-II increased first till a maximum at about 2 m downstream from the influent before they decreased by about 2 log units. Furthermore, the SMX₃ species profile changed thru the passage of the aerated wetland. No strong shift in sul hosts was observed for the non-aerated bed, or for dfrA1 in either CW. Total bacterial community profiles, enumerations of *E. coli*, and standard wastewater parameter indicate that the aerated CW became an unsuitable habitat for many bacteria present in the inflow at about the 2 m mark, while the non-aerated bed did not appear to constitute a particularly stressful habitat.

Conclusion: The CW biotechnology appears to be a promising approach to attenuate or even eliminate ARB/ARB from wastewater. However, this study also provides evidence that common habitat stress may be a significant factor governing the dispersal of ARG when those are present in a mobile genetic context.

BTP12 Keratin waste biodegradation and peptide production by keratinolytic proteinase from *Bacillus methylophilus* AD-AA3

A. Gegeckas, A. Sinkulei, R. Gudikatienė, J. Čiavačius

Vilniaus University, Microbiology and Biotechnology, Vilnius, Lithuania

Introduction: Keratinolytic proteinases or keratinases (EC 3.4.21/24/99.11) are a particular class of proteolytic enzymes that displays the capability of degrading insoluble keratin substrates such as fibrin, keratin, elastin, collagen and soluble substrates such as sodium caseinate, albumin and gelatin or other keratin-like material [1]. Keratinolytic proteinases are produced by various microorganisms including bacteria, actinomycetes and fungi and belongs to metallo and serine or metallo-serine proteases based on their catalytic type [2]. Keratin-rich waste do not accumulate in environment due to natural biodegradation mechanism by keratinolytic proteinases [3]. Conventional not enough effective keratin waste degradation methods can be replaced by eco-friendly enzymatic biodegradation methods. Therefore, identification, characterization and development of new powerful and efficient biocatalyst for keratin waste biodegradation are required.

Methods: The newly isolated *B. methylophilus* AD-AA3 strain was grown in minimal medium containing 0.1% (w/v) keratin from wool as sole carbon and energy source. The medium was precipitated by solid ammonium-sulphate up to 80% saturation. Partially purified keratinolytic proteinase (BMKer) was used for further analysis of substrate specificity and capability to produce value peptides. Obtained degradation was analysed by thin-layer chromatography (TLC) and compared with commercial peptides generated by non-biological treatment. Moreover, degradation was analysed with low molecular weight tricine PAGE with incorporated ethylene glycol (LMW-T-EG-PAGE) [4].

Results & Conclusions: In this study BMKer enzyme from *B. methylophilus* AD-AA3 strain was successfully produced and partially purified. Physical and chemical characterisation of native BMKer suggested that new keratinolytic proteinase is powerful biocatalyst for efficient keratin waste biodegradation and can replace conventional insufficient non-biological hydrolysis processes without energy, important amino acids and nutritional element loss. High value bio-active hydrolysis products - peptide obtained from keratin waste biodegradation by BMKer are suitable for industrial applications in white and green biotechnology.

BTP13 Exploring the biosynthetic capability of ganefromycin by direct cloning and heterologous expression

J. Zhu, X. Yan*, A. Greule*, S. Zhang*, A. Bechhold†

Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany

The Scripps Research Institute, Department of Chemistry, Jupiter, FL 33458, USA

Ganefromycins produced by *Streptomyces lydicus* ssp. *Tanzanius* NRRL 18036, belong to the elfamycin family and display a narrow spectrum of antibacterial activity against human pathogens [1]. The screening of the target cosmid library of *S. lydicus* ssp. *Tanzanius* NRRL 18036 has been finished by colony PCR screening. We used homologous probes to detect the PKSI genes and the 2,3- or 4,6-dehydratase genes, and thereby identified four cosmids (cosmid 26, cosmidi21, cosmidi19). Those cosmids were sequenced and analysed to reveal the presence of 26 open reading frames (ORFs). In order to verify those cosmids containing the gene cluster for the biosynthesis of ganefromycin, we carried out the gene disrupted experiment in vivo. In addition, we started experiments to construct an heterologous expression system for this gene cluster by adopting the transformation-associated recombination (TAR) technology [2]. The establishment of this heterologous expression system will help us to lay a foundation for subsequent research on the biosynthetic pathway of ganefromycin.

BTP14
Establishing the CRISPR/Cas-System in Dictyostelium discoideum
*R. Herbst1, *S. Götz2, P. Stallforth1

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Chemistry of Microbial Communication, Jena, Germany

The social amoeba Dictyostelium discoideum is a ubiquitous inhabitant of soil and is typically found on acidic leaf litter where it preys on bacteria. Upon food starvation it enters a development cycle in which up to 10^7 amoebae stream together eventually to form a multicellular pseudogovernment. D. discoideum has served as a model organism for the last decades and major insights in the areas of social evolution, cellular function and chemotaxis have been made by use of this organism. In particular inter- and intracellular signaling processes are important in this social amoeba. Genome sequencing provides an insight in the wealth of genes devoted to these processes.1 Some amoebal secondary metabolites, which are the product of polyketide syntheses (PKS), are important communication signal molecules during the development phases. The genome of D. discoideum contains over 40 putative pks genes and the biosynthesis products of these PKS as well as their function are largely unknown. To identify and investigate these products, we want to use a combination of molecular biology and analytical chemistry tools. Therefore knockout mutants of selected pks genes will be generated and the resulting secondary metabolome will be compared with the wildtype strain. The pks genes of D. discoideum represent a class of genes with a high nucleotide sequence similarity. For this reason well-established methods for the editing of the social amoeba’s genome do not necessarily meet with success. The aim of this project is to enable targeted genome editing in D. discoideum using the clustered, regularly interspaced short palindromic repeat (CRISPR) RNA-guided Cas9 molecular tool. This tool is very specific for highly homologous genes, because it only needs nucleotide sequences of 20 base pairs to induce a double strand break and, consequently, generating a knockout via non-homologous end-joining.2 We want to establish this technology in D. discoideum thus generating a mutant library of pks genes in D. discoideum to elucidate the structure and function of previously unknown secondary metabolites. Furthermore, this efficient methodology provides complementarity for existing methods for genome editing and would benefit the entire Dictyostelium community.

BTP15
SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli
*A. Spielmann1

1Forschungszentrum Jülich, IBG-1, Jülich, Germany

Question: NADPH-dependent enzymes, such as stereospecific alcohol dehydrogenases, are important tools e.g. for industrial biotransformations. An ultra-high-throughput screening system for these enzymes was established that is based on the [2Fe-2S] cluster-containing transcriptional regulator SoxR of Escherichia coli that activates expression of soxS in the oxidized but not in the reduced state of the cluster. As SoxR is kept in its reduced state by NADPH-dependent reductases, an increased NADPH demand of the cell counteracts SoxR reduction and increases soxS expression. We have taken advantage of these properties to construct an NADPH biosensor by placing the eYFP gene under the control of the soxS promoter. The aim of this study was to test the NADPH biosensor in E. coli cells expressing an NADPH-dependent alcohol dehydrogenase from Lactococcus brevis (LbAdh), which reduces methyl acetoacetate (MMA) to (R)-methyl 3-hydroxybutyrate (MHB). Under suitable conditions, the specific fluorescence of the cells should correlate with the substrate concentration added and with LbAdh enzyme activity, supporting the NADPH responsiveness of the sensor. Furthermore we tested whether the NADPH biosensor can be used for high-throughput screening of NADPH dependent alcohol dehydrogenases with optimized properties.

Methods: For the analysis of the NADPH responsiveness of the biosensor a BioLector system was used. This system allowed for recording of eYFP fluorescence and growth. Another method that was applied due to the fluorescent properties of the NADPH biosensor was fluorescence activated cell sorting (FACS).

Results: During the NADPH-consuming biotransformation of MMA to MHB, we showed that the maximal specific fluorescence of cells expressing the NADPH biosensor correlates with the concentration of MAA reduced to MHB between 0 mM MAA and 70 mM MAA. Moreover, the properties of the NADPH biosensor enabled sorting of single cells harboring wild-type LbAdh from those with lowered LbAdh activity or without LbAdh activity by FACS. Based on these results the NADPH biosensor beneficially used the commercially available LbAdh library for variants showing improved activity with the substrate 4-methyl-2-pentanone.

Conclusion: The NADPH biosensor responds to alterations in the NADPH concentration of E.coli cells. Therefore this biosensor shall be expected in future studies for the directed evolution of NADPH-dependent alcohol dehydrogenases, which have wide applications in industrial biotransformations.

BTP16
Enzymatic bioreactor for simultaneous synthesis of fine chemicals and energy production
L. Mazurenko1, M. Etienne1, *G.-W. Kohring2, F. Lapicque3, A. Walcarius4

1CNRS, Université de Lorraine, LCPME, Villiers-lès-Nancy, France
2Saarland University, Microbiology, Saarbrücken, Germany
3CNRS, Université de Lorraine, LRGP (ENSIC), Nancy, France

We introduce an enzymatic bioreactor for simultaneous electrosynthesis and electricity production, which is based on a laboratory prototype of flow bioreactor with a porous activated carbon felt (CF) bioanode and a commercially available oxygen gas-flow cathode. CF was first covered with multi-walled carbon nanotubes (MWCNT) and electropolymerized methylene green (PMG), which was then covered with a silica gel layer encapsulating the D-sorbitol-dehydrogenase (DSDH). The immobilization of DSDH and the mediator allowed performing a stereoselective conversion of D-sorbitol into D-fructose with appreciable rate. The enzyme immobilized in the silica film showed excellent operational stability for at least two weeks. The recovery of the electric power generated during the bioconversion was achieved by means of electrochemical regeneration of the cofactor at the bioanode and use of an oxygen gas-flow cathode, without the need for a membrane. Having current voltage of 0.25 V, the developed bioreactor was able to deliver a peak power of 14.6 μW cm^-2 at 0.1 V. Although DSDH does not produce compounds of high value, it was chosen as a model dehydrogenase because there are many electroenzymatic data available for comparison.2,3 The results of the proof of concept are a prerequisite for later replacement of DSDH by other dehydrogenases with substrate spectra of higher interest.4,5,6

BTP17
Immobilization of cysteine-tagged dehydrogenases on macroporous carbon felt by click chemistry for electroenzymatic synthesis
L. Zhang1, M. Etienne1, *G.-W. Kohring2, N. Vili1, A. Walcarius1

1CNRS, Université de Lorraine, LCPME, Villiers-lès-Nancy, France
2Saarland University, Microbiology, Saarbrücken, Germany

Compared to conventional organic synthesis, enzymatic electrochemistry is a green and sustainable processes suitable for the multi-step reactions under mild conditions with higher yields. During the process, the key step to successful electrocatalysis is enzyme immobilization. Up to now, different strategies for immobilization of enzymes on porous materials has been developed in order to enhance the stability as well as catalytic activity and the recyclability of the enzymes [1]. In the present work, a facile metal-free ‘click’ type thiol-ene reaction [2] was utilized to immobilize the cysteine-tagged D-sorbitol-dehydrogenase (cys-DSDH) on carbon felt (CF). This bio-system is proved to be stable and efficient for enzymatic oxidation of D-glucitol, and the direct electrochemical regeneration of NADH has been successfully applied. Besides, the multi-wall carbon nanotube was deposited on the carbon felt in order to increase the surface area and efficiency of this cys-DSDH-CNT/CF system.

BioSpectrum | Tagungsband 2016
Meanwhile, cys-DSDH catalyzed enzymatic reduction of D-fructose with electrochemical NAD$^+$ regeneration was realized by using [CrP(η^3)-bpy(η^1)Cl]$^+$ mediator in the solution, which is promising in electroenzymatic synthesis.

BTP18 From serum bottles to fermentors: Scaling up the production and upgrading of organic acids with reactor microbiomes

P. Hegner¹, V. Riechert¹, C. Koch¹, F. Harnisch¹

¹Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Leipzig, Germany

Question: An increasing demand for bio-based liquid fuels and chemicals is the driving force for the investigation of alternative microbiome-based fermentation technologies to upgrade low grade biomass to value added products. One process of interest is the production of long chained volatile fatty acids (VFAs), e.g., based on ethanol and acetate. Numerous studies have been devoted to the identification of suitable microbiomes that can drive this process, as well as their characterization. However, these studies were mostly only performed at one scale, i.e. lab scale or technical scale. Consequently, we assessed the transfer of an exemplary microbiome to larger reactor volumes in order to derive universal guidelines for microbiome based reactor engineering.

Methods: Enriched reactor microbiomes were applied in serum bottles (55 mL working volume), in 500 mL tailor-made glass reactors, and in technical scale bioreactors (more than 2 L working volume) for the conversion of acetate and ethanol into a mixture of VFAs. Production of liquid and gaseous metabolites as well as cell growth was monitored and compared of different studies as well as benchmarking lab processes to technical scale are urgently needed. Therefore, we assessed, if the (often already existing) infrastructure of conventional bioreactors can be easily upgraded for bioelectrotechnology.

Results: This study shows a high and stable production of butyrate and caproate by the characterized microbiome across all investigated reactor scales. 300 mM acetate and 400 mM ethanol are converted into 93 ± 6% butyrate and 91 ± 7% caproate by the microbiome consisting of 35% microorganisms assigned to Clostridium sp., based on 16s rRNA sequencing data, with half of them being classified as Clostridium kluveri. This is in accordance with current publications, which assume that this microorganism is predominant in microbiomes capable of producing butyrate and caproate from acetate and ethanol. Besides this, Sporanaerobacter sp. and Terrisporobacter sp. were found in significant proportions.

Conclusion: The successful production of butyrate and caproate from ethanol and acetate was shown at different scales from 55 mL to 500 mL. This not only indicates a high potential for further scaling up and development of the studied process, but also allows deriving more general conclusions of the engineering of microbiome based processes. Next step concerning the VFA production will target in-line acid separation and process optimization for low grade biomasses and undefined substrates.

Reference:

BTP20 The liaison between microbiomes and electroorganic syntheses: Upgrading microbial intermediates to alkanes and esters

C. Stang¹, J. Xu¹, H. Strüder¹, T. R. dos Santos Dantas¹, K. Jentzsch³, C. Härtig¹, L. T. Angenent², F. Harnisch¹

¹Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Leipzig, Germany
³Cornell University, Dep. of Biological and Environmental Engineering, Ithaca (NY), USA
²Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Leipzig, Germany

Question: The production of renewable electric energy, including for instance photovoltaics and wind, is highly fluctuating. Thus, more flexible technologies are required to either instantaneously exploit surplus electricity or store it effectively. At the same time, microbiomes can convert different kinds of biomass into potential platform chemicals. Among others, the conversion of biomass to carboxylic acids (CA), being considered as platform molecules, is a well-established process. Here we suggest combining the stable but relatively slow microbial production of CA with fast electroorganic syntheses in order to exploit surplus electricity for the synthesis of liquid energy carriers. Therefore, we assessed if microbially produced CAs with chain lengths of C₆ to C₁₀ (being continuously extracted from the fermentation broth) can be electrochemically converted to energy dense alkanes (chain length: C₆ to C₁₀) and esters (C₆ to C₁₀).

Methods: Starting from renewable substrates using a specialized microbiome for chain elongation of CAs, the microbially produced CAs are extracted and enriched continuously. Batchwise, this enriched CA mixture is electrochemically oxidized at platinum electrodes to energy dense hydrocarbons. Using HPLC and GC analysis, the production rate of CAs during fermentation, the extraction efficiency as well as the performance of the electroorganic syntheses of alkane and esters are evaluated.

Results: Yeast fermentation, a sum parameter of CAs of 7.5 g/L at 31 °C was achieved. An electrochemical conversion efficiency of >59±10% mol.C₆ was realized, resulting in product mixtures containing roughly 50% alkane, 40% esters and 10% C₆-C₁₀. The reaction rate of the electrochemical step is dependent on the characteristics of the CA and the electrolytic conductivity of the enriched CA mixture.

Conclusion: We conclude that the suggested approach of combining microbial biomass conversion with electrochemical upgrading can become efficient and thus well suited to store surplus electric energy in liquid fuels. However, the single steps of the process line need to be optimized.

BTP19 Upgrading conventional bioreactors for bioelectrotechnology

C. Gimkiewicz⁴, L. F. M. Rosa⁵, S. Hunger⁶, F. Harnisch³

⁴Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Leipzig, Germany
⁵Helmholtz Centre for Environmental Research – UFZ, Centre for Environmental Biotechnology, Leipzig, Germany

Question: Conventional bioreactors (i.e. fermentors) are a well-established in-depth characterized technology platform and several parameters can be highly defined or monitored online allowing cultivations and productions to take place at optimal conditions. In contrast bioelectrochemical reactor systems, as these are used to combine microbial and electrochemical conversions of different kind, are diverse and poorly characterized. For further development of the underlying concept of microbial electrochemical technologies (METs), cross-comparisons of different studies as well as benchmarking lab processes to technical scale is urgently needed. Therefore, we assessed, if the (often already existing) infrastructure of conventional bioreactors can be easily upgraded for bioelectrotechnology.

Methods: The experiments were performed in standard bioreactors upgraded for bioelectrotechnology with volumes of 0.5, 1.0 and 2.0 L with a constant area-to-volume ratio of the electrodes throughout the scales. For the upgrade kit for standard bioreactors was developed to perform electrochemical syntheses allowing a systematic process characterization and development [1,2].

Results: Most important evidence is provided that the electrochemical steering as well as measurements can be performed without disturbances on the conventional online parameter monitoring and control of the bioreactor. Further, it is shown that the set-up allows not only an easy handling of microbiomes, but also of pure cultures since all reactor components are autoclavable. Additionally, depending on the process objective, working in one- or two-chamber set-ups, i.e. with or without separation of anode and cathode, is easily possible. Here, the used membrane fixation process prevents membrane leakage, allows membrane and exchange membranes. Experiments with the model organism Shewanella species demonstrated highly reproducible results across the scales being also in line with literature values.

Conclusion: There is no need to buy new reactor systems, a reversible upgrade kit for standard bioreactors was developed to perform biocatalytic syntheses with volumes of 0.5, 1.0 and 2.0 L with a constant area-to-volume ratio of the electrodes throughout the scales. For the upgrade kit different materials, including polytetrafluoroethylene (PTFE) and polyether ether ketone (PEEK) were tested regarding material strength and autoclavability. As working, counter and reference electrodes graphite rods, titanium mesh and silver/silver chloride were used. Microbial model species, like Shewanella sp. being a typical electroactive microorganism, were investigated in one- and two-chamber set-ups, respectively. Cultivations were typically done at 30 °C under different aeration conditions with standard online-monitoring (pO₂, T, pH, substrate). Moreover, chronamperograms at +0.2 V were recorded as well as cyclic voltammograms at certain points of time.
BTP21

Transcriptional activity of the rDNA promoters in *Corynebacterium glutamicum*

T. Hahn1, S. Weinmann1, M. Ruwe1, J. Kalinowski2, B. J. Eikmanns1

1University of Ulm, Microbiology and Biotechnology, Ulm, Germany
2University of Bielefeld, CEBITec, Bielefeld, Germany

Question: *Corynebacterium glutamicum* is a Gram-positive bacterium mainly used for the biotechnological production of amino acids. It is a robust producer strain, easy to handle, and suitable for genetic engineering. However, its growth rate is significantly lower than that of other production organisms [1] and thus, there is a need for growth improvement. Possible factors influencing the growth rate are the number and the expression of the ribosomal DNA (rrn) operons encoding the 5S, 16S, and 23S rRNAs and in consequence, possibly the number of ribosomes. In *C. glutamicum*, there are six rrn operons, which are distributed on the genome in the order rrnA, rrnB, rrnE, rrnD, rrnR, and rrnF [2]. In this study, we focus on the analysis of transcriptional activity of each of the rrn promoters in *C. glutamicum* under different conditions.

Methods: For investigation of the rrn transcriptional activity we used plasmid pET2, containing the promoterless chloramphenicol acetyltransferase (CAT) gene as a reporter gene [3]. The six rrn promoter regions were amplified from genomic DNA of *C. glutamicum* and cloned into plasmid pET2. The resulting vectors were transformed into *C. glutamicum* wild type and into single and multiple rrn deletion mutants and growth experiments were performed with different media. In the exponential growth phase, the cultures were harvested and after cell lysis, CAT assays were performed, and specific activities accordingly. Further experiments have to clarify the mechanism of this cross-regulation.

Results: The promoter activities of the six different rrn operons differed significantly from each other, the rrnF promoter showing the highest specific activity (up to 10 U mg protein⁻¹) on all media tested. The total specific activity of all six rrn promoters was shown to vary on different media. Surprisingly, the rrnF and the rrnE promoter activities increased and decreased, respectively, with the number of deleted rrn operons, indicating a cross-regulation.

Conclusion: The results indicate that (i) the six rrn operons in *C. glutamicum* are differentially expressed, (ii) expression is different on different media, and (iii) the presence or absence of rrnA, B, C, and D influences the rrnF and rrnE promoters. Further experiments have to clarify the mechanism of this cross-regulation.

Acknowledgement: This work was supported by the BMBF grant 031A302E.

BTP22

Impact of rrn operon deletions on growth of *Corynebacterium glutamicum*

S. V. Weinmann1, T. Hahn1, M. Ruwe1, J. Kalinowski2, B. J. Eikmanns1

1Ulm University, Microbiology and Biotechnology, Ulm, Germany
2Bielefeld University, CEBITec, Bielefeld, Germany

Question: In general, the bacterial 5S, 16S, and 23S ribosomal RNAs are encoded by the so-called rrn operons. Bacterial cells usually possess multiple copies of the rrn operon scattered across the genome. There is a distinct number of rrn copies in each organism, e.g. Escherichia coli possesses seven copies whereas slow-growing *Mycochromatium* species contain only one or two rrn operons. In *Corynebacterium glutamicum*, the annotation of the genome sequence provided evidence for the presence of six rrn operons (copies rrnA-rrnF) [1]. Several studies indicate a correlation between abundance of ribosomes and growth rate and the number of ribosomes may be dependent on the availability of ribosomal proteins and rRNAs. *C. glutamicum* renders growth rates of up to 0.6 h⁻¹, which is relatively low compared to *E. coli*, which exhibits growth rates of up to 2.6 h⁻¹ [2]. Our project aims to identify and characterize factors influencing the growth rate in *C. glutamicum* and finally, to improve the growth rate of this industrially important organism. One such factor presently under investigation is the rrn operon copy number and its impact on the growth rate of *C. glutamicum*.

Methods: Single and multiple rrn deletion mutants of *C. glutamicum* CR099 with up to five deleted rrn operons have been constructed via homologous recombination using the suicide vector pK18mobC4B. The complete set of mutants was tested for growth characteristics on complex and minimal media with glucose, maltose or acetate as carbon source. These experiments were performed in 50 ml shaking flasks and in a parallel fermenter system with 600 ml culture volume.

Results: The final optical densities of all single and multiple rrn deletion mutants were roughly identical to that of the reference strain *C. glutamicum* CR099 in all media and under all conditions tested. In contrast, the growth rates were significantly lower (down to 30\% with those strains lacking four or five of the *rrn* operons. Interestingly, the degree of growth rate decline of the quadruple and quintuple deletion mutants was dependent on the type of medium and on the carbon source.

Conclusion: Our experiments revealed that an impact of *rrn* deletions on the growth of *C. glutamicum* CR099 is only obvious when four or five of the six *rrn* operons have been deleted. These results show that *C. glutamicum* can compensate the loss of up to four *rrn* operons by so far undetermined mechanisms. Furthermore, the results indicate that growth conditions have an influence on the compensation for deleted *rrn* operons.

Acknowledgement: This work was supported by the BMBF grant 031A302E.
production of heterologous proteins [1]. Various previous studies have shown that the secretion efficiency of a given protein via the bacterial Sec pathway is affected by different parameters such as growth medium composition, culture conditions, or the properties of the vector that is used to drive the expression of the target protein. Importantly, previous studies in _R. subtilis_ have shown that the choice of the correct signal peptide that is required for Sec-dependent membrane transport is probably the most critical factor that ultimately determines the amount of a desired target protein that is secreted into the culture supernatant [2].

Using a cutinase from the fungus _Fusarium solani pisi_ as a heterologous model protein, we here asked whether heterologous protein secretion by _C. glutamicum_ can be optimized by signal peptide variation and whether the relative ranking of different signal peptides with respect to cutinase secretion is affected when different cultivation conditions and/or different strain backgrounds are used.

Methods: Cutinase fused to 5 different signal peptides was expressed in _C. glutamicum_ wild-type and a _C. glutamicum_ AhhA mutant strain and the corresponding cells were grown in a BioLector microreactor cultivation device (m2p-labs) under different cultivation conditions. Subsequently, the amounts of cutinase secreted into the respective culture supernatants were determined.

Results: Our results clearly show that nature of the signal peptide that is used to drive the Sec-dependent translocation of the cutinase across the _C. glutamicum_ cytoplasmic membrane is a major factor that determines the ultimate yields of cutinase in the culture supernatant. Furthermore, our results also show that the relative quality of different signal peptides is influenced by the tested culture conditions and/or the chosen strain background.

Conclusions: Heterologous protein secretion by _C. glutamicum_ can be optimized by signal peptide and strain background variations. Furthermore, our data showing an interdependence of various secretion optimization parameters indicate that process optimization for a given heterologous target protein should be done as close as possible to the envisaged final production conditions.

References:

BTP25

Development of a platform for engineering the sensory properties of the histidine sensor kinase CitA

K.U. Corman1, M. Koch-Singenstre1, M. Baumgart1, M. Bott1

1Forschungszentrum Jülich, IBG-1: Arbeitsgruppe Stoffwechselregulation und Metabolische Engineering, Jülich, Germany

Question: Bacterial two-component signal transduction systems (TCS) are required for sensing environmental stimuli and adapting the organism’s metabolism [1,2]. Recently, these systems also emerged as promising tools for engineering novel couplings between sensory functions and gene expression [3]. Here, we employed the CitA-TCS of _C. glutamicum_ to construct a platform which enables easy manipulation and characterization of its ligand-induced activation.

Methods: A triple mutant of _C. glutamicum_ which lacks citA as well as genes enabling citrate uptake (citD, iccCAB) was constructed. This strain was transformed with different “sensor plasmids” encoding citA and the _ykgI_ gene under transcriptional control of promoters activated by CitB (either P_C or P_0). Moreover, the native ribosome binding sites were replaced by optimized variants derived from the expression vector pET-16b.

To complement the analysis of citrate-induced CitA activation in vivo the citrate affinity of the PAS domain was determined in vitro by Microscale Thermophoresis and Isothermal Titration Calorimetry.

Results: Expression of plasmid encoded citA provided a functionally active CitAB-TCS in each of the four reporter strains as judged by citrate inducible _eYFP_ expression. In addition, single cell analysis revealed homogeneous expression of the reporter gene. The concentration dependence of the fluorescence output correlates to the affinity determined in vitro by biomolecular interaction analysis.

Conclusion: Based on the homogeneity and concentration dependence of the _eYFP_ fluorescence the four reporter strains represent ideal platforms for altering the sensory functions of the CitA histidine kinase. This system is complemented by our experimental setup for characterizing the ligand binding properties of the sensory domain in vitro.

BTP26

Metabolic engineering of Corynebacterium glutamicum for the production of 2-methyl-1-butanol and 3-methyl-1-butanol

M. Brüsseler1, M. Vogt1, J. Marienhagen1

1Forschungszentrum Jülich, IBT-1 Biotechnologie, Jülich, Germany

Question: The aim of this work was the construction of _Corynebacterium glutamicum_ strains for microbial production of 2-methyl-1-butanol and 3-methyl-1-butanol from the keto acids 2-keto-3-methylvalerate and 2-ketoisocaprate, respectively. These keto acids, both intermediates of the branched-chain amino acid metabolism, were converted to the desired alcohols through decarboxylation by a ketoacid decarboxylase and subsequent reduction by an alcohol dehydrogenase.

Methods: The _C. glutamicum_-based pentanol production strains were constructed by genetic engineering and characterized in shake-flask cultivations. HPLC and GC methods were employed for precursor and product quantification.

Results: L-Isoleucine-producing _C. glutamicum_ strain K2P55 [1] and 2-ketoisocaprate-producing _C. glutamicum_ strain MV-KKCF1 [2] served as basis for the strain construction. _C. glutamicum_ K2P55 was converted to a 2-keto-3-methylvalerate producer by a START codon exchange in the _ileV_ gene coding for the branched-chain amino acid transaminase. Subsequently, codon-optimized synthetic genes for ketoacid decarboxylases (kivD) from _Lactis_, _thr3_ and _aro10_ from _S. cerevisiae_ and alcohol dehydrogenases (adh2 from _S. cerevisiae_, adh4 from _C. glutamicum_ and ykgI from _E. coli_) were cloned into plasmid pEKEx2 and the heterologous expression in these _C. glutamicum_ strains. For the evaluation of the performance of these genes during pentanol production, different combinations of these heterologous genes were expressed in both _C. glutamicum_ ketoacid producing strains. The resulting strains were grown aerobiologically in shake flasks for cell mass formation and subsequently cultivated under anaerobic (or microaerobic) conditions for pentanol production. The pentanol accumulation was followed over time in cell-free supernatants by gas chromatography analyses.

Conclusion: The constructed strains represent the first _C. glutamicum_ strains for the production of 2-methyl-1-butanolan 3-methyl-1-butanol from glucose. Future strain engineering and optimization of cultivation and production conditions currently conducted in our lab will further improve the overall production performance of these strains.

BTP27

Screening for fungal enzymes as novel biocatalysts for the production of chiral β-amino acids

U. Engel1, K. Ochsenreither2, C. Syldatk3, J. Radat3

1Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe, Germany

Chiral β-amino acids are valuable building blocks for pharmaceuticals and fine chemicals (Pilsl and Reiser 2011). Thus this work focuses on the development of a modified hydantoinase process using racemic dihydroxypropimidines as educts for the production of chiral β-amino acids.

The process is to be based on two enzymes. A cyclic amidase will be used for hydrolytic cleavage of the dihydroxypropimidine ring followed by the reaction of a linear amidase able to decarboxamylate N-carbamoyl-β-amino acids.

In previous work it was demonstrated that hydantoinases can hydrolyze racemic 6'-substituted dihydroxypropimides to the corresponding N-carbamoylated β-amino acids (Engel et al. 2012). However, up to now no enzyme for the subsequent decarbamoylation of aromatic N-carbamoylated β-amino acids to β-amino acids is described.

The development of a new hydantoinase enzyme for the conversion of racemic 3-amino acids is described.

BTP28

Chemoenzymatic synthesis of aromatic \(\beta \)-amino acids

C. Stomka¹, U. Engel, C. Syldatk¹, *J. Rudat¹

Karlsruhe Institute of Technology (KIT), Chemical and Process Engineering, Karlsruhe, Germany

Hydantoins and related compounds are promising substrates for the synthesis of optically pure amino acids. In particular, the production of D-amino acids as side chains for semisynthetic beta-lactam antibiotics via the so-called “hydantoainase process” is well established on industrial scale [1].

A modified hydantoainase process was proposed for the synthesis of D-amino acids, which are gaining importance in the pharmaceutical industry. The enantioselective conversion of substituted dihydropyrimidines to N-carbamoyl-\(\beta \)-amino acids was successful using whole-cell biocatalysis. [2, 3] A novel substrate, 6-(4-nitrophenyl)dihydropyrimidine-2,4(1H,3H)-dione (pNO2PheDU), was chemically synthesized. The hydantoainase from Arthrobacter crystalllopolytactos DSM20117 was chosen to prove the enzymatic hydrolysis of this substrate. Whole cell biotransformations with recombinant Escherichia coli expressing the hydantoainase showed degradation of pNO2PheDU [4].

Additionally, the corresponding N-carbamoyl-\(\beta \)-amino acid (NCarbypNO2Phe) was chemically synthesized, an HPLC-method with chiral stationary phases for detection of this product was established and thus (S)-enantioselectivity toward pNO2PheDU has been shown. Consequently this novel substrate is a potential precursor for the enantipure \(\beta \)-amino acid para-nitro-\(\beta \)-phenylalanine (pNO2PhePhe).

BTP29

\(\beta \)-Amino acid production by a lipase/transaminase enzyme cascade - 1 screening the best fitting lipase

O. Buß¹, *J. Rudat¹

Karlsruhe Institute of Technology (KIT), Chemical and Process Engineering, Karlsruhe, Germany

Enantiopure \(\beta \)-amino acids represent highly valuable building blocks for peptidechemists and the production of bioactive compounds [1]. Their efficient synthesis still poses a major challenge and can be achieved by coupling lipase and transaminase activity, starting from stable \(\beta \)-keto esters [2].

Here we describe the comparison of screening procedures for enzymes to be used for the hydrolysis of \(\beta \)-keto esters [3]. To choose the most efficient approach for screening, we assessed three different assays with statistical methods (classical \(Z \)-factor, strictly standardized mean difference (SSMD), the Kolmogorov-Smirnov-test, and t-statistics). Based on our data we discuss the explanatory power of different statistical measures.

Finally, we successfully employed the most suitable assay to identify the Rhizomucor miehei lipase (RML) as the best fitting enzyme for the hydrolysis of the tested set of aromatic \(\beta \)-keto ethyl esters. By means of molecular modeling, we were able to suggest an explanation of the significantly higher activity of this lipase compared to another hydrolysed tested.

BTP32

Protein evolution to improve biocatalysts for use in thermophiles using random mutagenesis

*M. Maier¹, K. Rabé¹

Karlsruhe Institute of Technology, Institute for Biological Interfaces 1, Eggenstein-Leopoldshafen, Germany

Though cloning and expression in well-studied organisms such as *E. coli* or *Yeast* has become common practice in academic and industrial settings, their field of industrial application is physically limited due to their physiologival bias. These organisms deal poorly with harsher reaction conditions which can be encountered in industrial processes, especially high temperatures. Enzymes from extremophiles or engineered variants from mesophilic sources have been established as a means to deal with these challenges, offering an improvement of existing processes or the possibility to establish new pathways to bio-based products. We recently reported the use of a thiamin-pyrophosphate dependent decarboxylase in an extremophile host for the production of isobutanol.[1] However, the production of isobutanol at elevated temperatures (>50 °C) was hampered due to the limited stability of the enzyme, thus we used directed evolution to improve the thermostability of the decarboxylase while maintaining its activity. Initial screen design enabled us to screen directly at elevated temperatures, thus minimizing the detection of false positive variants. Subsequently random mutagenesis clone libraries were constructed and

about 2000 clones of the target enzyme were screened for enhanced thermostability. The screening assay was based on the consumption of NADH thus correlating the activity of the particular KIVD variants with an optical readout. In order to further investigate the stability and activity of improved variants in a more direct fashion, HPLC analysis was performed quantifying the product formation at 60 °C. In summary, we were able to find single amino acid mutations which contributed markedly to an enhanced stability without compromising the enzymatic activity. Furthermore, the variants also had a much higher stability compared to the wildtype when performing reactions at lower temperatures. The in vivo analysis of these enzyme variants is currently underway.

BTP33

yTREX – update of a synthetic biology tool for effective gene cluster cloning and secondary metabolite production

A. Domröse1, R. Weihmann1, A. Klein2, J. Pietruszka2,3, K.-E. Jaeger1,3, T. Drepper1, A. Loeschcke1

1Heinrich-Heine-University Düsseldorf, Institute of Molecular Enzyme technology, Jülich, Germany
2Heinrich-Heine-University Düsseldorf, Institute of Bioorganic Chemistry, Jülich, Germany
3Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences IBG-
I, Biotechnology, Jülich, Germany

Questions: Microbes produce a great diversity of secondary metabolites which often possess high-value bioactivities, such as antibiotics, cytotoxicity or immunosuppressive activity. Biotechnological access by heterologous expression of the respective biosynthetic genes is a highly promising approach but typically impeded by various factors. Limitations are associated with cloning, transfer, stable maintenance and especially with the functional expression of all pathway genes. In addition, the microbial host provides a critical background for successful metabolite production, for example in offering appropriate precursor supply and tolerance toward the produced compound. Hence, synthetic biology tools and pathways are required that enable the effective cloning of large gene clusters and comparative evaluation of different pathway/host combinations.

Methods: We present here a synthetic biology tool named yTREX which is a modified version of the TREX (pathway transfer and expression) system5 offering additional features enabling straightforward cloning of large or multi-part gene clusters within Saccharomyces cerevisiae via homologous recombination. The TREX system itself consists of two DNA cassettes which comprise different genetic elements allowing the conjugal transfer of the entire TREX-labeled gene cluster into a broad range of bacterial expression hosts and its stable integration into the host chromosome via transposition. Subsequently, expression of all pathway genes is accomplished either via random insertion of the transposon at a highly transcribed chromosomal locus or by convergent T7 RNA polymerase-mediated transcription19.

Results: Applying yTREX, we successfully TREX-labeled different secondary metabolic gene clusters, including those for prodigiosin and other pigment pathways in various bacterial hosts. Consequently, yTREX allows the reconstitution of pathways within a number of different and metabolically versatile screening hosts in a plug-and-play fashion which offers new perspectives for the identification and expression, thus applicable for the activation of complex gene clusters in the fields of genome mining and synthetic biology.

BTP34

Functionalization of magnetosomes from Magnetospirillum gyrophilawaldense by in vivo surface display of functional groups and reporter enzymes

F. Mickoš1, D. Schuler1

1University of Bayreuth, Dept. Microbiology, Bayreuth, Germany

Magnetosomes of magnetotactic bacteria represent membrane-enveloped nanoparticles of Fe3O4 and have a number of unprecedented properties, such as high crystallinity, strong magnetization, and uniform shapes and sizes. Thus, magnetosomes have an enormous potential for applications e.g. as contrast agents for magnetic imaging techniques (MRI, MPI). In addition, both their crystal morphologies and the composition of the enveloping membrane can be manipulated by genetic means.

Recently, we started to systematically explore genetic functionalization of the magnetosome membrane. Using an optimized expression system, the most abundant proteins (MamA/F/G) of the magnetosome membrane were tested as anchors for the expression of various peptides and reporters as genetic fusions to magnetosome proteins. In order to modify the shell size and properties we expressed artificial peptides (e.g., poly-Asp or poly-Ser) by fusion to MamC/F/G. This resulted in an increased hydrodynamic diameter of the magnetosome shell and altered the surface charge. Furthermore, in addition to EGFP, we investigated the β-glucuronidase GUSA as a potential reporter and to explore immobilization of enzyme proteins. Magnetosome-bound GUSA activity followed Michaelis-Menten kinetics and was slightly increased compared to the non-immobilized enzyme, and remained active after repeated cycles of freezing and thawing.

By taking advantage of the inherent capability of native magnetosomes, we previously succeeded in chemical silica encapsulation of magnetic particles [1]. By variation of conditions, the thickness of silica shells could be varied, and suspensions of single silica-encapsulated MNP particles or encoated nanorods could be generated. Fluorescence of GFP-expressing magnetosomes was not only preserved during encapsulation, but also allowed significantly increased resistance against e.g. denaturation. Thus, silica-coated GFP-magnetosomes will be promising as future bimodal magento-fluorescent contrast agent for magnetic imaging (e.g. as tracers for tumors).

In addition, we will explore expression of nanobodies (i.e., functional fragments derived from full-length camelids antibodies) as versatile molecular connectors [2], enzyme proteins and other peptides (e.g. for organic coatings). Thereby we expect the generation of tailored particles with improved biocompatibility and tuneable characteristics optimized for biomedical and biotechnological applications.

Questions:

BTP35

Biotransformation of n-octane to 1-octanol at the expense of molecular oxygen and hydrogen

L. Lauterbach1, T. H. Lonsdale1, S. Honda Makia1, B. Nestl2, B. Hauer1, O. Lenz1

1Technische Universität Berlin, Department of Chemistry, Berlin, Germany
2University of Oxford, Department of Chemistry, Inorganic Chemistry Laboratory, Oxford, Great Britain
3Universität Stuttgart, Institute of Technical Biochemistry, Stuttgart, Germany

Questions: Cytochrome P450 monooxygenases (CYPs) have the extraordinary capability to introduce oxygen into non-activated C-H bonds in a regio- and stereoselective manner, which is still a challenging task for synthetic catalysts. CYP153A from Polaromonas sp. JS666 converts regioselectively n-octane into 1-octanol using O2 as the oxidant [1]. This reaction requires continuous supplementation of the reduced cofactor NADH. The utilization of the O2-tolerant NAD−-reducing hydrogenase (SBH) from Ralstonia eutropha and H2 as reductant has proven to be an atom-efficient method for the regeneration of NADH [2,3,4]. We aim to design a synthetic pathway in Pseudomonas putida in order to convert in vivo n-octane to 1-octanol at the expense of molecular oxygen and hydrogen.

Methods: The NADH-dependent CYP153A monooxygenase from Polaromonas sp. JS666 and the NAD−-reducing hydrogenase from R. eutropha were heterologously synthesized in P. putida KT2440. Biotransformations were performed with resting cells in the presence of 15 % (v/v) n-octane. The headspace of gas tight flasks was filled with a
gas mixture of 20 % H2 in air. Control experiments were carried out under air. Aliquots of the biotransformation suspensions were analyzed using GC-FID.

Results: Addition of H2 to the recombinant cell cultures resulted in an approximately 3-fold increase in the amount of 1-octanol. The hydrogenase sustains H2-driven NADH cofactor regeneration even in the presence of O2, the co-substrate of monooxygenase [5].

Conclusion: Our study shows that the SH is capable of overcoming possible bottlenecks of cofactor supply in whole-cell systems. Moreover, H2 represents a viable alternative to carbon-based reductants currently used for in vivo cofactor recycling strategies. Thus, our H2-driven in vivo cofactor regeneration system holds considerable potential for application in other cascade reactions that rely on sustainable supply of NAD(P)H as the reducing agent.

BTP36
Optimization of the brasiliocardisin biosynthesis in actinomycetes
Heterologous expression and boarder identification of the brasiliocardisin biosynthetic gene-cluster
*P. N. Schwarz, A. Bajac, H. Groß, W. Wohlleben, E. Stegmann
1Universität Tübingen, Microbiology / Biotechnology, Tübingen, Germany

Brasiliocardisin, produced by Nocardia terpenica, is a terpenoid which is known to have an immunosuppressive activity (1). Compared to today’s standard drugs tacrolimus and cyclosporine, this natural product shows the advantage of being less toxic and having a higher potency (2). Currently, the development is halted due to supply issues. The producer strain shows only a low production titer and is furthermore categorized as biosafety level 2 organism. Both facts make the production of the original brasiliocardisin by classic fermentation expensive and elaborate. In addition, despite considerable efforts, it is neither practical nor reasonable to generate the molecule by total synthesis.

Therefore, heterologous expression of the immunosuppressive and optimization of the brasiliocardisin biosynthesis should be performed in a biosafety level 1 organism. Since actinomycetes are known to be suitable heterologous hosts, certain actinomycetes strains were selected for heterologous expression of brasiliocardisin. For this reason a fosmid library was constructed and the gene-cluster encoding the immunosuppressive compound could be isolated. Via conjugation the fosmid containing the brasiliocardisin gene-cluster was transferred in the heterologous hosts. Considering that the boarders of the brasiliocardisin gene-cluster are not defined in detail, shortened versions of the fosmid were constructed in order to narrow down the genes required for brasiliocardisin biosynthesis. The brasiliocardisin production in the heterologous host was then evaluated with HPLC/MS.

BTP37
Steroid side chain degradation in Rhodococcus rhodochrous
DSM43269
M. Petrusma, L. Dijkhuijzen
1University of Groningen, Groningen, Netherlands

Rhodococci are soil dwelling bacteria with an enormous diversity of catabolic pathways enabled by their large genomes and great gene multiplicity. Among a large range of compounds Rhodococci are able to use steroids as carbon and energy sources for growth. This degradation pathway gives rise to a diversity of steroid intermediates, some of which are of interest as precursors of bioactive steroids for the pharmaceutical industry. Bacterial cholesterol degradation has gained strong interest in recent years after the discovery that several related pathogenic bacteria, among which the causative agents of the disease tuberculosis (TB) *Mycobacterium tuberculosis* in humans and *Rhodococcus equi* in foals, have a conserved cholesterol degradation by deletion of 5 keto genes*1,2*. Several cholesterol catabolic genes have since then been identified and are essential for pathogenicity of *M. tuberculosis* and *R. equi*. Enzymes of this pathway are therefore promising targets for TB drug development. In this study we focus on identification of characterization of steroid side chain acting enzymes in *Rhodococcus rhodochrous* DSM43269. The two main events in steroid catabolism, steroid ring degradation and side chain catabolism occur simultaneously. As a consequence, the steroid polycyclic structure can be degraded even when side chain catabolism is blocked, preventing proper analysis of accumulated intermediates of cholesterol side chain catabolism. In our lab we have been able to construct a 5 keto null mutant of *Rhodococcus rhodochrous* fully blocked in steroid ring degradation by deletion of 5 *keto* genes. In this study we used unmarked gene deletion to introduce additional deletions of potential side chain catabolic genes in strain RGG2. We analysed the effects of the gene deletions on steroid catabolism and we biochemically characterized the encoded enzymes.

3. Van der Giezen et al., 2011, *Plos pathogens* 7(8)
Background: C. glutamicum is an established microorganism in white biotechnology and well-known for the industrial production of large quantities of amino acids, in particular L-lysine. To improve L-lysine formation in C. glutamicum, we aimed to enhance the allocation of the crucial L-lysine precursor molecule oxaloacetate by applying an evolutionary approach.

Methods: This was accomplished by deletion of the genes ppc and pyc, encoding the oxaloacetate-forming anaplerotic enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase, respectively. The resulting strain C. glutamicum Δppc Δpyc was cultivated in minimal medium containing 40 g l⁻¹ glucose and 1 g l⁻¹ yeast extract and sequentially transferred for 14 days including concomitant screening for faster growing mutants. Subsequently, comparative whole genome re-sequencing (WGS) was performed to identify relevant mutations.

Results: In contrast to the initial strain C. glutamicum Δppc Δpyc, which showed a growth rate of 0.17 h⁻¹, three independently evolved mutants yielded growth rates of about 0.32 h⁻¹, indicating mutational events improving growth and probably oxaloacetate supply. Interestingly, the intersection of the genomic alterations obtained by WGS revealed isocitrate dehydrogenase (ICD) as consistent target in these strains.

Conclusion: The evolutionary acquired point mutations might lead to reduced ICD activity, thereby activating isocitrate lyase and malate synthase of the glyoxylate shunt which both are typically repressed during growth on glucose as sole carbon source. An active glyoxylate shunt might provide a surplus of oxaloacetate for improved growth of the evolved mutants. The identified mutations in ICD will be re-engineered in C. glutamicum Δppc Δpyc and in the L-lysine producer C. glutamicum DM1800b and tested for the suitability to improve L-lysine production with C. glutamicum.

BTP41 Improving ectoine production by 13C metabolic flux analysis

Ectoine is a cyclic amino acid derivative branching off from a common producer (aspartic) saccharate and is important for the metabolic network of an aspartic acid family and one of the best studied compatible solutes. Due to its remarkable properties, ectoine is marketed as an active ingredient in cosmetic, health care and life science products, and is presently produced at an annual scale of several tons, employing the moderate halophilic γ-proteobacterium Halomonas elongata [1, 2]. In order to improve production rates and identify potential biosynthetic bottle-necks (in particular for future heterologous production) we decided to elucidate the carbon fluxes by specific 13C-labelling of substrates. Drainage of the intermediate oxaloacetate of the central TCA cycle for ectoine biosynthesis requires the action of efficient anaplerotic reactions, most likely either by carboxylation of pyruvate/PEP or via the glyoxylate cycle, as suggested by Pastor et al. for Chromohalobacter salinae [3]. As natural ectoine producers have adjusted their metabolic fluxes in an optimized way, we can take advantage of the existing solutions to optimize industrial production strains by resolving the underlying carbon fluxes.

In this work the substrate pyruvate, specifically labelled at 1-13C, 2-13C or 3-13C, was fed to H. elongata, allowing for the first time an insight into the flux distribution of this industrial ectoine producing strain. The resulting labelling pattern of ectoine revealed that both of the above mentioned basic anaplerotic reactions are employed, but against expectations some labels could not be explained by these standard pathways.

BTP42 Targeting the toxin-antitoxin complex MazEF - an antibacterial approach

MazEF is a plasmid addiction system, which takes up its function, thereby killing the plasmidless cell. The toxin then synthesis frees the toxin as the antitoxin is degraded faster. The toxin then acts by degrading plasmid-containing DNA, which would combat the growing problem of resistance and stop the development of multiresistant pathogens. In order to control the spread of resistance genes and improve bacterial virulence, we decided to elucidate the carbon fluxes by specific 13C-labelling of substrates. Drainage of the intermediate oxaloacetate of the central TCA cycle for ectoine biosynthesis requires the action of efficient anaplerotic reactions, most likely either by carboxylation of pyruvate/PEP or via the glyoxylate cycle, as suggested by Pastor et al. for Chromohalobacter salinae [3]. As natural ectoine producers have adjusted their metabolic fluxes in an optimized way, we can take advantage of the existing solutions to optimize industrial production strains by resolving the underlying carbon fluxes.

In this work the substrate pyruvate, specifically labelled at 1-13C, 2-13C or 3-13C, was fed to H. elongata, allowing for the first time an insight into the flux distribution of this industrial ectoine producing strain. The resulting labelling pattern of ectoine revealed that both of the above mentioned basic anaplerotic reactions are employed, but against expectations some labels could not be explained by these standard pathways.
We developed an in vivo model assay system for the toxin-antitoxin complex MazEF from *Escherichia coli* which is one of the best-researched systems. The system MazEF consists of the stable toxin MazF and the labile antitoxin MazE. The toxin MazF is a ribonuclease, cutting mRNA at the sequence ACA. It is inactivated by the antitoxin MazE, which is degraded by the protease ClpAP.

Due to the fact that the toxin is a ribonuclease which cuts mRNA at ACA motifs we developed an assay based on an mRNA which codes for a non-sense protein but when cut by the MazF ribonuclease turns into a functional luciferase. This approach makes it possible to screen libraries for compounds which are able to disrupt or affect the MazEF complex in vivo.

BTP43

Structural basis and stereochemistry of 3,4- and 3,6-dehydrogenation by cyclic acyl-coenzyme A dehydrogenases

O. Tiedt1, J. Kung2, S. Weidenweber3, W. Eisenreich4, U. Ehrler2, M. Boll5
1Albert Ludwigs University of Freiburg, Freiburg, Germany
2Max Planck Institute for Biophysics, Frankfurt a. M., Germany
3Technical University of Munich, Munich, Germany

Question: The FAD-containing acyl-coenzyme A (CoA) dehydrogenase (ACAD) family comprises a large number of biologically important enzymes that catalyze the anti-1,2-elimination of a hydride and proton from carboxylic acid CoA thioesters. Proton abstraction from the C1 is accomplished by a highly conserved glutamyl-residue in the active side. During syntrophic fermentation of cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA) to cyclohex-1,5-diene-1-carboxyl-CoA (Ch1,5CoA) and the 3,4-dehydrogenation of cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA) to 3,6-dehydrogenation with a catalytic aspartyl-residue, present only in molecular variants provide the molecular basis for the 3,4- and 3,6-dehydrogenation. The results obtained elucidated the stereochemical course of the unusual dehydrogenation reaction. Ch1CoA DH serving as catalytic base. NMR analysis elucidated the structural basis and the stereochemistry of Ch1CoA DH.

Conclusion: Altogether, these data highlight significant differences in metabolic adaptation capacities of these two important model species and provide detailed insights into adaption processes based on the analysis of single-cell behaviour.

BTP45

Concepts for the development of new biosorbents on the base of microbial constituents

*S. Matsy1, N. Schönberger1, K. Fleming1, F. Lehmann1, J. Raff2, K. Pollmann1, Helmholtz-Zentrum Dresden Rossendorf, Helmholtz-Institut für Ressourcenkonvergenz, Dresden, Germany

Question: The world's growing demand for high-tech metals together with a simultaneously deteriorating availability is one of the central challenges of our modern society. Thusly, the development of new and innovative processes for a more efficient extraction of raw materials as well as economic methods for recycling is needed. Established methods for reclaiming production residues often include the chemical treatment with concentrated acids or alkalis, and are also polluting and energy-intensive. To overcome existing deficiencies and disadvantages of such methods emphasis is increasingly placed on biological alternatives. Thereby, biosorptive materials are prevalent for the recovery of dissolved chemical species. They are inexpensive and manufacturable in large quantities and often have excellent binding properties as compared to synthetic materials. Microorganisms are particularly in focus for biosorption processes because of their ubiquity and their enormous variability. A number of microbial cell structures and metabolites have been developed evolutionarily in direct interaction with toxic or essential elements, including heavy metals. Mediated by a variety of functional groups combined with the perfect structural fit these molecules are able to bind such elements partially highly selective and specific.

In our work we are investigating the potential suitability of biomolecules such as siderophores, short peptides, and S-layer proteins as biosorptive compounds. Our presentation discusses the usability of these compounds for the development of novel, selective binding filter materials for removing toxic elements and the recovery of valuable metals from aqueous solutions.

Introduction: Fast metabolic adaptation is crucial for the survival of bacterial populations under changing environmental conditions. Standard bulk approaches, e.g. the measurement of the optical density or transcriptome analyses, obscure the complex phenotypic pattern of isogenic microbial populations. To monitor adaptation to changing carbon source availability, the aim of this study was the analysis of the adaption process at the single-cell level using *Escherichia coli* and the important industrial amino acid producer *Corynebacterium glutamicum* as model organisms.

Methods: In first experiments, we established a staining protocol using a lipophilic, fluorescent dye which enabled the observation of cell division in shake flasks experiments via flow cytometry [1]. After staining, the dye is diluted by every cell division and remains stable over a long experimental time (~120 hours). In standard batch cultivations rapid environmental changes by carbon source shift experiments were performed, e.g. switching from glucose to gluconeogenic growth on acetate or succinate. Single-cell adaption was monitored using appropriate genetic reporter circuits in combination with the lipophilic fluorescent dye indicative for the growth of the particular cell. Further, in-depth analysis of adaptation and growth was performed using microfluidic chip devices in combination with time-lapse fluorescence microscopy [2].

Results: Upon switches in carbon source availability, *C. glutamicum* cells displayed continued growth. The particular reporter constructs revealed a specific and homogenous response to the carbon source availability. In contrast, *E. coli* cells displayed metabolic adaptation after a glucose-gluconeogenic carbon shift. Whereas approximately 5 % of the population continued to grow upon shifting to succinate as carbon source, the majority of the population entered a persistent state. The analysis of microfluidic chip experiments are in line with a positive correlation growth and reporter output. Stochastic switches in the biosensor output are occasionally observed when *E. coli* cells are growing on glucose as sole carbon source.

Conclusion: Altogether, these data highlight significant differences in metabolic adaptation capacities of these two important model species and provide detailed insights into adaption processes based on the analysis of single-cell behaviour.

polymers, building blocks, acidulants). Therefore, they are of special interest as biotechnologically available targets. The yeast *Yarrowia lipolytica* secretes high amounts of organic acids, like citric and isocitric acid (CA/ICA) under conditions of growth limitation from a carbon source excess. Depending on the carbon source, *Y. lipolytica* produces a characteristic CA/ICA ratio, on carbohydrates or glycerol of 90:10 and on sunflower oil or n-alkanes of 60:40.

To examine, whether this CA/ICA product ratio can be influenced by isocitrate lyase (ICL), aconitate (ACO1 or ACO2), NADP- (IDP1) or NAD- (IDH1, IDH2) isocitrate dehydrogenases subunit genes expressed were constructed (using integrative multicopy vectors) containing multiple copies of these genes alone or combinations of them.

Results: The ACO1 [1] (but not in case of ACO2) or the IDP1 overexpression and a combination of them resulted in a product pattern shift in direction of ICA, reducing the undesired CA for ICA production. On sunflower oil the ICA proportion increased from 35-55 % to 65-72 % of total acid produced in shaking flasks experiments. Strains with increased copy numbers of both ACO1 and IDP1 showed the highest ICA selectivity up to maximally 75-80 % by bioreactor experiments. Otherwise, overexpression of only one NAD-isocitrate dehydrogenase subunit genes (IDH1 or IDH2 to decrease IDH enzyme activity) resulted only in a moderate ICA-increase.

Conclusions: By using wild-type or engineered *Y. lipolytica* strains the enantiomerically pure form of D-threo-isocitric acid, currently available as a specialty compound, can be produced now in large amounts and used as a building block for organic synthesis [2].

References:

Supported by the SMUL of the Saxony, Germany (138811.61/89 and 2620000240)

BTP47

Screening of protease producing microorganisms from biogas plants

*S. Decker*1,2, S. Jossek2, L. Voss2, I. Kuperjans3, J. Bongartz2, P. Siegert2

*1Institute NOWUM-Energy, Biotechnology, Jülich, Germany
2Technische Universität Berlin, Z/Chem, Berlin, Germany
3TH Aachen, Institute for Nano- and Biotechnologies, Biotechnology, Jülich, Germany*

Proteolytic enzymes are ubiquitous in occurrence in all living organisms and of high commercial value. Especially extracellular proteases find multiple applications in various industries. Although there are already many microbial sources available for producing proteases, there is still a demand for improved and novel technical enzymes. Especially the ‘black box’ of the biogas plants offers an enormous potential for new enzymes as proteases which play an important role in the disintegration of biomass in the hydrolysis phase of the biogas process. The microbial community of an industrial biogas plant is mostly unknown and highly dependent on the substrate used. The composition of organisms is able to adapt to nearly every kind of different organic substrates. In this project, the aim was to search for microorganisms that are able to produce novel proteases in a biogas plant, which was fed with protein rich substrates. The project is split into two parts, the microbial screening for protease producing microorganisms and the PCR-based identification of subtilisin-like-protease gene fragments. Microbial screenings were performed to isolate protease producing species. Since several Bacillus species are well known and industrially established protease producers, a first screening was restricted to aerobic spore forming microorganisms. At different points in time, samples were taken from the digesters and pasteurized before plating on skim-milk agar at different pH values. Strains with significant clearing zones were isolated and preliminarily characterized. Different strains of the genera *Bacilli* and *Virgibacilli* were identified by 16S rDNA sequencing. Additionally, MALDI-TOF was applied to discriminate various Bacillus strains by fingerprint analysis. Furthermore, isolated DNA samples taken from several digesters were used as templates in a PCR amplification of an internal subtilisin-like-protease gene fragment. Primers were derived from highly homologous regions as published by Cheng et al. (2011). The obtained fragments were cloned, sequenced and subjected to BLAST analysis. A first glance at the partial protease gene sequences derived from the biogas plants revealed a high diversity of subtilisin-like-proteases. Present studies focus on selection of novel proteases, which will be characterized in detail.

BTP48

Tailor-made generation of glycolipids in *Ustilago maydis*

*M. Rodriguez Estevez1, B. Sandrock2, M. Bölker3, M. Feldbrügge1, K. Schipper1

*1Heinrich Heine University Düsseldorf, Institute for Microbiology, Düsseldorf, Germany
2Philips University Marburg, Marburg, Germany*

The generation of high-value products by microbial biocconversion of inexpensive renewable substrates is a major goal in biotechnology. Biosurfactants exemplify such substances that can deal as bio-based alternatives to surfactants produced from petroleum precursors. The corn smut fungus *Ustilago maydis* is a eukaryotic model organism that produces two different biosurfactants: cellolosate glycolipids (ustilagal acids) and mannosylerythritol glycolipids (MELs). The enzymes required for biosynthesis of these glycolipids are encoded in gene clusters that are induced under nitrogen starvation conditions and the underlying biosynthesis pathways are very well characterized. However, the composition and properties of glycolipids are limited by the respective metabolic pathways in the natural production strains. Hence, we here aim to extend the natural repertoire of produced biosurfactants by combining genetic engineering of both synthesis pathways and feeding of artificial lipids to substitute the native hydrophobic side chains.

References:

Supported by the SMUL of the Saxony, Germany (138811.61/89 and 2620000240)

BTP49

Modification of microfluidic devices by immobilized laccase–hydrophobin fusion protein

*L. Winandy1, O. Fokina2, R. Fischer1

1Karlsruhe Institute of Technology, IAB - Microbiology, Karlsruhe, Germany
2Technische Universität Berlin, Z/Chem, Berlin, Germany*

Laccases are blue copper-containing enzymes that perform oxidation of aromatic and nonaromatic substrates. Because of their high redox potential and their ability to use non-toxic molecular oxygen as final electron acceptor, laccases are of great interest for biotechnology. In particular, laccases can be used in enzymatic biofuel cells (EBFC) to improve cathode performance. As high potential differences between the fuel cell cathode and the cathode material, immobilization of the laccase on the cathode surface would allow stable interaction between the partners and reduce the amount of enzyme needed. Also modification of microfluidic devices to add enzymatic functions to lab-on-a-chip technologies are of great scientific interest. Storage of a wide range of enzymes by immobilization would greatly increase application versatility of microfluidic chips. One of the possibilities to immobilize proteins on the surface presents a class of small amphipathic proteins produced by fungi, hydrophobins. They can interact with both hydrophobic and hydrophilic surfaces and self-assemble into monolayers on interfaces. Here we present fusion proteins of laccases from the ascomycete *Aspergillus nidulans* and the basidiomycete *P. sanguineus* fused to hydrophobins that perform electron transfer from substrate and can be immobilized on different surfaces in active form.

Oversensing bottomtenk of enzymatic biofuel cells: Crude fungal culture supernatant can help to extend lifetime and reduce cost of cathodes. ChnaSciChem 6(12): 2213

BTP50

Electrode assisted acetoin fermentation in *Escherichia coli*

*S. Beblawy1, A. Förster1, T. Bursae1, J. Giescher1

1Karlsruhe Institute for Technology, Institute for Applied Biosciences - Department of Applied Biology, Karlsruhe, Germany*

Through metabolic engineering *E. coli* is capable of synthesizing acetoin in an unbalanced fermentation. Acetoin is a valuable chemical with a well-established application in industrial food production. Further it is the direct metabolic precursor of 2,3-butanediol, an important platform chemical, which may be processed to aircraft fuel. The biotechnological applications of *E. coli* however does not reach global demands, due to the simultaneous...
production of several end products, potentially pathogenic organisms used as biocatalysts and a difficult process technology. Our goal is to overcome these limitations by establishing a new technology based on an unbalanced fermentation process in E. coli. This promising technique’s key feature is the possibility of gaining fermentation products more oxidized than the substrate. The residual electrons are transferred to a non-depletable acceptor, a carbon electrode. The heterologous expression of c-type cytochromes from *Shewanella oneidensis* in presence of a soluble redox mediator empowers E. coli to interact with the electrode. A previously generated fermentation deficient strain accumulates pyruvic acid as the sole end product during anaerobic metabolism. This was achieved by successively blocking E. coli’s fermentation pathways at crucial points through genetic knock-outs. Originating from pyruvic acid an acetoin pathway was added. Necessary are codon optimized genes for the acetolactate synthase and the acetolactate decarboxylase. This composite biocatalyst consisting of an *E. coli* production strain interacting with a carbon electrode is capable of producing acetoin with high carbon recovery rates.

BTP51

Development of succinate production in *Clostridium autoethanogenum*

University of Nottingham, Synthetic Biology Research Centre, Nottingham, Great Britain

There is an increased need to generate fuels and platform chemicals in a more sustainable manner. One of the chemicals believed to have potential in a bio-based, circular economy is succinic acid. Already used in food and pharmaceutical market, it also functions as C4 building block and can therefore supply the basis for high value-added derivatives with applications in the technical and chemical industry. Using the acetogenic bacterium *Clostridium autoethanogenum* as a microbial chassis, the proposed research aims to combine the utilisation of exhaust and waste streams with the fermentative production of succinic acid. A prerequisite for this is a thorough understanding of the existing native metabolic route(s) to succinate, which is already generated by the organism in low amounts, as well as interconnecting pathways. This will be achieved through a combination of enzymatic studies, 1H and 13C labelling experiments and gene inactivation/overexpression analyses. Interestingly, provision of exogenous fumarate, a metabolite which other bacteria can convert to succinate acid in a single step, considerably increased growth of the organism without increasing the amount of succinate produced. However, this increase was only observed in the presence of other carbon and energy sources; addition of fumarate alone could not sustain growth. NMR analyses were therefore initiated to clarify the metabolic fate of fumarate. Investigations are still ongoing, but first results supported by these NMR analyses suggest a clear decrease in the culture supernatant accompanied by an increase in intracellular fumarate, suggesting that the compound is indeed taken up and co-metabolised in the presence of other carbon and energy sources.

BTP52

Impact of salt on the production of organic compounds in the cyanobacterium *Synechocystis* sp. PCC 6803*

M. Hagemann, N. Paedé, F. Kirsch

Universität Rostock, Plant Physiology, Rostock, Germany

Introduction: Cyanobacteria become increasingly attractive as cellular fabrics for the production of valuable organic compounds. Due to their photoautotrophic lifestyle, they can fix CO₂ on the expense of solar energy and produce oxygen. Thus, they promise a CO₂-neutral production, which is not competing with classical agriculture used for human nutrition. However, freshwater is becoming a limiting resource on Earth, which can be replaced by seawater in cyanobacteria-based production.

Objectives: The aim of the study was to analyze, how high salinity influences the amount of organic compounds produced in engineered cyanobacterial hosts.

Methods: Strains of *Synechocystis* sp. PCC 6803 were engineered, which express specific genes or in which competing reactions were deleted by mutation, to allow the production of ethanol, isoprene or succrose. The corresponding strains were cultivated under low or high salt conditions and the product yield was compared.

Results: Ethanol-producing strains were obtained by the co-expression of a pyruvate decarboxylase from *Zymomonas mobilis* and the alcohol dehydrogenase of *Synechocystis*. To establish isoprene synthesis in *Synechocystis*, the isoprene synthase from *Pueraria montana* (kudzu vine) was selected and introduced. Sucrose accumulation was optimized by the mutation of the genes for competing glucosylglycerol biosynthesis and sucrose degradation via invertase. The resulting strains produced considerable amounts of three organic compounds: Ethanol as well as isoprene production was slightly lower in cells grown at 4 % of NaCl compared to low salt media, despite the expression of production genes was rather stimulated than decreased under saline conditions. The sucrose accumulation was clearly stimulated under salt-containing compared to salt-free conditions.

Conclusion: Further work is necessary for the development of efficient production systems under saline conditions to replace freshwater by seawater for the mass cultivation of cyanobacterial strains.

BTP53

Systematic molecular optimization of heterologous protein production in the halophilic *Halomonas elongata*

L. M. Dörfler, E. A. Galinski, E. M. H. Witt

Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Mikrobiologie und Biotechnologie, Bonn, Germany

The natural producer of the amino acid derivative ectoine, the moderately halophilic gamma proteobacterium *Halomonas elongata*, is not only relevant for the production of this compatible solute at industrial scale [1], but may also be of special interest as an expression system for recombinant proteins. It could be shown that compatible solutes (chemical chaperones) can have positive effects not only at whole cell level, but also on conformation and activity of proteins exposed to a variety of stress factors [2, 3]. Therefore, they can support the functional expression of (recombinant) proteins [4]. The broad salt tolerance of halophilic bacteria like *H. elongata* combined with the ability to synthesize or accumulate compatible solutes accordingly enables us to create a unique stabilizing environment for recombinant proteins. Until now, several approaches to optimize heterologous protein expression in *H. elongata* have been addressed, as for example the establishment of a vector for salinity-controlled protein expression [5] or the directed transport of recombinant proteins into the periplasm [6]. Possibilities to analyze, simulate and optimize metabolic pathways, genetic organization and gene expression in *silico* have increased rapidly.

In the course of our investigations to further optimize recombinant protein expression in *H. elongata*, we focused on a web tool developed by Salis et al. [7], named the RBS Calculator. This bioinformatic tool can be used to predict and/or optimize the translation initiation rate of a protein, considering the specific gene sequence and the expressing organism.

In this study, a vector for salinity-controlled protein expression was constructed with a number of sequences for suitable recombinant proteins in combination with corresponding synthetic ribosome binding sites, calculated by the RBS Calculator and adapted to *H. elongata* as expression host. Thus we were able to demonstrate the aptitude of the RBS Calculator and the suitability of a systemic molecular approach for the optimization of heterologous protein expression in the halophilic *H. elongata*.

References

BTP54

Protein production driven by artificial promoters in *Thermus thermophilus*

L. Arnold, K. Rabe

Karlsruhe Institute of Technology, Institute for Biological Interfaces, Egggenstein-Leopoldshafen, Germany

Recently there has been a growing interest in the use of non-standard (not *E. coli* or Yeast) organisms in biotechnology. However, in order to understand and engineer such organisms and to establish them as ‘chassis’ for synthetic biology and biotechnology, new tools have to be developed in order to monitor processes on the molecular level and inside the cell. Especially the detailed understanding and optimization of promoters in order to fine tune protein expression requires quantification on the single cell level. The standard reporter gene GFP and also its more stable derivatives displayed no detectable fluorescence when analyzed *in vivo* in *Thermus thermophilus* HB87 at elevated temperatures in our hands. We thus developed a thermostable esterase into a reporter protein. The protein is active at a broad range of environmental conditions, it is...
monomeric, does not need maturation or cofactors and can be applied as an in vivo reporter. Furthermore, it offers the advantage of signal amplification due to its enzymatic activity, which results in a low limit of detection. As proof of concept different promoters were cloned and tested in Thermus thermophilus HB27 and the protein production was quantified using a set of different esterase substrates. Intravitral whole cell measurements now open the way to engineer promoters inside extremophile hosts, since a high-throughput selection of improved mutants can be performed at the single cell level. We will show examples of artificial promoters and their use in T. thermophilus. In general the proposed reporter protein will enable the molecular analysis of fundamental biological questions regarding the lifestyle of thermophiles and other extremophiles and open the way to utilizing these organisms as whole cell catalysts.

BTP56 – withdrawn

BTP56
A novel strain of Y. lipolytica as a platform for value-added products synthesis from glycerol
* A. Mironczuk1, A. Biegalska1, M. Rakicka1, A. Dobrowolski1
Wroclaw University of Environmental and Life Sciences, Department of Biotechnology and Food Microbiology, Wroclaw, Poland

Growing world population requires progressively more energy sources, therefore the production of biodiesel increased. Glycerol is an important renewable feedstock, which is the main side-product of the biodiesel production process, which is nowadays applied on a large commercial scale. Moreover, glycerol is produced by several others industries, such as fat saponification and alcoholic beverage production units. Despite the high contamination, crude glycerol might be easily utilized by yeast Yarrowia lipolytica. Oleaginous yeast Y. lipolytica is an interesting host for converting a diverse range of feedstocks, such as waste glycerol, into value-added products such as erythritol (sweetener) or citric acid. Glycerol in Y. lipolytica cells is assimilated by phosphorylation pathway, the substrate first is phosphorylated to 3-P-glycerol by a glycerol kinase (GK) and subsequently is dehydrogenated to dihydroxyacetone phosphate by glycerol-3-P dehydrogenase (GDH). To enhance glycerol assimilation we over-expressed the GUT1 (YAL0040084g) gene coding GK and GUT2 gene (YAL002948g) encoding GDH. The modified strains have been tested for glycerol consumption rate and erythritol and citric acid synthesis. Erythritol is a natural sweetener, a four-carbon sugar alcohol, occurring in fruits, such as grapes or melons. Because of its low energy value and non-insulin stimulant properties, erythritol is used as a non-caloric sweetener and pharmaceutical excipient. Citric acid is mainly produced by the mycelial fungus Aspergillus niger, but in the past few years much consideration has been focused on the potential use of the yeast Yarrowia lipolytica. The engineered strains might be used as a starting platform for further modification for broad-range value-added products biosynthesis.

This work was financed by the polish National Centre for Research and Development under project LIDER/019/207/L-5/13/NCDR/2014

BTP57
Impact of ammonia and cyanide on fermentation of (crude) syngas
F. Oswald1, M. Zwick1, *A. Neumann1
Wageningen University and Research Centre, Wageningen, The Netherlands

The biolog® pilot plant at the KIT covers the complete process chain required for producing customized fuels from dry lignocellullosic biomass. For energy densification of the biomass, fast pyrolysis is applied. The liquid pyrolysis oil and solid char obtained can be processed further in the entrained flow-gasifier to tar-free, low-methane raw synthesis gas. Prior to chemically catalysed fuel synthesis a multistep cleaning of raw synthesis gas is performed. Particles, alkaline salts, HCl, H₂S, COS, CS₂, NH₃ and HCN are removed to avoid catalyst poisoning during fuel synthesis. The pilot plant is equipped with an innovative hot-gas cleaning system. Acetogenic bacteria are able to ferment syngas to a variety of organic acids and alcohols. In contrast to the catalysts used in the Fischer-Tropsch process, these biological catalysts can process a broad range of syngas compositions and deal with impurities like sulphur compounds or CO₂. To assess industrial large scale applicability of acetogenic bacteria it will be necessary to determine the performances of the strains with crude syngas, as each gas purifying step will decrease the economy of the process.

The influence of one of two main impurities of crude syngas, cyanide and ammonia, were examined during growth of Clostridium ljungdahlii on either CO₂, CO₂ + H₂ or syngas (CO + H₂ + CO₂) in our multiple 2 L bioreactor setup with product analysis and online gas measurement.

BTP58
In vitro analysis of xylitol repressor XylR from Bacillus megaterium
*S. Wienecke1, R. Biedendieck1, D. Jahn1
1Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRCs), Braunschweig, Germany

Within the last years Gram-positive Bacillus megaterium was systemically developed as an expression system for the production of recombinant proteins using the strong xylitol-inducible promoter. This system is based on a monocopy plasmid containing the functional elements of the system namely the gene encoding the xylitol repressor XylR with its corresponding promoter and the promoter PcoaI followed by a multiple cloning site. It is postulated that in the absence of xylitol XylR binds to the operator and prevents expression of the following genes, while in its presence xylitol binds to XylR and causes structural changes. XylR loses its affinity for the operator and expression is possible. Nevertheless, so far this model was not confirmed using in vitro analyses with purified XyIR. For a deeper understanding, XyIRext with and without bound xylitol was recombinantly produced and purified. Native PAGE analysis revealed two different conformations depending on the presence or absence of xylitol. Electrophoretic mobility shift assays (EMSA) showed two different mobility complex bands indicating a lower oligomeric state of protein/DNA-complex with bound xylitol compared to a higher one without xylitol. This result manifested the occurrence of two distinct DNA/protein-complexes obviously resulting from different multimeric forms of XyIR. So, for the first time it was shown, that also XyIR with bound xylitol binds to the same DNA-fragment as the XyIR without xylitol. This leads to two working models - (1) the different oligomeric forms of XyIR bind to the same operator sequence causing different DNA organization or (2) they bind to different sequence motifs close to each other. In order to gain more information about binding behaviour footprinting assays were performed using XyIR with or without bound xylitol. These analyses showed that XyIR is able to bind to the operator region independently of xylitol but clearly indicated a different binding behaviour of both forms. This could lead to different DNA organization like loop structures causing repression of genes in the absence of xylitol. In summary, these results indicated that the postulate model of DNA-bound XyIR without xylitol and free XyIR with xylitol needs to be adapted.

BTP59
FMN-binding fluorescent proteins as versatile in vivo reporters
*A. Woop1, C. Rupprecht1, M. Wingen1, A. Heck1, K.-E. Jaeger1,2, T. Drexler1
1Heinrich-Heine-University Düsseldorf, Institute of Molecular Enzyme Technology, Jülich, Germany
2Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften IBG-1, Jülich, Germany

Introduction: Fluorescent proteins have been proven to be versatile tools in molecular biology that enable the analysis of complex cellular structures and processes such as gene expression, protein localization or protein-protein interaction. GFP and derivatives are widely known proteins that are used as fluorescence reporters. However, they do not mature under anaerobic conditions and their fluorescence brightness is affected by acidic pH. In contrast, FMN-binding fluorescent proteins (FbFPs), which were engineered from Light Oxygen Voltage (LOV) proteins found in plants and bacteria1, are not affected by these environmental factors. Here, we present novel FbFP derivatives and FbFP-based biosensors that can be used for new microbial applications.

Methods: We constructed and evaluated new FbFP derivatives as reporters applicable for in vivo analysis of bacterial secretion processes. Furthermore, Förster resonance energy transfer (FRET)-based biosensors were constructed, consisting of FbFPs as a FRET donor and different enhanced yellow fluorescent protein (EYFP) variants as FRET acceptor domains that can be used for ratiometric determination of intracellular pH values.

Results: Comparative expression studies revealed that in contrast to YFP, FbFPs can be used in E. coli as in vivo reporter for protein secretion via the general secretion (Sec) and twin-arginine translocation (Tail) pathway. Using different EYFPs with pKₐ-values of 5.7, 6.1 and 7.5 as FRET
acceptor domains we have developed a novel FbFP-based pH biosensor platform (FluBHP) for the measurement of pH values from 5 to 9 with a superior sensitivity. A similar design has recently been used to determine the concentration of molecular oxygen inside of bacterial cells in vivo ([FluBHP]).

Conclusion: The development of FbFP-based reporters and biosensors opens up new approaches for the non-invasive analysis of cellular processes in living cells. These in vivo analysis tools therefore provide important information for the optimization of biotechnological production processes.

BTP60
Chain length and isomer determinants in actinobacterial olefin biosynthesis
*M. Surger1, A. Angelov1, M. Übelacker1, W. Liebl1
1Technische Universität München, Lehrstuhl für Mikrobiologie, Freising, Germany

Aliphatic hydrocarbons are the predominant components of petroleum-based fuels. Certain bacteria produce such compounds naturally and are therefore regarded as a promising source of enzymes capable of converting saccharification products to aliphatic hydrocarbons. One of the pathways by which bacteria synthesize long chain hydrocarbons involves the head-to-head Claisen condensation between two fatty acyl-CoA molecules. This type of alken biosynthesis is well documented in many representatives of the Actinobacteria phylum. Members of this group produce primarily anteiso- and iso-branched, long-chain (C25 to C29) alkenes. The first reaction of the ole pathway is catalyzed by enzymes of the diolase superfamily and it is currently debated if and to what extent these proteins (termed OleA) determine the nature of the condensation products formed by an organism.

In order to better understand the role of the OleA enzymes in determining the type of olefins formed, we initiated a detailed study of the alkene profiles, oleC genes and free fatty acids composition of a collection of 23 isolates belonging to the Micrococcus, Kocuria and Kytococcus genera. GC-MS analysis of hexane extracts showed that all tested strains were capable of producing olefins and displayed a substantial variation in the alkene amounts, the distribution of chain lengths and of isomers. It can be presumed that the variations in the chain lengths and isomer composition could be determined by the fatty acid composition of each strain, by the substrate specificity of the OleA proteins or by other proteins or combinations of these factors. To investigate this, we cloned selected oleC genes or ole gene clusters from our strain collection in an engineered Micrococcus lactis strain lacking its native ole genes. This allowed us to probe the role of different OleA proteins in shaping the product profile under the same conditions (growth conditions, fatty acid precursor pools etc.). The results from these experiments highlighted strong selectivity differences between OleA proteins from different sources. Several oleC genes conferring characteristic olefin profiles were selected for cloning in E. coli in order to obtain recombinant proteins for further structural studies which will address the relations between Ole protein structure and substrate specificity.

BTP61
Towards the optimization of salt-free heterologous ectoine production in Escherichia coli by means of carbon sources variation and supply of potential precursor molecules
*K. D. Mortiz1, L. Bethlehem1, E. A. Galinski1
1University of Bielefeld, Genetics of Prokaryotes & CeBiTec, Bielefeld, Germany

Ectoine, a compatible solute that is accumulated by halotolerant and non-halophilic bacteria, plays a role in osmoregulation and preservation of the cellular architecture. By altering the concentration of molecular oxygen inside of bacterial cells function of the phenazine redox mediator producer Pseudomonas aeruginosa (providing the electron shuttles) and the sugar fermenter Enterobacter aerogenes was observed. The central goal of our work is to gain a thorough understanding of the inter-microbial interactions in defined

BTP62
Engineering Corynebacterium glutamicum for a fast production of L-Lysine and L-pipeolic acid
*F. Pérez1, P. Peters-Wendisch1, V. F. Wendisch1
1University of Bielefeld, Genetics of Prokaryotes & CeBiTec, Bielefeld, Germany

Corynebacterium glutamicum, a Gram-positive soil bacterium, is a model organism widely used in industrial fermentative processes for the production of amino acids. The world production of L-lysine inundated almost 2 million tons per year [1]. In this study we engineered the glucose uptake and utilization of the lysine producing C. glutamicum strain GRLys1 in order to increase the L-Lysine productivity. In addition, the designed strains used for the production of the non-proteinogenic amino acid pipecolic acid (L-PA), a precursor of immunosuppressants, peptide antibiotics or pipeline alkaloids. L-glutamic acid is up taken into the C. glutamicum cell by the phosophotransferase system PTS. The PTS can be replaced by a permease and a glucokinase [2]. Glucose utilization was accelerated when the genes for the endogenous isonitl permease IolT2 and a glucokinase were overexpressed (pEKEEx3-IolT3-IolB3) in addition to the PTS. This plasmid was used to transform the lysine production C. glutamicum strain GRLys1. Further modifications resulted in strains GSL(IpEKEEx3-IolT3Best), which produced 40 % more L-Lysine than GRLys1 (pEKEEx3) with a 30 % increased volumetric productivity. L-Lysine can be converted to L-PA by L-lysine 6-aminotransferase and pyrroline-5-carboxylate reductase [2]. To enable production of L-PA, a synthetic operon containing the L-Lysine dehydrogenase gene (lysDH) from Silicibacter pomeroyi and the pyrroline-5-carboxylate reductase gene (proC) from C. glutamicum was developed. Transformation of C. glutamicum GSL with this vector allowed for production of L-PA in the milli­nominal range.

BTP63
Towards understanding synergistic interactions in co-cultures of Pseudomonas aeruginosa PA14 and Enterobacter aerogenes for applications in microbial fuel cells
*S. Schnitz1, E. Bosire1, M. Rosenbaum1
1RWTH Aachen, Angewandte Mikrobiologie, Aachen, Germany

Microbial fuel cells (MFCs) are new biotechnological devices for bioelectricity generation based on the microbial oxidation of substrates e.g. wastewater at an anode. Especially for these undefined substrates a defined pure-culture microbial catalyst is not suitable and quickly a complex microbial mixed culture biofilm establishes on the anode surface. The ecological relationships among different microorganisms in an anode biofilm tremendously influence electric current generation. Recently, a synergistic interaction regarding current production in a defined co-culture of the phenazine reduct mediator producer Pseudomonas aeruginosa (providing the electron shuttles) and the sugar fermenter Enterobacter aerogenes was observed. The central goal of our work is to gain a thorough understanding of the inter-microbial interactions in defined...
micr0bial co-cultures of P. aeruginosa PA14 together with E. aerogenes for application in MFCs.

Method: To evaluate the full extent of mediator-based synergism in MFCs, we conduct highly controlled co-culture experiments by applying electrochemical techniques. The co-culture is physiologically characterized including metabolite analysis by HPLC and species quantification via fluorescence measurement of tagged strains. Experimental parameters are varied to enhance co-culture performance. Further, the influence of different E. aerogenes’s fermentation products on P. aeruginosa pure cultures is evaluated by the use of alternative carbon sources. The mode of action of P. aeruginosa’s phenazines in different ecological contexts is elucidated via knockout studies.

Results: Preliminary results of the cultivation of P. aeruginosa PA14 with 2,3-butanediol as the substrate revealed a significant increase in current generation due to enhanced phenazine production. On the other hand, the barely electroactive organism E. aerogenes exhibited electron transfer to the electrode when provided with synthetic phenazines. Targeted gene deletions in the phenazine pathway of PA14 were accomplished to analyze the influence of the diverse phenazines on the mixed culture. A mixed culture comprising PA14 and E. aerogenes produced higher currents compared to pure cultures of both organisms. The co-culture performance could be strongly increased by optimization of experimental parameters. Dissolved oxygen concentrations and pH were identified as influential factors.

Conclusion: Overall we demonstrate a potential of optimizing co-cultures of P. aeruginosa to enhance performance of MFC. Further optimization and exploration of the factors underlying the synergistic interactions will provide information on how to tap the benefits of this ecological phenomena for MFC applications.

Acknowledgments: This work was supported by the NRW-Strategieprojekt BioSC (Seed FUND DiPro) funded by the Ministry of Innovation, Science and Research of the German State of North Rhine-Westphalia.

Dirigent proteins convey selectivity to oxidative coupling reactions like laccase catalyzed reactions and can be developed into a versatile tool at the interface of lignin degrading processes and fine chemical production. Until now little is known of the class of dirigent proteins as versatile tool for biotechnology.

BTP64

Taiyang Klosterud Clostridium ljungdahlii for electroreduction of itaconic acid

BTP65

Production of glutamate derivatives in B. methanolicus MGA3

Amino acids and their derivatives (1). Although lately there has been a great progress in research of the physiology of Bacillus methanolicus, there is a need of further studies of its metabolic pathways especially with respect to methotroph and production of industrially relevant substances (2, 3).

The aim of the project is to establish the production of glutamate derivative γ-aminobutyric acid (GABA). GABA is a component of drugs and functional foods and is used as monomer for production of the biodegradable plastic polymide 4. It can be synthesized from L-glutamate in a single step by decarboxylation. Bacillus methanolicus is a natural L-glutamate producer; however, it does not produce GABA. To enable synthesis of γ-aminobutyric acid (GABA) in this organism the gene encoding glutamate decarboxylase (Gad) was heterologously overexpressed.

B. methanolicus MGA3 is a suitable candidate for GABA production due to its high tolerance to GABA (IC50 of 70mM) and lack of catabolic pathways of this compound in the genome. In the proof-of-concept experiment the 0.3mM titer was achieved. This result was further optimised by change of cultivation conditions and media composition leading to full conversion of the precursor and final titer of 4 mM in the flask experiments. To improve the productivity we focussed on development of the existing molecular tools. The RNAseq data (3) was used to identify highly expressed genes, their promoter sequences and genomic organisation. GFPuv fluorescence was analysed by FACS to compare the influence of different: plasmids, promoters, start and stop codons, and presence of terminator on the level of gene expression.

This way the production of GABA was achieved in methanol-based system for the first time and then further optimised. Moreover, the existing molecular biology tools were improved which enables further development of B. methanolicus GABA producing strains.
BTP67
Production and secretion of a Protein G derived ligand for equine antibody purification with Bacillus megaterium

C. Finger, M. Franzreb, S. Berenmesser

Technische Universität München, Bioseparation Engineering Group, Garching, Germany

Kartlsruher Institute of Technology, Process Technology of Particle based Interfaces, Egggenstein-Leopoldshafen, Germany

Normally the foal is born with an intact immune system but with a general absence of immunoglobulins to provide protection against infection. The essential immunoglobulins (Ig) are received with the mare’s milk (colostrum). Consequently, for generation of artificial foal nutrition purified horse antibodies are required. Conventional horse antibody purification is performed via affinity proteins using material protein, an Ig-binding surface protein found in Staphylococcus strains, as a ligand. However, the purification efficiency is limited by a rather low binding capacity. So far, protein G ligands were derived from clinical Streptococcus sp. isolates such as strain GX7809. To attempt an find a ligand with increased affinity for horse immunoglobulins a bioinformatic process was performed identifying a putative G homolog from the horse pathogen Streptococcus equus. An amino acid alignment of the two Ig-binding domains of protein G, originating from Streptococcus sp. GX7809 (B1EXP, B2EXP) and Streptococcus equus (B1sequn, B2sequn), showed a sequence identity of 67.3% and 76.4%, respectively. Protein G based affinity material is expensive since production and particularly purification of the protein G derived ligands is time consuming and costly. One possibility to simplify the purification protocol is to secrete the proteins directly into the supernatant. For this purpose the Gram-positive soil bacterium Bacillus megaterium was employed as it offers the enormous advantage to possess a more efficient secretion machinery over the common protein production host. The sequence of the binding domains was first adapted to the codon usage of B. megaterium and then successfully cloned into a shuttle vector in frame with the sequence of a signal peptide (SPluo). The ligands were then produced and secreted by B. megaterium up to 10 mg per 1 litre culture medium. Finally, their general binding functionality regarding horse immunoglobulins were tested and compared via western blot and dot blot experiments.

BTP68
Systems metabolic engineering of Escherichia coli for the production of tryptophan-based high value chemicals

M. Selzer, A. Rodriguez, J. Becker, L. Braun, C. Wittmann

Universität des Saarlandes, Institut für Systembiotechnologie, Saarbrücken, Germany

Escherichia coli is one of the major workhorses in industrial biotechnology and recognized as safe for the production of compounds used for human treatment [1]. It has a natural high capacity to produce tryptophan [2], an important industrial amino acid with global annual production of 4,000 t [3]. It is used as a dietary supplement, antidepressant and feed additive. Interestingly, tryptophan is also the building block for a broad range of other high value products, including for example antibiotics and antitumor drugs such as rebeccamycin, staurosporine, violacein, among others. Here, we streamlined tryptophan production in E. coli by systems metabolic engineering. We optimized the central metabolism of E. coli by engineering of the pentose phosphate pathway, the entire biosynthesis up to the level of chorismate and the tryptophan route. We also enhanced the supply of serine, eliminated tryptophan repression/attenuation, and degradation. Finally, heterologous pathways towards the antitumor therapeutics violacein and deoxyviolacein were integrated into the optimized producers. This enabled biotechnological production of the valuable molecules at the gram scale [5]. At present, we aim to extend the product portfolio to other tryptophan derived high value chemicals.

BTP70
Expanding and establishing synthetic biological tools for Chlamydomonas chloroplasts

T. Miller, L. Schada von Borzyskowski, J. Becker, L. Braun, C. Wittmann

Max Planck Institut für terrestrische Mikrobiologie, Marburg, Germany

ETH Zürich, Institute of Microbiology, Zürich, Germany

Question: Phototrophic organisms fix carbon dioxide into organic molecules using sun light as an energy source. This process is the basis for all life on earth. Production and particularly purification of the protein G derived ligands is time consuming and costly. One possibility to simplify the purification protocol is to secrete the proteins directly into the supernatant. For this purpose the Gram-positive soil bacterium Bacillus megaterium was employed as it offers the enormous advantage to possess a more efficient secretion machinery over the common protein production host. The sequence of the binding domains was first adapted to the codon usage of B. megaterium and then successfully cloned into a shuttle vector in frame with the sequence of a signal peptide (Spluo). The ligands were then produced and secreted by B. megaterium up to 10 mg per 1 litre culture medium. Finally, their general binding functionality regarding horse immunoglobulins were tested and compared via western blot and dot blot experiments.

Methods: C. reinhardtii is a long established model organism for photosynthesis due to its ease of growth and genetic manipulation, as well as its capacity for heterothrophic, photautotrophic, and mixotrophic growth. In order to bioengineer the chloroplast, the current molecular tools must be further improved to allow for tunable expression of multiple genes and complete operons. We are developing and establishing a suite of plug and play genetic elements for tunable expression in C. reinhardtii chloroplasts.

Results: An extensive genetic toolbox is being developed for chloroplast genome modification and tunable expression of complex operons. In these initial expression studies we are utilizing routinely used fluorescent probes to study expression levels. Conclusion: The construction of an extensive genetic toolbox for chloroplast transformation will give us the platform necessary to begin introducing and controlling new functions in the C. reinhardtii chloroplast.
This will allow scientists to introduce novel solutions to solve some of the most important issues of today including meeting food and energy demands and decreasing atmospheric carbon levels.

BTP71

Population analysis of nitrifying bacteria enriched in a fermenter of a toluometer

J. Schroeder1, B. Braun1, U. Szewzyk2

1Technische Universität Berlin, Environmental Microbiology, Berlin, Germany

Nitrification is a step in biological wastewater treatment where nitrifying bacteria oxidize ammonia to nitrite, and then to nitrate. It is a sensitive microbial process, which can be disturbed by toxic substances, and leads to inhibition of bacterial respiration. A failure of nitrification in wastewater treatment plants can cause increased discharge of ammonia into rivers and lakes. A toluometer developed by a company enables monitoring for toxicity of incoming loads, and protects the nitrifying biology of wastewater treatment. This toluometer measures oxygen consumption of the bacterial fermenter community, and hence the toxicity. However, the bacterial community inhabiting in the fermenter is almost unknown and poorly understood. Furthermore, the sensitivity of nitrifying bacteria to toxic compounds ought to be increased.

The community dynamics and composition within the fermenter were monitored over a few days by fluorescence in situ hybridization (FISH) combined with confocal laser scanning microscopy (CLSM), using specific probes targeting ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). The amount of total cells was determined by DAPI (4′,6-diamidino-2-phenylindole) staining to evaluate AOB and NOB content. In addition, high throughput Illumina MiSeq analysis of 16S rDNA gene was applied to reveal the community composition in two fermenters during different growth stages.

FISH results showed the majority of the bacterial population belonged to AOB. Only single cells of NOB could be detected. Compared to total cell counts, AOB percentages varied from 65 % to 80 %. These findings were quite consistent over a period of time and in different growth stages within the fermenter. MiSeq analysis of 16S rDNA verified the FISH results and showed Nitrosomonas as AOB was the main group. Depending on growth stages, 20 % up to 40 % of the bacteria belonged to heterotrophic genera within Bacteroides phylum. Phylogenetic analysis of 16S rDNA sequences revealed 99 % similarity to Nitrosomonas stercoris strain KYUH-S [1]. For this recently described species, a specific newly primer set was designed to monitor their role during different growth phases and toxicity measurements.

This study suggested that the first step of nitrification is stable over a period of time and in different growth stages within the fermenter. The bacterial sensitivity to toxic compounds may be increased by lowering the percentage of heterotrophic bacteria. Therefore, the application of the new primer set in qPCR analysis is a simple approach to monitor the bacterial population composition, depending on technical and growth conditions within the fermenter.

BTP72

Online biomass monitoring of plant cell suspension cultures based on conductivity measurement

P. Scherhaag1, C. Haase1, F. Lenk2, J. Bley3, J. Ackermann1

1Dresden University of Applied Sciences, Dresden, Germany

Background and aim: Increasing interest is spent to produce various pharmaceuticals with plant in vitro cultures. In contrast to whole plants these cultures can produce these substances independently from environmental influences. To establish industrial production processes using plant cell cultures product yields have to be increased. To achieve this, the knowledge of the cultivation process is required. One of the most interesting parameters is the development of biomass over the time course of a cultivation. A real-time determination of the current biomass in a bioreactor is therefore essential.

Methods: Various measuring methods, using different principles like acoustics, laser light scattering, fluorescence, nuclear magnetic resonance spectroscopy, calorimetry, dielectric spectroscopy and conductivity have been investigated to accomplish this goal [1,2,3,4]. Plant cells in suspension cultures tend to form agglomerates, which makes optical methods quite inaccurate. Conductivity measurements are easy to implement in a bioreactor and an inverse correlation with biomass increase has been proved [5]. Using this fact a computer algorithm was created that converts online data from a conductivity sensor into biomass-data in real-time.

Results: A culture specific coefficient α was defined, which represents the decrease of conductivity during biomass increase [6]. To calculate the current biomass concentration, the value for the biomass concentration at the beginning of the cultivation needs to be known. Conductivity changes were multiplicated with α and then added to the biomass concentration at the start of the fermentation. The algorithm, based on an MS Excel macro, and the data processing method is presented. The routine was tested on a plant cell suspension culture of *Salvia fruticosa*. Raw data of conductivity and semi-online as well as offline (gravimetrically) biomass data from a batch cultivation are compared. Advantages and limitations will be discussed.

Conclusion: The implementation of a conductivity sensor for the semi-online determination of biomass is a helpful monitoring tool for cultivations of e.g. plan cell suspension cultures.

References:

1Harris, C.H, Kell, D.B. (1985), Biosensors 1, 17-84.
5Reed, G., Sprecher, K. (1975), Plancta (Basel), 126, 311-318.
Replicate data were assessed by Analysis of Variance (ANOVA) and Hierarchical Cluster Analysis (HCA) using the Ward method.

Results: Analysis of the foam stability indices and oil-film displacement diameters suggest that there are significant differences in surfactant behaviour between the 25 surfactant-expressing isolates (P < 0.05). This data was also used to construct a constellation dendrogram in which isolates were grouped according to similarities in surfactant behaviour (driven by inspection of the HCA scree plot and resulting in all control isolates clustering together). Critically, this resulted in more groups (≥ 5 groups) than could be explained by differences in the surface tensions (≤ 2 groups as previously determined by ANOVA and Tukey Kramer HSD, alpha = 0.05). We interpret this to mean that this collection of *Pseudomonas* spp. isolates are expressing a number of structurally-different surfactants (i.e. different types) with varied air-water and oil-water behaviours.

Conclusion: This analysis demonstrates significant behavioural variation within a collection of high-performing surfactants expressed by *Pseudomonas* spp. isolates. The constellation dendrogram produced using data from simple behavioural assays provides a useful tool to choose surfactants for future structural characterisation and testing.

BTP75

Arylmalonate decarboxylase-catalyzed asymmetric synthesis of both enantiomers of optically pure flurbiprofen

1Ruh-University Bochum, NG Microbial Biotechnology, Bochum, Germany
2Chiracon GmbH, Luckenwalde, Germany
3Technical University Hamburg-Harburg, Hamburg, Germany
4Keio University, Yokohama, Japan

The bacterial arylmalonate decarboxylase (AMDase) catalyzes the enantioselective decarboxylation of prochiral arylmalonates with high enantioselectivity. While this reaction would provide a highly sustainable synthesis of active pharmaceutical compounds like flurbiprofen or naproxen, competing spontaneous decarboxylation has prevented so far the catalytic application of AMDase. We report on reaction engineering and an alternate protection group strategy for the synthesis of these compounds that successfully suppresses the side-reaction and provides pure arylmalonics acids for subsequent enzymatic conversion. Protein engineering increased the activity in the synthesis of the (S)- and (R)- enantiomers of flurbiprofen. These results demonstrated the importance of synergistic effects in the optimization of this decarboxylase. The asymmetric synthesis of both enantiomers in high optical purity (>99%) and yield (>90%) can be easily integrated into existing industrial syntheses of flurbiprofen, thus providing a sustainable method for the production of this important pharmaceutical ingredient.

BTP76

Stepwise error prone PCR and gene shuffling changes the pH optimum and product specificity of a cycloexdrin glucanotransferase

C. Sonnendecker, S. Melzer*, C. Füllner*, W. Zimmermann†

1Universität Leipzig, Institut für Biochemie, Leipzig, Germany

Question: Cycloexdrins (CD) are used in versatile applications in industrial processes due to their ability to form inclusion complexes with guest molecules. CD are produced enzymatically by cycloexdrin glucanotransferases (CGTases). An optimization of the enzymes to enhance their product specificity and CD yields is investigated.

Methods: A synthetic CGTase gene was cloned into the expression vector pET20b+ and used as template for two rounds of error prone PCR, followed by gene shuffling. Mutagenic constructs were expressed in *E.coli* BL21(DE3). Screening for gamma-CD-synthesizing activity was performed with congored-agar plates. Selected clones were purified by Ni-NTA affinity chromatography. The purified variants were used for CD synthesis reactions with soluble starch as substrate. Synthesized CD were analyzed by HPAEC-PAD.

Results: Two error prone rounds followed by gene shuffling resulted in up to 9 single amino acid substitutions within the whole protein sequence. 15000 clones were screened for the formation of gamma-CD and the 21 clones with the highest activity were further characterized. Five variants showed altered pH activity spectra in a range between pH 4 and pH 11. Furthermore, variants with increased product specificity and cyclization rate for gamma-CD were obtained.

Conclusion: By using directed evolution strategies, the pH activity range and product specificity of a CGTase derived from an alkanilphilic *Bacillus* could be modified. CGTases with these properties are of interest for the industrial production of CD since they can be readily adapted to the reaction conditions of the synthesis process yielding CD of a desired size.

BTP77

Malic acid production from renewable sources by *Aspergillus oryzae*
†K. Ochsenreith†, S. Dörsam†, C. Syladt†
1Karlsruhe Institute of Technology, Technical Biology, Karlsruhe, Germany

Question: L-malic acid is a C4 dicarboxylic acid and considered as a promising chemical building block. It can be applied as food preservative and acidulant, in rust removal because of its chelator properties and as polymerization starter unit due to its bifunctionality. Up to now it is produced chemically from crude oil via malic anhydride. The mould *Aspergillus oryzae* produces malic acid in large quantities from glucose and other carbon sources. The microbial production of organic acids from renewable sources has the potential to be a sustainable alternative to petroleum and to reduce greenhouse gases as CO2 fixation is involved in microbial biosynthesis.

The potential of malic acid production from renewable resources is evaluated. Therefore, different carbon sources based on lignocellulosic biomass, e.g. fractions of pyrolysis oil and hemicellullosic sugars, are tested.

Methods: *A. oryzae* was cultivated in preculture medium in shaking flasks for 17 hours. Due to nitrogen limitation and an excess of glucose in the production medium the fungus started to produce malic acid. A bioreactor process using glucose as carbon source was already established and used as basis for the evaluation of alternative carbon sources. Organic acid concentration was measured by HPLC.

Results: In our experiments several promising carbon sources based on pretreated biomass for growth and malic acid production were identified and evaluated. These carbon sources include different sugars from hemicellulosic fractions as well as components from pyrolysis products.

Conclusions: *A. oryzae* proved to be a promising natural host for malic acid production with the potential to use several renewable carbon sources.

BTP78

Calcium binding site engineering of the polyester hydrolase TFCtt2 from *Thermobifida fusca* increases protein stability and polyethylene terephthalate degradability efficiency

J. Then, T. Wei*, T. Oester*, M. Barth†, J. Schmidt†, A. Gerds†, W. Zimmermann†
1Universität Leipzig, Mikrobiologie und Bioverfahrenstechnik, Leipzig, Germany

The polyester hydrolase TFCtt2 from *Thermobifida fusca* is able to degrade polyethylene terephthalate (PET) films and fibers. Ca2+ bound to the Ca2+ binding site of TFCtt2 increases the thermal stability of the protein. A similar effect could be achieved by a salt bridge substituting the Ca2+ binding site. However, a Ca2+ dependent Ca2+ binding site could be identified when the Ca2+ binding site, however, is partial lessor. Since a thermal stability is required to degrade PET at its glass transition temperature around 70 °C, a further thermal stabilization was required to exploit the full degradation potential of TFCtt2. Molecular dynamics simulation experiments resulted in the identification of hotspots in the protein structure affecting its stability. The melting point of the resulting variants constructed by amino acid substitutions was remarkably increased compared to the wild type protein. Concomitantly, the half-inactivation temperature and the PET degradation performance at 70 °C were also higher than in the Ca2+ stabilized wild type enzyme. The most active variant showed a temperature optimum between 75 °C and 80 °C. By removal of the Ca2+ dependence of the enzyme by protein engineering, a highly stable biocatalyst with high PET degradation activity could be created.

BTP79

Tracking the pleiotropic role of RNA binding protein Hfq from *Clostridium acetobutylicum*

E. Riester, R. Nieder*, B. Schiel-Bengelsdorf*, P. Dürre*
1Universität Ulm, Institut für Mikrobiologie und Biotechnologie, Ulm, Germany

Questions: The RNA-binding protein Hfq acts as one of the central players of RNA metabolism and posttranscriptional network in bacteria. The
importance of Hfq was highlighted by the discovery of pleiotropic effects of hfq gene inactivation in several bacteria, including e.g. increased stress sensitivity, reduced growth rate, cell elongation, and altered motility. Furthermore, Hfq influences stability of small noncoding RNAs (sRNAs) and facilitates binding between these sRNAs and their target mRNAs. This interaction leads to a negative or positive regulation of gene expression at the level of translation.

Here, we focus on Hfq from the Gram-positive Clostridium acetobutylicum. This solvent-producing anaerobic bacterium is of importance as it naturally produces butanol, an important bulk chemical as well as biofuel. The aim of this work was the functional characterization of the hfq gene from C. acetobutylicum.

Methods:

Complementation of a hfq deficient E. coli strain was achieved using hfq from C. acetobutylicum and adequate E. coli hfq promoter sequence. The respective complementation strain was analyzed by microscopy and growth experiments under different stress stimuli. Moreover, the C. acetobutylicum hfq overexpression mutant was analyzed regarding growth and solvent production. RT-PCR analysis was performed with RNA from C. acetobutylicum to determine whether hfq transcription starts within the neighboring m3g4 coding region or further upstream.

Results:

As E. coli wild type, the E. coli complementation mutant producing Hfq from C. acetobutylicum showed a higher maximal optical density, a decreased generation time and a reduced cell length compared to the E. coli hfq deficient mutant. The C. acetobutylicum hfq overexpression mutant showed a delayed and decreased solvent production compared to C. acetobutylicum wild type. The organization of hfq in the genome of C. acetobutylicum has been identified.

Conclusion:

As the RNA-binding protein Hfq from C. acetobutylicum is able to replace Hfq-specific functions in E. coli, both proteins might accomplish the same functions. Moreover, the delayed solvent production of C. acetobutylicum hfq overexpression mutant indicates that C. acetobutylicum is able to tolerate acidic stress over a longer period of time than the wild type. These results emphasize for Gram-negative and Gram-positive bacteria a necessity of Hfq, when living in a stressfull environment.

BTP80

Optimisation of bioflocculants produced by three marine bacteria belonging to the genera *Alcaligenec* and *Bacillus* isolated from Sodwana Bay in the KwaZulu-Natal Province of South Africa

1. Institute of Biochemical Engineering, Stuttgart, Germany

Question:

Ribosome degradation in *E. coli* is commonly associated with starvation such as lacking of carbon, nitrogen or phosphate. However, the principal mechanisms which result in degradation of stable RNA *in vivo* and *in vitro* are still discussed [1]. Reliable estimations of ribosome concentrations are indispensable in order to follow rRNA degradation processes, compare rRNA turnover rates and to identify possible degradation pathways.

Methods:

To date the most routine method of RNA analysis is agarose or polyacrylamide gel electrophoresis where degradation is comprehended by comparison of relative intensities of electrophoresis bands. The current work demonstrates the absolute quantification of ribosomes *in vitro* by measuring the 16S and 23S RNA applying capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF).

Results:

We demonstrate the quantitative documentation of ribosome degradation *in vitro* using two different model organisms: *E. coli* and *Planctopirus limnophila* that hosts a modified version of the anammox reaction. In a principal mechanism which result in degradation of stable RNA *in vivo* and *in vitro* are still discussed [1]. Reliable estimations of ribosome concentrations are indispensable in order to follow rRNA degradation processes, compare rRNA turnover rates and to identify possible degradation pathways.

Conclusion:

CGE-LIF enables the reliable measurement of 16S and 23S rRNA in a quantitative manner. In particular, this technique allows the quantitative analysis of ribosomal dynamics during growth processes (*in vitro*) and in cell-free systems.

cofactor recycling by the O₂-tolerant NAD⁻-reducing hydrogenase (SH) from *Ralstonia eutropha* appears to be well suited for such an approach as it only uses H₂ and does not produce any interfering side products[2-4]. As there are many oxidoreductases that require the phosphorylated cofactor NADPH and only few NADP+-reducing enzymes available, low metal regeneration was aimed at changing the NAD⁺ binding pocket in the SH into a site that also accepts and converts NADP⁺.

Methods: Specific amino acid exchanges designed by rational mutagenesis led to SH derivatives with synthetic NAD⁺-reducing activity. The resulting variants were characterized biochemically as well as electrophoretically by protein film voltammetry. Based on these methods the kinetic parameters *Kₘ*, *Kₐ*, and *Kₐ/Kₘ* were used as indications of changes in substrate specificities.

Results: Remarkably, we generated a variant with higher affinity for the new substrate NADP⁺ than for its natural substrate NAD⁺. The applicability of this SH variant in H₂-driven NADPH supply to CYP102A1 monoxygenase from *Burkholderia megaterium* was successfully tested as the selective oxidation of octane with safe H₂/O₂ mixtures was fully accomplished in presence of a cofactor concentration of 1.5 mM.

Conclusion: With this work we show that it was possible to convert a hydrogenase to an attractive candidate for NADPH recycling. Specificity and affinity of the enzyme could be altered according to the need for NADPH regenerating biocatalysts in central biotechnological processes e.g. alkane oxidation by P450 monoxygenases in the context of flavor/frAGRance industry.

BTP85

Electro-acoustical method for bacteriophages detection in liquid phase

O. Gulyi, B. Zaitsev*, A. Shikhubadinov*, A. Teplykha*, V. Korzhenevich*, O. Ignatov*

1**Institute of Biochemistry & Physiology of Plants & Microorganisms RAS, Microbial Physiology Lab, Saratov, Russian Federation**

2**Saratov State Agrarian University, Saratov, Russian Federation**

3**Scientific Research Veterinary Institute, Saratov, Russian Federation**

4**Saratov Branch, Institute of Radio Engineering and Electronics, RAS, Saratov, Russian Federation**

Question: Recently various approaches such as microbiological and biochemical tests, genetic engineering techniques and immunological methods are used for viruses' identification. The development of the new methods of bacterial viruses' detection for obtaining correct precise results in a short time (express-methods) is actual problem, which is in the focus of attention of researchers in microbiology. One of the promising methods for achievement of such goal is the electro-acoustical method of analysis based on registration of bio-specific reactions in liquid suspension that contacts with the piezoelectric material surface.

Methods: All experiments for registration of the changes in the mechanical and electrical properties of microbial cell suspensions due to biospecific interaction with microbial cells were carried out with a help of specially manufactured sensor. Sensor was based on a piezoelectric resonator with a lateral electric field in the frequency range of 6-7 MHz. This resonator was made of X-cut lithium niobate plate with thickness of 0.5 mm.

Results: For the first time the possibility of detection of bacteriophages by the use of the electro-acoustical method of analysis was demonstrated on the example of the interaction of bacteriophages *Phi15* with microbial cells *Alcaligenes eutropha* Sp59b. As a biological sensor, a piezoelectric lateral electric- field- excited resonator containing a liquid container with volume of ~1 ml was used. It has been found that the frequency dependencies of the real and imaginary parts of the electrical impedance of the resonator loaded by suspension of viruses with microbial cells significantly differ from the dependencies of the resonator with the control virus suspension without microbial cells. It has been shown that the detection of bacteriophages *Phi15* by means of microbial cells is possible also in the presence of other viral particles and extraneous microbial cells.

Conclusion: The proposed method allows to reliably determine the type of the test virus after 5 minute of its interaction with the culture cells. At that the minimum concentration of virus is 5 viral particles per cell. As a whole obtained results demonstrate the possibility of detecting the specific interaction of bacteriophages with microbial cells and provide a basis for the development of a biological sensor for quantitative detection of viruses directly in liquid phase.

BTP86

Systems metabolic engineering of Corynebacterium glutamicum for bioproduction of xylitol

G. Gideon, R. Schäfer*, N. Buschke*, S. Hoffmann*, J. Becker*, C. Wittmann*

1**Saarland University, Institute of Systems Biotechnology, Saarbrücken, Germany**

Question: Xylose, a major work horse in biotechnology[1], is a major substrate for bioproduction of bio-based chemicals, materials and fuels. With regard to eco-efficiency, its future success depends on a next level of bio-processes using raw materials beyond glucose[1]. Such renewables, i.e., polymers, complex substrate mixtures and diluted waste streams, often cannot be metabolized naturally by relevant industrial cell factories[2].

Hemicellulose, one of the most abundant biomass compounds on earth, represents a promising alternative substrate for sustainable bioproduction. Its major constituent xylose is, however, naturally not utilized by *C. glutamicum* - a major work horse in biotechnology[1]. For making xylose bio-available for *C. glutamicum*, the two *cII1* genes xylA and xylB, encoding xylose isomerase and xylulokinase, respectively, were expressed in *C. glutamicum* strains streamlined for diaminopentane production[3]. Integration of metabolic flux analysis with *in silico* pathway modelling and systems-wide transcriptome profiling was then used to identify additional metabolic engineering targets for improving xylose-based production[4]. In fed-batch process, the engineered diaminopentane producing strain was approaching industrial level performance with higher titer (103 g L⁻¹) and yield (0.32 g g⁻¹) [4]. Initial studies on direct utilization of hydrolysates of the polymer hemicellulose for production are highly
promising for future application as yield substantially increased by 50 % [3]. At present, the production portfolio from xylose based processes is extended to other industrially relevant compounds.

BTP87
Food protection against Alternaria brassicicola contamination using lactic acid fermentation with polyols
1Lodz University of Technology, Institute of Fermentation Technology and Microbiology, Lodz, Poland
2University of Freiburg - Institute of Biology III, Molecular Genetics, Freiburg, Germany
3Ecole polytechnique fédérale de Lausanne, Laboratory of Nanobiotechnology, Lausanne, Switzerland

Alternaria brassicicola is a mould species which is known as one of major plant pathogens, which causes infectious plant diseases, and common allergens in humans. The preliminary studies suggest that some of lactic acid bacteria protect food from fungi and presence of polyhydroxyalcohols (polyols) in bacterial medium has an beneficial impact on their antifungal effect. Antagonistic activity of sixty Lactobacillus sp. strains in the presence of 1 % (w/v) of polyols - erythritol, xylitol, lactitol, maltitol, mannitol and sorbitol - was examined using double layer method. First layer of medium was MRS for cultivation of lactobacilli, second one - Sabouraud art moulds. Additionally, we estimated the fungistatic effect of various supplementation of cell-free supernatants after lactic acid fermentation of chosen Lactobacillus sp. strains in the presence of the above polyols in fungal growing medium using poisoned media method. We evaluated two parameters: a linear growth index of fungi and a fungistatic activity of bacterial supernatant according to Abbot’s formula described by Glen and Boliglowa (2011). Majority of examined Lactobacillus sp. bacteria shown poor or moderate antifungal activity in the control sample, without polyols. However, supplementation of the medium with 1 % of sorbitol, xylitol or mannitol enhances fungal inhibition by lactic acid bacteria. The results of fungistatic activity for specified bacterial strains confirm this trend. We observed strong correlation between presence of xylitol in growing medium and inhibition of tested moulds on sweet cherries as well. Fruits threatened by cell-free supernatant after lactic acid fermentation were resistant to Alternaria brassicicola contamination.

Polyols in growth medium change the metabolism of most tested Lactobacillus bacteria to produce antifungal compounds. We observed strong correlation between an antagonistic activity of investigated Lactobacillus sp. strains and composition of medium.

This study was supported by a grant of National Science Center (Grant No. 2013/09/B/NZ9/01806)

BTP88
Discovery of enzymes and natural products in the moss microbiome
1C. A. Müller1, G. Berg1
2Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria
3Austrian Centre of Industrial Biotechnology (acib GmbH), Graz, Austria

Sphagnum mosses are colonized by highly diverse and species-specific microbial communities. Mosses are known to produce plenty of bioactive substances and the antimicrobial activity of their inhabiting microorganisms has also been reported (1). Recently we elucidated the Sphagnum metagenome by Illumina-sequencing and de novo assembly (2). The Sphagnum microbiome harbors highly specific genetic features that distinguish it significantly from comparable microorganisms. Abundant gene functions support abiotic stress protection, communication and interaction between microorganisms. Based on this findings we explored the Sphagnum microbiome as a source of industrially interesting enzymes and natural products for biotechnological and biomedical applications. Different gene targets such as esterases, phosphatases, decarboxylases, polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) were selected for screening employing a metagenomic fosmid clone library. NRPS and PKS genes are involved in the production of several microbial bioactive secondary metabolites. The study of NRPS and PKS sequences in the Sphagnum metagenome by in silico data mining revealed a high level of diversity. Furthermore, PCR-amplification screening of the fosmid clone library led to identification of thirteen novel NRPS-related sequences with identities ranging from 48 % to 91 % to annotated sequences that belong mainly to the phyla Proteobacteria, Actinobacteria, and Cyanobacteria (Müller et al., 2015). The novel NRPS sequences are putatively involved in production of microbial metabolites such as siderophores, phytoxins, and antibiotics. Selected clones containing NRPS and esterase genes are currently being evaluated to discover new enzyme functions and activities. Our study highlights the potential of plant-associated microbiomes found in extreme natural ecosystems for the discovery of biocatalyst and natural products with biotechnological potential.

CMP01
Regulation of motility and phototaxis in a model cyanobacterium
1T. Walner1, V. Angerer1, N. Schuerger2, A. Wilde2
2University of Freiburg - Institute of Biology III, Molecular Genetics, Freiburg, Germany
3École polytechnique fédérale de Lausanne, Laboratory of Nanobiotechnology, Lausanne, Switzerland

Many prokaryotes are able to actively move using different motility machineries. The regulation of motility enables the cells to make decisions about lifestyle and to actively search for suitable environmental conditions for live. Light is the most important factor for photosynthetic organisms. Although light-controlled movement of prokaryotes was observed and have been described for a long time the basic biophysical and molecular mechanisms are poorly understood and investigated. The well characterized model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) shows phototaxic responses and light-induced motility on surfaces using type IV pili. The movement of Synechocystis cells is controlled by quantity and quality of light. The inhibition of movement towards blue light was shown to be mediated by the second messenger c-di-GMP via the unique photoreceptor Cph2 [1]. The Cph2 protein contains c-di-GMP synthesis and degradation domains in an unusual combination with two photosensory modules which perceive red/far-red or green/blue light, respectively. To understand how altered c-di-GMP levels control motility from a mechanistic point of view and what other processes are regulated by this second messenger we first started with analyses at the level of gene expression.

Changes in blue-light dependent c-di-GMP levels control motility from a mechanistic point of view and what other processes are regulated by this second messenger we first started with analyses at the level of gene expression. Changes in red/far-red or green/blue light, respectively. To understand how altered c-di-GMP levels control motility from a mechanistic point of view and what other processes are regulated by this second messenger we first started with analyses at the level of gene expression.

[3] Synechocystis does not contain proteins harboring the PIIZ domain or any other known c-di-GMP binding effector domain, we further started to search for novel putative c-di-GMP binding proteins and analyzed their binding characteristics. These analyses will help us to enlighten the c-di-GMP dependent regulation at the level of proteins.

Our results suggest a highly complex regulatory network for the motility of Synechocystis including transcription factors, photoreceptors, second messengers and sRNAs.
CMP02 3D ultrastructure and motility of Pyrococcus furiosus
A. Bellack1, R. Reichelt1, V. Heinz2, R. Wirth1, B. Daum3, *R. Rachell4
1University of Regensburg, Department of Microbiology and Archaea Cent, Regensburg Germany
2University of Regensburg, Centre for Electron Microscopy and Department for Microbiology and Archaea Centre, Regensburg, Germany
3Max Planck Institute of Biophysics, Department of Structural Biology, Frankfurt a. M., Germany

Question: The organotrophic, hyperthermophilic Euryarchaeum Pyrococcus furiosus serves as a unique model system for numerous studies of archaeal cellular biology. The slightly irregular cocci exhibit 50 or more archaea, 10 nm in diameter and several μm in length. They are directly involved in cell motility, adhesion to various surfaces and formation of cell-cell connections, resulting in a network of interconnected Py. furiosus cells (Näther et al, 2006). As P. furiosus can swim very fast and is able to withstand harsh environmental conditions, its cellular architecture, like the structural organization of the archaella bundle and the architecture of the S-Layer, is of great interest for us. In particular, our focus is on variations in cellular ultrastructure and extent of flagellation, as observed for naturally occurring mutants (Näther-Schindler et al., 2014).

Methods: We are in the process of analysing these cells using various electron microscopic methods (Rachel et al, 2010), in combination with proteome analyses. In particular, 300 nm and 600 nm sections of high-pressure frozen and resin-embedded P. furiosus cells are analysed using TEM and STEM tomography. STEM tomography datasets of 600 nm sections are useful in particular to reach a higher content of information, as the focus gradient is eliminated, due to a great depth of focus in STEM mode. At the same time, a considerably larger cell volume is visualised (Yakushkevich et al. 2007). Datasets were reconstructed using 3Dmod/SIRT and visualized in AMIRA. We extend our studies towards naturally occurring lab mutants, and using other techniques like proteome analyses.

Results: The tomography datasets turned out to be rich source for detecting new features in the architecture of intact P. furiosus cells. We unravelled yet undescribed features, like the partial disintegration of the S-Layer in certain areas, or structures associated with the cell wall, inside and outside of the cell.

Conclusion: Combined ultrastructural and biochemical analyses are necessary in order to fully understand the complexity of P. furiosus cells; we aim to combine our data with FIB-SEM datasets, in order to obtain an overview of the total architecture of several intact cells, in parallel. We plan to complement our studies using cryo-tomography, to be performed in the near future.

Näther-Schindler et al., 2014: Pyrococcus furiosus flagella: biochemical and transcriptional analyses identify the newly detected flaB0 gene to encode the major flagellin. Front Microbiol 5: 695
Rachel et al, 2010: Analyses of the ultrastructure of Pyrococcus furiosus. Molekularbiologie, Gießen, Germany

References:

CMP03 Visualizing flagellar filament behavior of Shewanella putrefaciens
M. Kühn, K. Thomann1
1Justus-Liebig-Universität Gießen, Institut für Mikro- und Molekularbiologie, Gießen, Germany

Flagellum-driven motility is the most common way of moving in liquid medium or on semi-solid surfaces among bacteria. Although it is not essential for cell viability, this motility provides crucial advantages under hostile environments or nutrient limitation. In concert with the chemotaxis system, flagellated cells can propel themselves towards favorable conditions. Bacterial motility is also a topic of biomedical interest since many human pathogens require motility in order to pass the mucosal lining of the respiratory, gastrointestinal or reproductive tracks to invade their host. We use Shewanella putrefaciens CN-32 as a model organism for flagella-mediated motility. This species possesses a polar flagellum to efficiently move through liquid, semi-solid, or viscous media. Under high nutrient conditions, both in planktonic growth and in semi-solid medium, S. putrefaciens can grow additional lateral flagella which are expressed from a different genetic locus. Those flagella can help spreading in semi-solid media and might also give an advantage in highly viscous environments, such as mucus. Here, we address the behavior of the flagellar filaments of S. putrefaciens during swimming in various conditions, with an emphasis on the interplay between the polar and lateral flagella. The flagellar filaments were visualized by attaching fluorescent dyes and fluorescence microscopy. An increased number of cells with a single polar and several lateral flagella were detected in the outer edge of a colony spreading in semi-solid medium. Fluorescence microscopy analysis revealed that for those cells the polar flagellum seems to be the main driver of swimming direction but the lateral ones might still contribute to swimming torque or maneuvering. Although the lateral flagella appear to actively rotate, they never form a bundle like the filaments of peritrichously flagellated *E. coli*. Taken together, the study reveals potential mechanisms of how lateral flagella effect bacterial swimming.

CMP05 Public goods of *Bacillus subtilis* – How public are they really?
T. Hölscher, A. T. Kovács
1Friedrich Schiller University Jena, Terrestrial Biofilms Group, Institute for Microbiology, Jena, Germany

The question of how cooperation could evolve is still not solved in evolutionary biology. Several studies show that in microbial populations cooperation can determine the community structure and can increase the overall fitness of the community although being costly to the individual cells. One aspect of cooperation is the production of public goods i.e. products that are secreted into the environment so that not only the producing cell but also non-producers can benefit from it. The maintenance of cooperation can be explained for example by the microbial colonization of spatially heterogeneous environments where the spatial structure stabilizes cooperation. This might particularly be important for the colonization of surfaces e.g. the formation of colony biofilms or sliding communities on agar (Grau et al, 2015) where the production of public goods can be crucial. *Bacillus subtilis* is a Gram-positive bacterium that was previously used for studies on the stability of cooperation in colony biofilms (van Gestel et al., 2014). However, there is less information about the influence of public goods in expanding communities such as sliding. Therefore, this study aimed to analyze the importance of different public goods produced during sliding of *B. subtilis* and to expose how well they are shared in the expanding population. Competition experiments were performed under sliding promoting conditions with different combinations of the wild-type and mutant that lacks a certain public good production. Further, the metabolic cost of production was determined for each public good. Being important to clarify the impact of surfactin, the amphipathic protein BslA and extracellular polysaccharides as public goods. Competition experiments revealed that while certain public goods can be exploited by non-producers, others are kept private benefiting only the producer lineage. Our experiments demonstrate that the tested public goods are not shared equally and thus have varying influence on the population structure during sliding.

Results: Screening of 12,100 *Phaeobacter inhibens* DSM 17395 transposon mutants on soft agar plates allowed to identify 180 mutants with abolished or severely constricted motility. More than half of the mutants carry transposons inserted into flagellar genes. However, we could also identify 75 mutants with an insertion in non-flagellar genes. Accordingly, we identified all genes of the CckA-ChpT-CtrA phosphorelay, the nitrogen regulator NirX and a LuxR-type transcriptional activator. The most conspicuous phenotype has been observed for the mutant of an alternative ECF sigma factor and a peptide that showed a "swarming-like" swimming zone.

Conclusion: Our systematic screening of transposon mutants for motility defects, allowed us to identify four universally conserved genes of the *flaI* type operon, which were not characterized yet. Mutations in *ctrA* phosphorelay genes resulted in the loss of motility as previously predicted for *Dhноroseobacter* *shibae*. The regulatory network of chemoreception factors and the role of the ECF sigma factor have to be elucidated.

EMP01

Models on the kinetics of phenol utilization in ammonium phosphate supplemented phenol laden refinery effluent

C. E. Obiaku

Imo State University, Owerri, Imo State, Nigeria, Microbiology, Owerri, Nigeria

Growth of mixed cultures of phenol utilisers including *Pseudomonas sp.* *tw*, *Bacillus sp.* *rw*, *Citrobacter sp.* *tw*, *Klebsiella sp.* *rw* and *Streptococcus sp.* *tw* were monitored in batch cultures of phenol laden refinery effluents supplemented with different concentrations of ammonium phosphate. The nutrient supplement (*NH₄)₃PO₄* encouraged cell growth and phenol reduction in a concentration dependent manner with optimum values observed at higher concentrations. After 21 days of treatment, (*NH₄)₃PO₄* concentration of 0.05 %, 0.2 %, 0.5 % and 1.0 % reduced phenol concentration of 103ppm to 4.4 %, 3.7 %, 0.88 % and 0.83 % respectively with a corresponding cell growth of 6.3×10⁴, 1.1×10⁵, 3.0×10⁵ and 2.6×10⁵ cfu/ml respectively. As phenol concentration increased beyond 203ppm, cell growth and phenol reduction rate decreased at all levels of nutrient concentration. In the effluent treatment control, the inoculated process waste water showed no appreciable cell growth or phenol reduction at 51.65ppm of phenol. Phenol concentration of 103ppm was reduced to 50.8 % with a maximum cell growth of

CMP06

Characterization of chemoreceptors and chemotaxis in *Thermococcus kodakarenensis*

H. Angstmann1, M. Ugele1,2, R. Rachel3, *A. Bellack1

1University of Regensburg, Institute of Microbiology, Regensburg, Germany

2Friedrich-Alexander Universität, Lehrstuhl für Medizinische Biotechnologie, Erlangen-Nürnberg, Germany

3University of Regensburg, Centre for Electron Microscopy, Regensburg, Germany

Question: *Thermococcus kodakarenensis* was isolated from a solfatara on the shore of Kodakara Island, Japan. The hyperthermophilic archaeon is obligate heterotrophic and grows on organic compounds in the presence of elemental sulphur, at an optimal temperature of 85 °C [1]. Previous studies have shown that this organism possesses polar flagella, and five annotated chemoreceptors, but up to now, no data are available which chemical compounds can be sensed by *T. kodakarenensis* and direct its swimming towards more favourable conditions. Therefore the influence of different media and growth conditions on the presence and number of these chemoreceptors and flagella and how this affects the swimming behaviour should be determined in this study.

Methods: The expression of chemoreceptors in different media and under different conditions, e.g. changes in temperature, oxygen concentration or growth phase, was analyzed via Western Blot using polyclonal antibodies generated against the regulatory network of chemoreception factors and their effect on growth or phenol reduction at 51.65ppm of phenol. Phenol concentration decreased at all levels of nutrient concentration. In the effluent treatment control, the inoculated process waste water showed no appreciable cell growth or phenol reduction at 51.65ppm of phenol. Phenol concentration of 103ppm was reduced to 50.8 % with a maximum cell growth of

Results: The positive or negative influence of different parameters have been shown to affect the expression of chemoreceptors in Western Blot analyses. Protocols were established to test various conditions at temperatures up to 110 °C. In parallel, cells were fixed with glutaraldehyde and negatively stained for electron microscopy to determine the number of flagella depending on the different conditions tested.

Results: Different growth conditions, such as temperature, NaCl-concentration and the reduction of organic compounds, were shown to influence the expression of chemoreceptors in Western Blot analyses. Particularly, increasing of unfavourable growth conditions lead to an increasing amount of expressed chemoreceptor proteins. Furthermore a change in the presence and number of flagella at different condition could be observed and, interestingly, correlated with the ability to swim. Initial swimming studies of the hyperthermophilic organism under anaerobic conditions at temperatures up to 110 °C. In parallel, cells were fixed with glutaraldehyde and negatively stained for electron microscopy to determine the number of flagella depending on the different conditions tested.

Results: Different growth conditions, such as temperature, NaCl-concentration and the reduction of organic compounds, were shown to influence the expression of chemoreceptors in Western Blot analyses. Particularly, increasing of unfavourable growth conditions lead to an increasing amount of expressed chemoreceptor proteins. Furthermore a change in the presence and number of flagella at different condition could be observed and, interestingly, correlated with the ability to swim. Initial swimming studies of the hyperthermophilic organism under anaerobic conditions at temperatures up to 110 °C. In parallel, cells were fixed with glutaraldehyde and negatively stained for electron microscopy to determine the number of flagella depending on the different conditions tested.

Results: Different growth conditions, such as temperature, NaCl-concentration and the reduction of organic compounds, were shown to influence the expression of chemoreceptors in Western Blot analyses. Particularly, increasing of unfavourable growth conditions lead to an increasing amount of expressed chemoreceptor proteins. Furthermore a change in the presence and number of flagella at different condition could be observed and, interestingly, correlated with the ability to swim. Initial swimming studies of the hyperthermophilic organism under anaerobic conditions at temperatures up to 110 °C. In parallel, cells were fixed with glutaraldehyde and negatively stained for electron microscopy to determine the number of flagella depending on the different conditions tested.

Results: Different growth conditions, such as temperature, NaCl-concentration and the reduction of organic compounds, were shown to influence the expression of chemoreceptors in Western Blot analyses. Particularly, increasing of unfavourable growth conditions lead to an increasing amount of expressed chemoreceptor proteins. Furthermore a change in the presence and number of flagella at different condition could be observed and, interestingly, correlated with the ability to swim. Initial swimming studies of the hyperthermophilic organism under anaerobic conditions at temperatures up to 110 °C. In parallel, cells were fixed with glutaraldehyde and negatively stained for electron microscopy to determine the number of flagella depending on the different conditions tested.

Results: Different growth conditions, such as temperature, NaCl-concentration and the reduction of organic compounds, were shown to influence the expression of chemoreceptors in Western Blot analyses. Particularly, increasing of unfavourable growth conditions lead to an increasing amount of expressed chemoreceptor proteins. Furthermore a change in the presence and number of flagella at different condition could be observed and, interestingly, correlated with the ability to swim. Initial swimming studies of the hyperthermophilic organism under anaerobic conditions at temperatures up to 110 °C. In parallel, cells were fixed with glutaraldehyde and negatively stained for electron microscopy to determine the number of flagella depending on the different conditions tested.
Soil microbial communities play a key role in biogeochemical processes. Flooding events alter the redox potential of the soil and therefore lead to changes in microbial community structure. However, up to date it is largely unknown how flooding events change composition and amount of these soil microbial communities. To investigate soil microbial community dynamics, an automated biogeochemical microcosm system was used to simulate flooding of the soil in the laboratory. This system allows establishing pre-defined redox conditions in soil suspensions by flushing them with nitric oxide (NO) or oxygen (O2). Samples were taken at these pre-defined redox potential levels from anoxic (-56 mV) to oxic (468 mV) to assess the microbial community structure and abundance, phosphoplipid fatty acids (PLFA) of the samples were analyzed. In addition, the bacterial community was investigated via denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene PCR products. Some of the appearing and disappearing bands of the DGGE analysis were excised and sequenced to identify the accounting species. The varying redox conditions had a considerable effect on the microbial community structure, indicated by a differing PLFA profile. Correspondingly, DGGE analysis showed a changing bacterial community over the course of a shifting redox potential. Comparison of the untreated sample with the microcosm samples showed varied banding patterns. While obligate aerobic bacteria were only found in the initial sample, low redox potential led to the occurrence of sporeforming bacteria preferring anaerobic conditions. Summarizing, flooding events can have significant effects on microbial community composition and therefore play an essential role in changing of biogeochemical properties of the soil.

EMP03 Pedobacter glucosidilyticus DD6b genome-specific properties and common features compared with the publicly available type strains genomes of the genus Pedobacter

A. Poehlein1, R. Daniel1, D. D. Simeonova1, 2 1) Georg August University Göttingen, Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Göttingen, Germany 2) University of Konstanz, Microbial Ecology, Limnology and General Microbiology, Konstanz, Germany 3) Institute of Microbiology, Bulgarian Academy of Sciences, General Microbiology, Sofia, Bulgaria

Phosphorus is one of the five vital elements and occurs in bio- and geochemistry mainly as phosphates, where the central P atom is in its higher oxidation state [V]. Some recent reports show that phosphorus occurs on Earth in reduced forms, with central P atom in [+III] or [+I] oxidation state. Providing that P is one of the growth limiting factors mainly, but not only in water ecosystems, the ability of bacteria to metabolize reduced P compounds gains in interest. We present the genome sequence of P. glucosidilyticus DD6b, an aerobic phosphate oxidizer, its specific properties and analysis of the common features with all publicly available whole genome sequences of Pedobacter species. The genomic DNA of the strain was used for the preparation of shotgun libraries. Sequencing resulted in 12,380,618 paired-end Illumina reads of 112 bp., trimmed with Trimmomatic 0.32 to discard adaptor sequences and those with quality scores lower than 20 (Illumina 1.9 encoding). For the initial de novo assembly of the 4,150,000 reads resulting in 93 contigs larger than 0.5 kb SPAdes 2.5 software was used, and Prodigal for automatic gene prediction. rRNA and tRNA were identified with RNAmmer and tRNAscan, respectively. An automatic annotation with the IMG-ER system and manual curation by employing BLASTP, Swiss-Prot, TrEMBL, and InterPro databases, were performed.

The genome size is 3,876 Mb, containing 3,352 predicted genes of which 3,311 protein-encoding and 41 RNAs genes (3 tRNA and 38 rRNA). Overall GC content is 34.74 mol%. Protein-encoding genes with a putative function were 2,610 (77.86 %) and 701 (20.91 %) annotated as hypothetical proteins. The pairwise genome comparison of P. glucosidilyticus DD6b and P. glucosidilyticus DSM 23534 revealed the presence of a complete and specific DNRA pathway in DD6b. It assimilates phosphate under phosphate starvation via a sec-dependent periplasmic alkaline phosphatase, analogously to E.coli. The whole genome analysis of all sequenced Pedobacter type strains and DD6b allowed defining the size of the core (1,398) and the pan genome (9,962) orthologous groups in Pedobacter species.

Our work indicates higher level of genomes plasticity amongst Pedobacter species.

EMP04 Peptidyl-prolyl cis/trans isomerase FkpA from Corynebacterium glutamicum improves biomass yield at increased growth temperatures

N. Kallscheuer1, M. Bott1, J. van Ooyen1, 2), T. Polen1 1) Institute of Bio- and Geosciences IGB-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany

Question: Peptidyl-prolyl cis/trans isomerases (PPIases) catalyze the rate-limiting protein folding step at peptide bonds preceding proline residues and were found to be involved in several biological processes, including gene expression, signal transduction, and protein secretion. In C. glutamicum, a workhorse in industrial biotechnology, an FK-506 (tacrolimus) binding protein (FKBP)-type PPIase FkpA is predicted to be encoded directly downstream of gltA encoding citrate synthase (CS). This gene cluster is also present in other Actinobacteria. Here we asked for the physiological relevance of the predicted FkpA protein for C. glutamicum, analyzed the enzymatic activity and studied the influence of FkpA on parameters of a lysine producer model strain.

Methods: In vitro, chymotrypsin-coupled PPIase activity assays and thermal aggregation assays were performed to determine kinetic parameters of the PPIase activity and to assess the chaperone activity. For in vivo studies, an FkpA deletion mutant was constructed to test the influence on CS activity, on global gene expression and on growth properties of C. glutamicum.

Results: In vitro, FkpA indeed shows typical PPIase activity parameters with artificial substrates and is inhibited by FK-506. FkpA also delays the thermal aggregation of CS demonstrating chaperone activity. Surprisingly, FkpA has a positive effect on the activity and temperature range of CS in vitro. Deletion of fkpA causes a 50 % reduced biomass yield compared to that of the wild type at increased growth temperature (37 °C). In vivo data suggest that CS is not the limiting factor for the growth defect under this condition. Comparative transcriptome analysis using DNA microarrays revealed 69 genes which exhibit >2-fold mRNA level changes giving insight into the transcriptional response upon mild heat stress when FkpA is absent.

Conclusions: Predicted FkpA from C. glutamicum indeed exhibits PPIase activity and also changes the activity 1). The absence of FkpA strongly reduced biomass yields at increased growth temperatures and is therefore physiologically relevant for C. glutamicum to cope with such conditions 1). FkpA may be exploited for improved product formation in biotechnical processes.

EMP05 Shinella sp. strain DD12 – report on the first genome sequence of a member of genus Shinella

A. Poehlein1, R. Daniel1, 2), D. D. Simeonova2 1) Georg-August-University Göttingen, Department of Genomic and Applied Microbiology, Göttingen, Germany 2) Institute of Microbiology, Bulgarian Academy of Sciences, General Microbiology, Sofia, Bulgaria

Phosphorus occurs in bio- and geochemistry mainly as phosphates, with a central P atom in its higher oxidation state [+V]. Some recent reports show that phosphorus occurs on Earth in reduced forms, with central P atom in [+III] or [+I] oxidation state. Providing that P is one of the growth limiting factors mainly, but not only in water ecosystems, the ability of bacteria to metabolize reduced P compounds gains in interest. Shinella sp. strain DD12, a novel phosphite assimilating bacterium, isolated from homogenized guts of starved zooplankton Daphnia magna.

Phosphorus occurs in bio- and geochemistry mainly as phosphates, with a central P atom in its higher oxidation state [+V]. Recent reports show, that phosphorus occurs on Earth in reduced forms, with central P atom in [+III] or [+I] oxidation state. Providing that P is one of the growth limiting factors in water ecosystems, the ability of bacteria to metabolize reduced P compounds attracts the interest. Here we report the first draft genome sequence of a member of genus Shinella - Shinella sp. strain DD12, a novel phosphate assimilating bacterium, isolated from homogenized guts of starved zooplankton Daphnia magna.
From genomic DNA of the strain were prepared shotgun libraries. Sequencing resulted in 7,118,226 paired-ends Illumina reads of 112 bp and a 72.54-fold coverage. Reads were trimmed using Trimmomatic 0.32 software to remove sequences with quality scores lower than 20 and remaining adaptor sequences. The initial hybrid de novo assembly employing the SPAdes 2.5 software resulted in 236 contigs larger than 0.5 kb. For automatic gene prediction YACOB and GLIMMER software tools were used, whereas RNRammer and rrNAscan for identification of rRNA and tRNA genes. Functional annotation of the predicted protein-coding genes was carried out with the IMG/ER system with subsequent manual curation by using Swiss-Prot, TrEMBL, and InterPro databases.

The genome size is 7.678 Mb with an overall GC content of 63.40 mol%. It harbours 7,555 putative genes, of which 7,505 are protein-encoding and 50 RNA genes (2 rRNA and 48 tRNA, including those for selenocystein incorporation). 68.95% of all coding genes (1,264 (16.73%) genes encoding hypothetical proteins were identified. The majority of the protein-encoding genes were assigned to COG categories.

The genome analysis of strain DD12 revealed the presence of two complete operons encoding: 1) dissimilatory nitrate reduction to ammonia and 2) assimilative nitrate reduction to L-glutamine, and L-glutamate. Shinella sp. DD12 cannot fix nitrogen. The genome encodes three complete pathways for assimilation of phosphonates, which indicates the relatively broad abilities of the strain to utilise phosphonates as P- and/or C- and N-sources, compared to the remaining genomes of Rhizobiales members and even to Alphaproteobacteria as a whole.

EMP06
Molecular characterization and activity measurements of the ammonia oxidizing community in a pre-alpine freshwater lake (Lake Constance)

*J. Heber1, B. Frommeyer1, M. Dannenmann2, M. Pester1
1Universität Konstanz, Konstanz, Germany
2Institute of Technology, Institute of Meteorology and Climate Research; Atmospheric Environmental Research (IMK-IFU), Karlsruhe, Germany

Microbially driven ammonium oxidation to nitrite is the rate limiting step in nitrification and as such an important part of the global nitrogen cycle. This process has been extensively studied in marine and terrestrial soil environments but is not yet well understood in freshwater ecosystems. Although nitrification does not directly change the inventory of fixed N in freshwater ecosystems, it changes the quality of N available for assimilation by plants, phytodetritus and bacterioplankton and thus directly impacts primary production. Our primary goal was to characterize the ammonia oxidizing microbiota, which typically consists of both ammonia oxidizing archaea (AOA) and bacteria (AOB), in Lake Constance as a model for large oligotrophic freshwater lakes. The ammonia oxidizing microbiota was followed throughout the annual cycle of plankton succession at four distinct depths which span from the epilimnion through the metalimnion to the hypolimnion. T-RFLP-based screening and cloning of bacterial and thaumarchaeotal sequences showed that 87% (401) proteins and 1,264 (16.73%) genes encoding hypothetical proteins were identified. The majority of the protein-encoding genes were assigned to COG categories.

The genome analysis of strain DD12 revealed the presence of two complete operons encoding: 1) dissimilatory nitrate reduction to ammonia and 2) assimilative nitrate reduction to L-glutamine, and L-glutamate. Shinella sp. DD12 cannot fix nitrogen. The genome encodes three complete pathways for assimilation of phosphonates, which indicates the relatively broad abilities of the strain to utilise phosphonates as P- and/or C- and N-sources, compared to the remaining genomes of Rhizobiales members and even to Alphaproteobacteria as a whole.

EMP08
Defining unknown members of the Roseobacter group in marine sediments

*M. Pohler1, B. Kiel Reese2, H. Mills3, H. Cypionka1, B. Engelen1
1Carl von Ossietzky University, Institute for Chemistry and Biology of the Marine Environment, AE Paleomicrobiology, www.phmb.ikc.mri.de, Oldenbourg, Germany
2Texas A&M University, Department of Life Sciences, Corpus Christi, USA
3University of Houston - Clear Lake, Department of Oceanography, Houston - Clear Lake, USA

The Roseobacter group is a marine bacterial lineage representing a significant part of pelagic and benthic microbial communities. It is the largest group within the Rhodobacteraceae comprising 70 genera and about 180 species. Although around 20% of the cultured representatives were isolated from marine sediments, there is still a lack of knowledge about the role and distribution of benthic roseobacters. To get deeper insights in the diversity of the Roseobacter group in sediments, a comprehensive dataset comprising 14 sampling sites with different biogeochemical background was analyzed. Pyrosequencing of bacterial 16S rRNA gene transcripts resulted in around 90,000 sequences from all sampling sites. After classification using the rdp database, 5952 sequences (0.7% of all transcripts) could be assigned to the Rhodobacteraceae. While 700 sequences were affiliated to known genera, 88% were associated to so far unknown Rhodobacteraceae. Especially for the Roseobacter group, only 7% of the sequences could be affiliated to described genera. Based on this finding, we performed an extensive phylogenetic study to define new clusters of benthic roseobacters. An ARB database containing the Rhodobacteraceae-affiliated sequences was set up and phylogenetic trees were calculated using two different algorithms. New clusters of benthic roseobacters were defined when more than 10 sequences branched together in the neighbour joining as well as in the maximum likelihood tree. Thus, around 100 new clusters were identified as monophyletic branches within the Roseobacter group covering ~4000 sequences. Consequently, 65% of all Rhodobacteraceae-affiliated sequences were defined within the new clusters. Half of theses sequences formed ~20 clusters, comprising more than 50 sequences, each. This extended phylogenetic description now allows a more detailed and statistically valid community analysis of the Roseobacter group within our comprehensive dataset from marine sediments. Additionally, specific primers and probes were designed for the detection of benthic roseobacters to detect and quantify them within enrichment cultured and environmental samples. These tools will help to find new species affiliated to so far uncultivated roseobacters and to obtain a holistic picture of their distribution and ecology in the marine environment.
EMP09 Occurrence and diagnosis by PCR and culture for American foulbrood disease (Paenibacillus larvae subsp. larvae) in honey bee colonies in Algeria

* Noureddine1, University of Boumerdes, Department of Biology, Boumerdes, Algeria

The American foulbrood in one of the most serious diseases that may affect brood of larvae and pupae stages, which cause economic losses and biological hazards in a large beekeeping sector in several countries across the world in general and Algeria in particular. The causative organism is a Gram-positive bacterium Paenibacillus larvae. The objective of this study was to determine the prevalence of this disease in some regions of Algeria. The diagnostic method used is based on sampling of honey and detection of bacteria using microbiological methods, microscopic and biochemical. The QIAamp DNA Mini kit is used to identify the DNA of Paenibacillus larvae. The study was conducted on 87 samples of adult honey bees of various origins, harvested directly from the hive in 2014 and from different parts of northern Algeria. The results of the research Paenibacillus larvae at our study show that there is a notable variability between samples of honey bee from different regions examined. Several factors may explain this variation in the prevalence of the disease. The average infection rate for all regions is 16%. American foulbrood is a serious disease that affects our bees. This bacterium is the second most serious infection for all regions is 16%. American foulbrood is a serious disease that affects our bees. This bacterium is the second most serious infection for all regions is 16%.

EMP10 Physiological and genetic studies on an isolated strain of Magnetospirillum from a Planted Fixed Reactor (PFR)

* I. E. Meyer Cifuentes1, S. Bönkme, H.-J. Heipieper1

1 Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

Magnetospirillum is a genus characterized majorly by some magnetic strains and their ability to break down aromatic compounds, such as toluene and phenol (Shinoda et al.2005), under microaerophilic and anaerobic conditions. Currently most of the studies on this genus have been focused on their magnetosomes and there is a lack of information about at what extent these bacteria can metabolize toxic compounds, such as toluene, under denitrifying anaerobic conditions. Furthermore only a few studies have identified and analyzed the genes involved in the toluene catabolic pathway.

In this work, microcosm samples were taken from a Planted Fixed Reactor (PFR), planted with Juncus effusus and fed with 40mg/L of toluene for 4 years. The predominant group of bacteria were isolated and taxonomically characterized. A whole genome sequencing approach was carried out and genes related to toluene and benzene degradation pathways for anaerobic conditions, were detected and analyzed. Through 16s rDNA analysis, our results showed that the strain were closely related to Magnetospirillum AMB-1. However, contrary to the Magnetospirillum AMB-1, magnetosomes organelles were absent in our strain as reported for other strains, such as CC-26 (Shinoda et al., 2000).

Furthermore, the isolated strain was able to degrade toluene up to a concentration of 50 mg/L in liquid cultures and to grow in the presence of other aromatic compounds such as p- and m-cresol, with nitrate as the energy source. Enrichments were incubated at 30 °C for three weeks, and isolates were purified by streaking on M9 agar and carbon sources, as mention above. Furthermore, selected bacteria were taxonomically identified by sequencing of 16s rDNA, followed by the evaluation of DMPs degradation, DMPs co-metabolism and degradation of other simple aromatics. Finally, the strain was assessed for the presence of catabolic genes involved in aromatic aerobic degradation. From isolates, the β-proteobacteria Delthia acidovorans, was the strain able to completely metabolize o-xenylens, 3,4-DMP and 2,3-DMP as singles isolates. Whereas, the accompaniment of 3,4-DMP with others non-metabolized DMPs isolomers showed to have an effect on its transformation by D. acidovorans. The isomers 2,5 and 3,5-DMP were significantly depleted in the presence of 3,4-DMP, while 2,4-DMP slightly decreased. On the contrary 2,6-DMP did not have any co-metabolic effect. In addition, the mix of the two metabolized isomers, 3,4- and 2,3-, exhibited synergistic interactions due to the improvement in degradation time and bacterial growth. Amplification of catabolic aerobic genes, revealed the presence of genes of multi-component mono-oxygenases-like in D. acidovorans. Specifically, TMBD, TMOA and PHE, corresponding to the Subfamily 1 and 2 of α-subunits of hydroxylase and the α-subunit of phenol-methylphenol monooxygenase-like, respectively. In addition, the microorganism, exhibited the ability to degrade a wide range of simple aromatics. Therefore, D. acidovorans showed to be an optimal bacterium for the genomic reconstruction of the metabolic DMPs pathways. Additionally, further studies can be addressed to evaluate its contribution and performance within Constructed Wetlands for phenol-like wastewater treatment.

EMP12 Biochemical characterization and functional analysis of the iron responsive regulator RirA from Dinoroseobacter shibae

*M. Behringer1, E. Hättig1, D. Jahn1

1 Technical University Braunschweig, Institute for Microbiology, Braunschweig, Germany

Question: The rhizobial iron regulator RirA from Dinoroseobacter shibae belongs to the Rrf2- family of transcription factors and is supposed to coordinate a Fe-S cluster and thereby measure iron availability. The RirA protein of D. shibae contains four cysteine residues which are highly conserved in other RirA homologs and might be important for the cluster formation [1].

Methods: RirA fused with a Strep-tag was recombinantly produced and purified under anaerobic conditions. We used UV/ Vis and electron paramagnetic resonance (EPR) spectroscopy to study the nature of the Fe-S cluster. The Fe content of the protein was determined with the atom absorbance spectroscopy (AAS). The sequence of the protein was determined with the atomic absorption spectroscopy (AES). The cysteine residues of the RirA were changed to alanine via site directed mutagenesis of the corresponding gene and analyzed.

Results: Using UV/ Vis spectroscopy an absorption maximum at 420 nm, typical for Fe-S cluster containing proteins, was observed for anaerobically purified wildtype RirA and missing for the four RirA cysteine mutants. Moreover, exposure of RirA to air drastically reduced the absorption, indicating an oxygen sensitive Fe-S cluster. By EPR spectroscopy a (3Fe4S) cluster was identified. This finding was supported by AAS measurements of iron, resulting in a 3:1 ratio of iron per molecule RirA. Gel filtration experiments revealed a dimeric form for D. shibae RirA. The dimeric form was also found for the mutant proteins but with a slightly different migration, suggesting a structural difference compared to the wildtype RirA. The hemeB2 gene, encoding a TonB-dependent heme/hemoglobin receptor family protein was induced under iron-limited growth.
EMP13
How to survive as a non-pathogenic or pathogenic microbe under high polyamines concentrations?
*S. Krysenko1, N. Okoniewski1, A. Matthews1, A. Kulik1, W. Wohlieben1, A. Bera1
1University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany

Although naturally occurring polyamines are absolute required for cell growth, maturation and proliferation in virtually all organisms, they can be very toxic when in excess. These compounds can interact with DNA, RNA, proteins and potentially with other components of the cell leading to deregulation of the cell metabolism following lethal effect. Free living Streptomyces sp. and other non-motile actinobacteria have to cope with very high concentration of polyamines that are produced during the decomposition of animal bodies and are locally released from putrefying cadaver into the soil. Plant-pathogenic Streptomyces species are able to survive in the plant tissue despite very high polyamine concentrations which are produced by the defense system of the plant during infection. Almost all actinobacteria, including the important pathogens possess a set of glnA-like genes encoding non-functional glutamine synthetase-like enzymes. In silico analyses of all glnA-like genes (glnA2, glnA3, glnA4) across the actinobacteria genomes revealed that glnA4 has evolved to other genes encoding proteins that may play an important role in surviving and colonizing of many diverse habitats [1]. Our studies in S. coelicolor demonstrate that glnA2, glnA3 and glnA4 encode gamma-glutamylpolyamine synthetases (GPSs) responsible for the first step of the utilization of naturally occurring polyamines as an alternative N-source. These enzymes confer also resistance against toxic concentrations of polyamines thereby ensuring persistence in a host or surviving in a locally rich polyamine soil habitat. Since GPSs ensure both nutrients availability (C- and N-source) and resistance against high polyamine concentrations they represent a promising target for a new antibiotic drug development. Inhibition of the GPSs might be an effective therapeutic strategy since these kinds of enzymes do not naturally occur in eukaryotes.

EMP14
Influence of biotic and abiotic factors on intracellular calcium profile in the green unicellular alga Chlamydomonas reinhardtii
*P. Aiyar1, D. Schaume1, M. Wicht1, H. Dathe1, S. Sasso1, M. Mittag1
1Friedrich Schiller University Jena, Institute for General Botany, Jena, Germany

Microalgae are an essential part of the food chain as they contribute significantly to the global carbon fixation [1]. To get a better understanding about this process, it is important to understand how microalgae respond to changes in environmental conditions. Earlier work on the marine diatom, Phaeodactylum tricornutum showed how this microalg往返 responds to external signals such as temperature, osmotic stress and iron by altering its calcium homeostasis [2]. However, very limited information is available on the impact of such changes on freshwater microalgae. Using the freshwater model microalgae Chlamydomonas reinhardtii, we have established a transgenic reporter line for measuring cytosolic calcium ion concentration. We subjected this reporter line to changes in several abiotic and biotic factors and measured the altered calcium concentration. In this poster, we present our preliminary work on the effect of these factors on C. reinhardtii. This work would be of great impact to understand the similarities and differences in the environmental sensing abilities of freshwater and marine microalgae as well as provide us with insights into mechanisms of interaction between microalgae and other microorganisms.

EMP15
Isolation and characterization of a cellulose-degrading bacterium from soil samples of mixed woodlands
*V. Jag1, A. Poehlein1, F. Bengseldorf2, R. Daniel1, D. Dieter1
1Universität Ulm, Institut für Mikrobiologie und Biotechnologie, Ulm, Germany
2Georg August University of Göttingen, Institute of Microbiology and Genetics, Göttingen, Germany

Question: A non-motile, Gram-positive, cellulose degrading bacterium, which shows a filamented, branched cell shape, was isolated from soil of mixed woodlands. The isolated strain was identified as Oerskovia enterophila and designated as strain Vjag. The aim of this work was to clarify the genetic and metabolic properties in terms of survival in forest soils of the isolated strain. Because of limited genomic information regarding the genus Oerskovia the genome of the isolated strain was sequenced.

Methods: The isolated strain was identified using the 16S rDNA sequence. A phylogenetic tree based on 16S rDNA sequences of close relatives was created. Additionally, the consumption of carbon sources typically available in mixed woodlands, such as cellulose or starch were tested. Therefore, the isolated strain was cultivated on silica media plates with carboxymethylcellulose (CMC), stained with Kongo-red, cultivated in liquid media using soluble starch as carbon source, yeast extract or respective combinations. The genomic properties were identified through genome sequencing using the 454 GS-FLX TitaniumXL system (titanium GS70 chemistry, Roche Life Science, Mannheim, Germany) and the Genome Analyzer II (Illumina, San Diego, CA). Analysis of genome properties was performed using the Integrated Genomes and Metagenomes/Expert Review (IMG/ER) (Lawrence Berkeley National Laboratory).

Results: 16S rDNA analysis revealed that the isolated strain belongs to the species O. enterophila with an identity of 100 %.

Conclusion: O. enterophila Vjag is able to degrade typical carbon sources present in mixed woodlands via an enzymatic set of cellulases/endoglucanases and amylases.

EMP16
Analysis of membrane protein complexes of the marine sulfate reducer Desulfovagulum toluolica Tol2 by 1D Blue Native-PAGE complexome profiling and 2D Blue Native-SDS-PAGE
*L. Wölbbrand1, H. S. Ruppersberg2, C. Feender3, B. Blasius1, H.-P. Braun1, R. Rahu1
1Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, General and Molecular Microbiology, Oldenburg, Germany
2Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Mathematical Modelling, Oldenburg, Germany
3Leibniz University Hannover, Institute of Plant Genetics, Plant Proteomics, Hannover, Germany

Question: Sulfate-reducing bacteria (SRB) obtain energy from cytoplasmic reduction of sulfate to sulfide involving APS-reductase (AprAB) and dissimilatory sulfite reductase (DsrAB). These enzymes are predicted to obtain electrons from membrane redox complexes, i.e. the quinone-interacting membrane-bound oxidoreductase (QmoABC) and DsrMKJOP complexes. In addition to these conserved complexes, the genomes of SRB encode a number of other (predicted) membrane redox complexes, the function and actual formation of which is unknown.

Methods: This study reports the establishment of 1D Blue Native-PAGE and 2D BN-/SDS-PAGE for analysis of the membrane protein complexome of the completely oxidizing, marine sulfate reducer Desulfovagulum toluolica Tol2. 1D BN-PAGE based complexome profiling was performed to allow for determination of the membrane protein complexome of a SRB on a whole cell level.

Results: Analysis of normalized score profiles of ≥800 proteins in combination with hierarchical clustering and identification of 2D BN-
/SDS-PAGE separated spots demonstrated separation of membrane complexes in their native form, e.g. ATP synthase. In addition to the QmoABC and DsrMKJOP complexes, other complexes were detected that constitute the basic membrane complexome of *D. toluolica* To2, e.g. transport proteins (e.g. sodium/sulfate symporters) or redox complexes involved in Na⁺-based bioenergetics (RnfABCDEG). Notably, size estimation indicates dimer and quadruple formation of the DsrMKJOP complex *in vivo*. Furthermore, cluster analysis suggests interaction of this complex with a rhodanese-like protein (To2_C05230) possibly representing a periplasmic electron acceptor for DsrMKJOP.

Conclusion: This study demonstrates the benefit of combining 1D BN-PAGE complexome profiling with 2D BN-SDS-PAGE separation of membrane complexes of SRB, by providing comprehensive insights into the proteomic backbone of membrane embedded processes on a whole cell level. This approach generated new hypotheses for future proteomic and biochemical studies, e.g. in case of the DsrMKJOP complex.

EMP17

Regulation of mono- and polyamine utilization clusters in *S. coelicolor*

1 A. Matthews, S. Krysenko, O. Tsyplik, N. Okoniewski, W. Wohlleben, A. Bera

1 University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Tübingen, Germany

Actinobacteria include species that are major bioactive producers, as well as various human and plant pathogens. Non-motile, soil-dwelling Streptomycyes are able to withstand and overcome unfavorable, rapid changing conditions despite constant confrontation with nutrient limitation and pollutants in the soil. Primary nitrogen compounds assimilated by actinobacteria include: ammonium, nitrate, amino acids, urea, amino sugars and peptides. Our studies revealed that *S. coelicolor* can utilize monoamines (ethanolamine) and polyamines (putrescine, cadaverine, spermine and spermidine) as a sole nitrogen source and is able to grow in the presence of toxic polyamine concentrations. Actinobacteria have developed multifaceted regulation mechanisms to control their nitrogen metabolism in a response to nitrogen availability and environmental conditions [1]. Although the regulation of the nitrogen assimilation in *S. coelicolor* was intensively studied [2], the regulation of polyamine utilization clusters was not investigated so far. Our studies show that these clusters in *S. coelicolor* are controlled by two transcriptional regulators PaulR and PaulRII. Target genes of the PaulR and PaulRII were identified using RT-PCR and EMSAs. Recent advances in the study of the metabolism of nitrogen with a focus on the monoamine/polyamine utilization in *S. coelicolor* will be presented.

EMP18

Genome and catabolic subproteome of the marine, nutritionally versatile, sulfate-reducing bacterium, *Desulfococcus multivorans* DSM 2059

1 M. Dörries, L. Wühlbrand, M. Kube, R. Reinhardt, R. Rabus

1 Institute for Chemistry and Biology of the Marine Environment (ICBM), General and Molecular Microbiology, Oldenburg, Germany

1 Humboldt University of Berlin, Albrecht Daniel Thaer-Institute Division Phytomedicine, Berlin, Germany

1 Max Planck Genome Centre Cologne, Cologne, Germany

Question: Sulfate-reducing bacteria (SRB) are key players of the carbon-sulfur cycles in the sediments of the world’s oceans. Of prominent habitat relevance are members of the *Desulfosarcina-Desulfococcus* clade within the deltaproteobacterial family of *Desulfbacteriaceae*. A metabolically versatile representative of this cluster is *Desulfococcus multivorans* DSM 2059 that is able to completely oxidize a variety of organic acids, including fatty acids up to C14, as well as aromatic compounds under anoxic conditions. In the present study proteomic-enhanced annotation was applied to comprehensively reconstruct the metabolic network of *D. multivorans*.

Methods: Manual revising of automatically predicted and annotated protein-coding sequences (CDS) was combined with proteomic data (2D-DIGE, shotgun, membrane protein-enriched fraction) based on cells adapted to 17 (6 aromatic and 11 aliphatic compounds) different substrate conditions to allow for improved functional prediction.

Results: The 4.46 Mbp genome of *D. multivorans* with 3942 predicted CDS resembles other sulfate-reducing deltaproteobacteria with respect to size, GC content and number of encoded proteins. The comprehensive proteogenomic dataset allowed for reconstructing a metabolic network of degradation pathways and energy metabolism that consists of 167 proteins (152 identified). Peripheral degradation routes feed via central benzoyl-CoA, (modified) b-oxidation and methylnalonyl-CoA pathways into the Wood-Ljungdahl pathway for complete oxidation of acetyl-CoA to CO₂. Dissimilatory sulfate reduction is embedded in a complex electron transfer network composed of polytopic and periplasmic components (ETFs and electron bifurcatingHdr/Mvh and Nfn complexes) and diverse membrane complexes (Dsr, Qmo, Hmc, Tmc, Nuo and Rnf).

Conclusions: While a high degree of substrate-specific formation of catabolic enzymes was observed, most protein complexes involved in transmembrane electron transfer appeared to be constitutively formed. Overall, the study undepthes the value of proteomic analysis to enhance functional genomic predictions and represents another puzzle piece in understanding the proteogenomic basis of the habitat-relevance and -success of the deltaproteobacterial SRB family *Desulfbacteriaceae*.
We showed that the genome of SBR5\(^{1}\) consists of one chromosome with 7,893,056 bps, containing 6705 protein coding genes, 87 tRNAs and 27 rRNAs (Brito et al., 2015). Biotin auxotrophy was demonstrated since growth of SBR5\(^{1}\) in MvCM minimal medium was not observed in the absence of biotin corroborating the finding that biotin biosynthesis genes are absent from its genome. Two of three putative anlyase/pullulanase genes could be functionally expressed in \(C.\) glutamicum enabling this bacterium to degrade starch. This indicated that these genes may be involved in starch utilization by \(P.\) riograndensis SBR5\(^{3}\).

Determination of the complete genome sequence of SBR5\(^{1}\) was an important step to further our understanding of the physiology of this bacterium and will be valuable for future studies involving SBR5\(^{1}\) as PGPR.

L.F.B. acknowledges support as fellow of the CaF Brasil (CAPES). We would like to thank E. Bach and L. Passaglia (Genetics Department, UFRGS, Brazil) and J. Kalinowski, C. Rückert and D. Wibberg (CeBiTec, Bielefeld University) for help in genome sequencing and annotation.

EMP21

\(Formosa\) strain \(B\) as a model for polysaccharide degradation – \(In situ\) detection of a glycosyl-hydrolase \(92\) in \(Formosa\) strain \(B\) with direct gene\(\text{FISH}\)

*L. Zeugner\(^{1}\), J. Barrero Canosa\(^{2}\), K. Krüger\(^{1}\), T. Fischer\(^{1}\), J. Harder\(^{1}\), H. Teeling\(^{1}\), B. Fuchs\(^{1}\), R. Amann\(^{1}\)

\(^{1}\)Max Planck Institute for Marine Microbiology, Molecular Ecology, Bremen, Germany

\(^{2}\)Max Planck Institute for Marine Microbiology, Microbiology, Bremen, Germany

Phytoplankton spring blooms are seasonal events in which autotrophic microorganisms massively grow for a short period of time. In the German bight these spring blooms are followed by successional blooms of heterotrophic bacteria. \(Formosa\) strain \(B\) is a flavobacterium isolated from seawater at Helgoland after the phytoplankton bloom. Genome analysis of its genome suggests that this strain is a mannan degrader and metagenomic analysis indicated that it is also highly elon and recurrent in Helgoland waters. Here, we showed the direct link of the potential mannan degradation to \(Formosa\) strain \(B\) with direct gene\(\text{FISH}\), a molecular tool that uses fluorescence \(\text{in situ}\) hybridization to enable the direct linking between taxonomy and potential metabolic function by simultaneously detecting the \(16S\) rRNA and a gene of interest in the target organism. In this case the gene of interest was the glycoside hydrolase \(92\) (GH92) which codes for the protein alpha-mannosidase that is able to degrade this case the gene of interest was the glycoside hydrolase \(92\) (GH92) which codes for the protein alpha-mannosidase that is able to degrade mannan, a linear polymer of the sugar mannose serving as a storage polysaccharide in diatoms. The cell identity of \(Formosa\) strain \(B\) was detected with a cDNA probe (FISH). Conducting research on \(Formosa\) strain \(B\) yields a deeper insight into the polysaccharide degradation mechanisms and its niche adaption after the annual spring bloom and improves our understanding of the microbial ecology of the coastal shelf seas.

EMP22

Towards population genomics of bacterial clades associated with phytoplankton blooms

*A. Grieb\(^{1}\), B. Fuchs\(^{1}\), R. Amann\(^{1}\)

\(^{1}\)Max Planck Institute for Marine Microbiology, Molecular Ecology, Bremen, Germany

Spring phytoplankton blooms off the coast of Helgoland revealed a substrate-controlled succession of bacterioplankton populations\(^{1}\). To date the functional characterization of microorganisms which are not yet cultured are approached by metagenomics or single cell genomics, but these methods are either targeted or miss out groups of low abundance. Here, we present a protocol for the targeted retrieval of genomic information from phylogenetically defined bacterial clades. Fluorescence \(\text{in situ}\) hybridization (FISH) is combined with fluorescent-activated cell sorting (FACS) followed by whole genome amplification. We applied a recently developed hybridization-chain-reaction (HCR) -FISH protocol which is less damaging to the DNA compared to the commonly used catalysed reporter deposition (CARD) -FISH. By using genus- or species-specific probes, even microorganisms with low abundances can be sorted and sequenced. The resulting genomic information enables the annotation of metabolic functions of the targeted bacterial clades and thus improves the understanding of their role in the breakdown of algal biomass after the spring phytoplankton blooms.

EMP23

Transpositional mutagenesis of a heavy metal resistant streptomycete strain

*H. Brangsch\(^{1}\), E. Kothe\(^{1}\)

\(^{1}\)Microbial Communication, Institute of Microbiology, Friedrich Schiller University, Jena, Germany

Streptomycetes are largely known for their production of industrial and medical relevant substances. As a source of most antibiotics they are of vital importance for medical treatments, but these organisms can also be employed for other applications, such as bioremediation. Their ability to adapt to harsh environmental conditions and ubiquitous distribution in natural habitats makes them ideal candidates for the remediation of contaminated areas. The former uranium mining site Ronneburg (Thuringia, Germany) is highly heavy metal contaminated, due to formation of acid waste waters and subsequent mobilization of metals. A streptomycete strain collection from this site was established, which contains mostly metal resistant strains. In this project an \(\text{in vivo}\) transposon mutagenesis approach is used to investigate the genes involved in the metal resistant of these isolates.

The highly nickel resistant \(\text{Streptomyces mirabilis}\) P16 B-1 was transformed \(\text{via conjugation}\) with \(E.\) coli \(\text{SCE}12\) ET1010. After establishing this plasmid delivery system, P16 was transformed with two plasmids, either pTNM or pHTM, which contain transposons (Tn) and corresponding transposases based on different transposon types: Tn5 or minarr. Subsequently, transposition was initiated and transformants screened for the appropriate antibiotic resistances, as well as sensitivity against nickel, in order to find heavy metal sensitive knock-out mutants. Southern Blotting was used for confirming and comparing integration sites between the transformants. The location of the Tn in the streptomycete genome was determined by plasmid rescue and sequencing.

Applying the intergeneric conjugation system, P16 was successfully transformed with either plasmids. Transposition of the Tn5-based transposon yielded transformants with identical integration sites: either a sigma factor or a tetR transcriptional regulator gene. Although some of these colonies had lost their nickel resistance, others performed as the wild type. Concluding that there had been an early transposition event after conjugation and the loss of resistance was due to stress during the procedure rather than a gene disruption, further work was carried out with the mariner Tn \(\text{Himar1}\). In contrast to Tn5, \(\text{Himar1}\) transformants showed in Southern Blots different Tn integration sites. Therefore, they will be screened further for loss of heavy metal sensitivity.

Transpositional mutagenesis with \(\text{Streptomyces}\) is a useful tool for creating knock-out mutants. The role of thereby identified candidate genes of the heavy metal resistant of \(\text{Streptomyces mirabilis}\) will be confirmed be gene disruption and complementation assays. Furthermore, the employed methodology will be adopted to other Streptomycetes strains.

EMP24

Identification and characterization of an Ibuprofen degrading bacteria isolated from Constructed Wetland

*E. M. Balciunas\(^{1}\), H. J. Heipieper\(^{1}\)

\(^{1}\)UFZ - Helmholtz-Zentrum für Umweltforschung, Leipzig, Germany

Micropollutants occur in the aquatic environment all over the world. Industrial chemicals and pharmaceutically active compounds have attracted significant attention of science and public during the last years. After being administered, human drugs are partially metabolized in the human organism, excreted and finally end up in the municipal wastewater. Physical, chemical, and biological processes are combined in the constructed wetlands to remove contaminants from wastewater. An understanding of these processes is fundamental not only to designing wetland systems but to understand the fate of chemicals once they enter the wetland system. Thus, further degrading studies of ibuprofen, a micropolutan discovered in groundwater 25 years ago, should be conducted. In this study, samples from a subsurface-flow water treatment wetland, located in the city of Langenreichenbach-Germany, were tested. From several ibuprofen enriched culture media, an uncategorized bacteria strain (LRB-1) have been isolated and studied. The strain \(\text{Sphingomonas Ibu-2}\) is the single species of ibuprofen degrading bacteria genetically and chemically studied. Our results demonstrate that the LRB-1 have similar growth rate and ibuprofen degradation effectiveness as the \(\text{Sphingomonas Ibu-2}\). LRB-1 has the unusual ability to cleave the acid
EMP25
Prevalence and antibiotic study of Salmonella and Staphylococcus aureus in retail raw meats sold in Awka, southeastern Nigerian locality

*M. Uguwu1, T. Akagha2
1Nnamdi Azikiwe University, Awka, Pharmaceutical Microbiology & Biotechnology, Awka, Nigeria

Rationale: Foodborne infections and diseases remain a major cause of morbidity and mortality in the general population, particularly in resource poor settings. Food plays a significant role in the transfer of antibiotic resistance. Antimicrobial resistance is a major challenge in the management of severe foodborne infections as antimicrobial use in animals selects for resistant foodborne pathogens that may be transmitted to humans as food contaminants.

Objectives: This study was designed to evaluate the presence of potential foodborne pathogens Salmonella and S. aureus in the retail red meat in Awka and equally to evaluate the antimicrobial sensitivity patterns of these pathogens to conventional antibiotics.

Methods: Foodborne pathogens (Salmonella and S. aureus) were isolated from raw meat and confirmed with the aid of biochemical tests. Antibiotic of the isolates were examined following the CLSI guidelines. MIC of some selected antibiotics was evaluated against some multi-resistant isolates.

Results: The prevalence was 98.33 % and 71.67 % for S. aureus and Salmonella respectively. The isolates of S. aureus recorded higher level of resistance to the penicillins, erythromycin and tetracycline but had low resistance to gentamicin. Almost all the Salmonella isolates recorded a high level of resistance to all the antibiotics. Similarly all the isolates of the two bacteria had multiple antibiotic resistance indices of above 20 %.

Conclusions: The study confirmed high prevalence of Salmonella and S. aureus in raw meat products. These data revealed also that the Salmonella and S. aureus isolates recovered from the retail raw meats were resistant to multiple antimicrobials, and can be transmitted to humans through food products. Thus, it is essential for Nigerian government to implement food handlers training on food safety, conduct periodic medical check-up and continuous monitoring of personal hygiene.

EMP26
Metaproteogenomic analysis revealed a member of the genus Pelotomaculum completely oxidizing benzene to carbon dioxide with direct reduction of sulfate

*X. Dong1,2, J. Drège1, K. Nicolaisen1, C. von Törne1, S. Marozava1,2, R. Meckenstock1
1Universität Duisburg-Essen, Campus Essen - Biofilm Centre, Essen, Germany
2Helmholtz Zentrum München, Institute of Groundwater Ecology, Munich, Germany

The enrichment culture BPL dominated by Pelotomaculum is able to degrade benzene with sulfate as electron acceptor. Members of the Pelotomaculum are known to usually undergo syntrophy with anaerobic respiring microorganisms or methanogens. We hypothesize that the anaerobic benzene degradation is performed by a novel member of the genus Pelotomaculum which is able to reduce sulfate as electron acceptor. By using a metagenomics approach, we reconstructed a high-quality genome for Pelotomaculum candidate BPL, with 99 % completeness based on the lineage-specific single-copy marker gene analysis. Combining with proteomic data, we were able to reveal the metabolic pathways of Pelotomaculum candidate BPL for benzene degradation and sulfate reduction. The predicted pathway of benzene degradation is via carboxylation to benzoate by the Pelotomaculum candidate BPL. The central benzyol-CoA pathway involved reductive deamoratization from a class II benzyol-CoA reductase followed by hydrolytic ring cleavage and modified β-oxidation. Pelotomaculum candidate BPL utilize oxidative acetyl-CoA pathway for complete oxidation to CO2. Heterodisulfide reductase related proteins might connect the pool of reducing equivalents from the acetyl-CoA pathway to sulfate reduction. Pelotomaculum candidate BPL used a similar electron transfer mechanism for dissimilatory sulfate reduction like other Gram-positive sulfate-reducing bacteria. To summarize, Pelotomaculum candidate BPL is the first member of the genus that can perform sulfate reduction besides its potential to degrade benzene.

EMP27
Global distribution patterns of methanogenic archaea in natural environments

*X. Wen1,2, S. Yang1, F. Horn1, D. Wagner1, S. Liebner3
1GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany
2Northwest University for Nationalities, Lanzhou, China, Germany
3Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China, Germany

Question: Methane (CH4) is a major greenhouse gas and the second largest contributor to global warming. Biogenic methane is primarily if not exclusively generated by methanogenic archaea. Although our knowledge of methanogenic ecology is expanding, spatial distribution patterns of methanogenic archaea in natural environments remain inadequately understood. The major objective of this work is to determine/identify global patterns of methanogenic community structures in marine and terrestrial environments as well as the corresponding major abiotic factors shaping them.

Methods: Methyl coenzyme-M reductase (mcrA) nucleotide sequences from six different global natural environments were retrieved from the NCBI database. Geographical characteristics and environmental conditions of all the research sites were collected from the corresponding publications. Raw sequence data were processed on the MOTHUR platform. Valid sequences were clustered into OTUs at a cutoff of 84 % identity of the mcrA gene (Yang et al. 2014). Beta diversity was compared and statistically analyzed by different R packages.

Results: PÇOA ordination based on the semi-quantitative Jaccard distance matrix suggested clear methanogenic patterns related to salinity. Samples from non-saline soils and lake sediments could be further clustered according to pH value. Moreover, samples from the same latitude areas were observed to group closer. Amongst all different habitats, estuaries appear to harbor a higher diversity and more even incidence frequencies than the other habitats. Additionally, soils and lake sediments are inhabited by a diverse methanogenic community with large variations in the taxonomic composition. Methanoregula and Methanocella are the most frequently identified genera in natural soils while they are absent in marine sediments.

Conclusions: Based on our analysis, salinity is the major environmental factor shaping methanogenic community on a global scale. In addition, pH and latitude have a strong influence on methanogenic β-diversity in natural soils and lake sediments. The hydrogenotrophic methanogens especially Methanoregula and Methanocella are most common in the studied soils.
Furthermore, the activity is not dependent on direct contact but mediated via extracellular compounds. Therefore, we aim to identify the algicidal agent(s).

Methods: We utilize exo-proteomic and exo-metabolomic approaches with customized sample preparation and data analysis to specifically address the problem of highly diluted active substances in a very complex metabolic background.

Results: The combination of these approaches reveals a detailed picture of the regulation of *K. algicida* algicidal activity and of the tools employed by the bacterium to obtain nutrients from lysed phytoplankton cells. We were able to identify potential candidates for bioactive compounds, which can be further tested in bioassays. One class of compounds comprises proteases which are currently discussed as toxic agents.

Conclusions: Overcoming matrix effects and high dilution in omics-analyses of aquatic ecosystems has the potential to unveil new candidates for phytoxins as well as their secretion and regulation mechanisms.

EMP29

Temperate phages from terrestrial habitats: An induction approach

* A. Narr, E. Mahlandt, B. Kiesel, L. Y. Wick, H. Harms, A. Chatzinotas

1 Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Leipzig, Germany

2 Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Leipzig, Germany

3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

Phages are viruses infecting specific host bacteria, thus influencing the mortality and structure of the bacterial community. Even though they are the most abundant biological entities on earth, research has focused mainly on marine ecosystems neglecting terrestrial habitats. Phages show several life cycles: Temperate phages are characterized by lysogeny which seems to be the most common in the heterogeneous soil environment. During lysogeny the phage genome is temporarily integrated into the host genome as a prophage. This prophage is then replicated within the host until the production of new phage particles is induced by environmental signals causing phylogenetic stress to the bacterial host. In this study, we aimed to isolate and characterize temperate phages from soil and groundwater bacteria.

Bacteria were isolated on solid agar from soil and groundwater samples from the Hainich National Park (Thuringia, Germany) and identified by 16S rRNA-gene sequencing. In a high-throughput approach all isolates were screened for inducible phages using Mitomycin C, which causes mutagenic stress and triggers the release of the phages. The supposedly prophage carrying isolates were grown and induced in a larger volume for subsequent purification of the phages, and characterization via transmission electron microscopy and genome sequencing.

In total we isolated 149 bacteria. Most of the 82 isolates from soil belonged to the class Actinobacteria (35 isolates). In contrast, most of the 67 groundwater isolates affiliated to the Gamma-, Beta and Alphaproteobacteria (20, 19 and 15 respectively). Thirty-four percent of all isolates showed the typical growth curve of bacteria carrying inducible prophages, which is characterized by an initial increase and a following decrease in the optical density (600 nm). In addition, 39 % showed a non-typical growth curve, which may be indicative for the presence of defective prophages, while only twelve percent were not affected by the exposure to Mitomycin C. We will present transmission electron microscopy pictures, which allowed a distinction of the phages into distinct families. First results of the genome sequencing will be also discussed.

EMP30

Diversity and distribution of anammox bacteria and denitrifiers in pristine limestone aquifers

* S. Kumari, M. Herrmann, P. Lange, K.-U. Totsche, S. Trumbore, K. Küsel

1 Friedrich Schiller University, Inst. of Ecology, Chair of Aquatic Geomicrobiology, Jena, Germany

2 German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany

3 Friedrich Schiller University, Inst. of Geosciences, Hydrology group, Jena, Germany

4 Max Planck Institute for Biogeochemistry, Department Biogeochemical Processes, Jena, Germany

Despite the increasing problem of groundwater pollution with nitrate, microbial groups involved in processes such as denitrification and anaerobic ammonia oxidation (anammox) leading to nitrogen loss have rarely been studied in aquifers. We investigated the abundance and community composition of denitrifiers and anammox bacteria in two superimposed limestone aquifers in the Hainich region (Thuringia, Germany). We aimed (i) to evaluate the genetic potential for anammox and denitrification in the groundwater of the two aquifers and (ii) to identify key environmental parameters driving anammox bacteria and denitrifier abundance and community composition.

Groundwater samples were taken from eight groundwater wells with sampling depths ranging from 12 to 88 m in monthly intervals over a 18-months-period. Oxygen saturation differed strongly between the two aquifers and ranged from 0 - 20 % in the upper, suboxic aquifer and from 50 - 80 % in the lower, oxic aquifer. Abundances of nitrite reductase genes (*nirK, nirS*) as determined by quantitative PCR ranged from 1.9×10^4 to 6.4×10^4 genes L^-1 for *nirK* and from 2.6×10^4 to 8.2×10^7 genes L^-1 for *nirS* with about 10 times higher abundances of *nirK* and *nirS* in the upper, anoxic aquifer. MiSeq illumina sequencing of *nirS* genes pointed to large fractions of autotrophic sulfide or thiosulfate oxidizers such as *Sulfuricella* and *Sulfuriitalea* in the denitrifier communities. Abundances of hydrazine synthase genes (*hxsA*) as a marker of anammox bacteria ranged from 6.9×10^3 to 2.1×10^7 genes L^-1 groundwater with maximum abundances in anoxic groundwater where nitrate and ammonium co-occurred at concentrations of 4 to 225 μmol L^-1 and 25 to 89 μmol L^-1, respectively. qPCR-based results were confirmed by illumina MiSeq sequencing of 16S rRNA genes, showing that reads affiliated with *Brocadiales* accounted for up to 5 % of the total sequence reads at these sites. Based on both 16S rRNA and *hxsA* gene analysis, the majority of groundwater anammox bacteria was related to *Candidatus Brocadia fulgida*.

Across sites, *hxsA* and *nirS* gene abundances were positively correlated to each other, and *hxsA* gene abundances were positively correlated to concentrations of ammonium. Our results have clearly shown that autotrophic denitrification coupled to the oxidation of reduced sulfur compounds and anammox could play an important role in nitrogen loss in this aquifer system, and that oxygen and ammonium availability appear to be key drivers of denitrifier and anammox bacteria distribution patterns.

EMP31

Acetogenesis and other anaerobic processes in the gut of the methane-emitting earthworm *Eudrilus eugeniae*

* S. Hunger, C. Bruss, R. Conrad, H. L. Drake

1 University of Bayreuth, Department of Ecological Microbiology, Bayreuth, Germany

2 Universitätshospital Regensburg, Regensburg, Germany

3 Max Planck Institute, Terrestrial Microbiology, Marburg, Germany

The earthworm gut is saccharide rich and anoxic, and some earthworms such as *Eudrilus eugeniae* emit H_{2} and methane, indicating that strictly anaerobic processes such as methanogenesis are ongoing in the earthworm gut. Based on the occurrence of strictly anaerobic processes, we hypothesized that acetogens might also be active in the earthworm gut of *E. eugeniae*.

This hypothesis was addressed by RNA-based stable isotope probing with [13C]-glucose as a model saccharide in anoxic gut contents, the analysis of bacterial 16S rRNA and *hfs* (encoding formyl-H_{4}F synthetase), and cultivation-dependent methods.

Acetate, CO_{2}, and methane were enriched in [13C] during the degradation of [13C]-glucose in anoxic gut content microcosms. Supplemental H_{2} as a co-substrate was consumed and drove the production of acetate. An enrichment was obtained from gut contents that converted H_{2} to acetate in a ratio of 4:1, a ratio indicative of acetogenesis. *Lachnospiraceae*, *Ruminococcaceae*, and *Enterobacteriaceae* were labeled by glucose-derived carbon, indicating that taxa within those families were involved in the anaerobic metabolism of glucose. *hfs* sequences closely related to the acetogens *Clostridium glycolicum*, *Blautia producta*, and *Acetobacterium carbinolicum* were detected in microcosms with gut contents, suggesting that these taxa were participants in the methanogenic wood web in the gut of *E. eugeniae*.
EMP32 Survival of pathogens under different storing conditions in different substrates

* T. Schilling,1 R. Eling,1 W. Philipp1, L. E. Holzle1
1Institute of Animal Science, Environmental and Animal Hygiene, Stuttgart, Germany

Question: As some biotechnological processes are not capable to inactivate pathogens in a proper way there is always need for alternative ways to do so. Storing the material could be an economic way. But are the influences on pathogens all the same no matter what pathogen is present or what substrate is used? To find out more about this storage experiments were performed. Experiment 1 dealt with sewage sludge, biogas fermentation residues and slurry, experiment 2 with biogas fermentation residues of different origin. Here biogas fermentation residues from five different biogas plants with different input materials were chosen. In experiment 1 enterocaggregative hemorrhagic Escherichia coli O:104 H4 (EAEHEC) was used as test organism and in experiment 2 Salmonella Typhimurium was used.

Methods: In both experiments for each substrate two samples were spiked with the pathogens and stored in climate chambers. In experiment 1 the yearly average temperature in Germany was chosen (10 °C) and in experiment 2 samples were stored at monthly mean temperatures. Samples were taken monthly and were analyzed quantitatively following the MPN method.

Results: Experiment 1 showed that depending on the substrate the reduction rates differed quite wide. After four weeks the bacterial counts varied between 10⁵ cfu/ml in sewage sludge, 10⁶ cfu/ml in slurry and 10⁶ cfu/ml in biogas fermentation residues. And after 24 weeks the bacterial counts were 10⁴ cfu/ml in sewage sludge, 10⁵ cfu/ml in slurry and 10⁴ cfu/ml in fermentation residues. Experiment 2 showed that the source of the substrate has an influence on the survival of pathogens as well as the season the storage starts. There were differences of up to four log10 steps between the bacterial counts depending on the substrate and the starting temperature.

Conclusion: As the results of both experiments demonstrated that there are differences in the influence on pathogens referring to the composition of the substrate and the temperature during the storing period. We conclude that storing the material may be an economic but not a save way to reduce pathogens in products from biotechnological processes. Therefore, optimization of the biotechnological processes and/or adding additional treatment steps (e.g. composting) are required to obtain safe final products.

EMP33 Towards stable isotope labeling-assisted metatranscriptomics of hydrocarbon degrading aquifer microorganisms

* L. Bradford,1 B. Zhu1, A. R. Szalay1, M. Farkas2, A. Tencsis2, T. Lueder3
1Heinrich Zentrum München, Institute for Groundwater Ecology, Neuenberg, Germany
2Scien Istvan University, Regional University Center of Excellence in Environmental Industry, Gödöllő, Hungary

Question: Stable isotope probing (SIP) of RNA is a well-established method in molecular ecology, allowing researchers to distinguish microbes in complex cultures by their ability to metabolize a labeled substrate. However, RNA can give only taxonomic information, while mRNA is necessary to see actively transcribed functional genes. The only published instance of mRNA-SIP involving next-generation sequencing [1] used pre-centrifugation rRNA depletion, thus potentially limiting the quantitative information on RNA taxonomy in gradient fractions. Also, metatranscriptomic sequencing is especially valuable for RNA studies, compared to probe-directed methods such as RT-qPCR, as it can provide the entire suite of actively transcribed genes with no requirement for prior sequence knowledge or risk of bias from primer design. Here, we aim to develop a workflow of Illumina-sequencing-based total RNA-SIP Seq, which provides both taxonomic and functional information on targeted microbe constituents. As proof of concept, we apply this method to RNA extracted from ¹³C-toluene exposed hydrocarbon contaminated aquifer samples. From the sequencing datasets, we search for the transcripts of particular genes of interest (for example, oxygen-dependent vs. anaerobic catalytic pathways in hypoxic systems).

Methods: Method development is ongoing. The small yield of RNA after SIP fractionation and tiny proportion of mRNA in total RNA pose challenges for which linear RNA amplification may be a suitable solution. The risk of mRNA degradation requires careful sample handling and optimized laboratory procedures. Bioinformatic pipelines for total RNA analysis are discussed in literature (ex. [3]), and the continual development of new software offers opportunities for improvement of workflows.

Conclusion: The RNA-Seq SIP approach has significant potential as a process-targeted route in environmental ‘omics for researchers in diverse fields of environmental microbiology.

EMP34 Growth phase-dependent dynamics of nitrogen utilization in Pseudobacter inhibens DSM 17395

L. Wöhrlh1, S. Koflmehl1, *K. Trautwein1, K. Wiegmann1, M. Hensler2, E. Skorubskaya1, M. Dörr1, D. Schomburg2, R. Rabus1
1Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, General and Molecular Microbiology, Oldenburg, Germany
2Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Carolo-Wilhelmina Braunschweig, Braunschweig, Germany

Question: In the marine system, available nitrogen sources (e.g. ammonium, nitrate) are commonly present only in low amounts, thus often limiting the growth of heterotrophic microorganisms in the ocean. Due to collapsing algal blooms, input from deep sea water masses in upwelling regions (e.g. off the Namibian coast) or estuary inflow in shelf seas, however, concentrations of dissolved nitrogen species in the waterbody may increase substantially. Although changing nitrogen availability is commonly encountered by members of the marine bacterioplankton, their physiological and molecular adaptations are only poorly understood. Therefore, we studied the physiological, proteomic and metabolic dynamics during heterotrophic growth of Pseudobacter inhibens DSM 17395 under nitrogen limiting conditions. P. inhibens DSM 17395 belongs to the widely distributed marine Roseobacter group.

Methods: Growth of P. inhibens DSM 17395 in seawater medium containing 11 mM glucose and 1 mM ammonium was monitored and depletion profiles of glucose and ammonium were determined. Samples for proteomic and metabolic analyses were taken throughout the growth curve beginning 15 h after inoculation (early linear growth phase) until late stationary growth phase (100 h).

Results: Complete ammonium depletion was already accomplished during the earliest stages of growth (25 h after inoculation, <1/3 ODmax). This rapid ammonium depletion coincided with the buildup of a high cellular N:C ratio (~0.25). The latter continuously decreased by more than a two-fold (~0.1) which was reached at the transition into stationary growth phase, agreeing with growth limitation by nitrogen. The growth-dependent profile of the N:C ratio correlated with an increased intracellular concentration of nitrogen-containing metabolites, mainly branched-chain amino acids (e.g. leucine) or amino acid derivatives (e.g. glycylglycine). Concomitantly, proteins involved in nitrogen metabolism revealed changing abundances, e.g. glutamine synthetase (ranging from -3.0-fold at 15 h to 3.5-fold at 90 h). In addition, regulator proteins predicted to be responsive to nitrogen limitation were detected, including the key players NirC and the regulatory protein P2 (GlnB1).

Conclusion: The dynamic response of P. inhibens DSM 17395 reflects its capability to readily utilize pulses of nitrogen as well as to exhibit a classical nitrogen limitation response.
on phospholipid (PL) and fatty acid (FA) composition of IM and OM from psychrotrophic bacteria *Vesinia pseudotuberculosis*.

Methods: *Y. pseudotuberculosis* was grown at 8 °C and 37 °C or exposed to heat shock by the sharp shifting of temperature from 8 °C to 45 °C. IM and OM were separated by equilibrium sucrose density gradient centrifugation in the accordance with Osborn’s method modified by Park et al. Total lipids were extracted by method of Folch et al. PL and FA composition was analyzed by thin-layer chromatography and gas-liquid chromatography, respectively.

Results: Elevated temperature and heat shock caused the increasing content of lysophosphatidylethanolamine in OM preferably. These changes were accompanied by the decrease of phosphatidylethanolamine (PE) content and drastic increase (up to 3 times) of phosphatidylglycerol (PG) level in OM that causes the increase of the net negative charge of cell envelope. The levels of predominant saturated palmitic (16:0) and cyclopropane FAs were about 1.5 times and 7.5 times higher, respectively, but the content of predominant unsaturated palmitoleic (16:1n-7) and cis-vaccenic (18:1n-7) FAs was about 10-30 times lower in both membranes isolated from cells grown at elevated temperature. Due to these changes reflecting process of “homeoviscous adaptation”, the ratio between unsaturated and saturated FAs decreased, but still remained higher in IM than that in OM. Simultaneously no essential changes were observed in FA composition of cells subjected to heat shock demonstrating a difference between responses of heat-shocked and heat-adapted *Y. pseudotuberculosis*.

Conclusions: The quantitative differences in the phospholipid composition were found between inner and outer membranes of heat-adapted and heat-shocked psychrotrophic *Y. pseudotuberculosis* cells which change their phospholipids within envelope either reciprocally (PE and PG) or differently (LPE) in comparison with mesophilic *E. coli*.

Work was supported by Russian Science Foundation (project 15-15-00035)

EMP36 Differential engagement of diverse sugar driven fermentations and associated communities in the earthworm gut

* A. Meier1, S. Hunger1, H. L. Drake1
1 Universität Bayreuth, Ökologische Mikrobiologie, Bayreuth, Germany

The earthworm gut is an anoxic, saccharide-rich microzone in otherwiseoxic soils. The concentrations of diverse mucus-derived saccharides decrease during gut passage of *Lumbricus terrestris* whereas concentrations of organic acids increase, indicating that fermentation is an ongoing process in the earthworm gut. Thus far, little is known about fermentation of different gut-associated saccharides and affiliated taxa. The hypothesis of this work was that different gut-associated saccharides stimulate different fermentations and different microorganisms in the gut of *L. terrestris*. This hypothesis was addressed by anoxic microcosm experiments with gut content that was supplemented with gut-associated saccharides and a metagenomic analysis of bacterial and archaeal 16S rRNA. Galactose, glucose, maltose, mannose, arabinoce, fucose, rhamnose, and xylose stimulated the production of fermentation products with gut content but considerably less with pre-ingested soil. H2, CO2, acetate, lactate, ethanol, propionate, formate, and succinate were the most abundant fermentation products. The quantity of fermentation end products varied depending of the supplemental saccharides. Approximately 1,750,000 16S rRNA sequences were analyzed and assigned to 37 families. This molecular analysis indicated that a subset of ingested microbes were stimulated by the respective sugars. *Aromonas hydrophila* was the most abundant species in all sugar-supplemented microcosms. *Rosenhergella nectarea*, *Enterobacter aerogenes*, and *Citrobacter gillenii* were stimulated by some but not all sugars. Collectively, these results reinforce the likelihood that (a) different mucus-derived sugars stimulate different fermentations, and (b) taxa related to *Enterobacteriaceae* and *Aeromonadaceae* drive these processes in the gut of *L. terrestris*.

EMP37 Impact of biochar application on soil microbial community composition in a laboratory biodegradation test

*H. Haghighi1, B. Wilskel, P. Kämpfer1, L. Breuer2, S. P. Glaeser1
1 Justus Liebig University Gießen, Institute of Applied Microbiology, Gießen, Germany
2 Justus Liebig University Gießen, Institute of Landscape Ecology and Resource Management, Gießen, Germany

Biochar (BC) is widely studied for its potential to improve soil quality and carbon sequestration levels of greenhouse gases. The increase of N2O. Carbon sequestration depends mainly on BC stability, which in turn depends on the type of BC and soil properties including soil associated microbial communities. A biodegradation experiment was performed with three different particle size fractions (< 2, 2-5 and > 5 mm) of two contrasting BCs, a BC generated by low temperature/short-term hydrothermal carbonization of corn stover (htBC) and high temperature pyrolysis of *Miscanthus* feedstock (pyrBC). Both were mixed with two different soil types (a sandy and sandy loamy soil). Carbon degradation of the BCs was monitored by the measurement of 14CO2 effluxes over 120 to 180 days of incubation. A much higher biodegradation was obtained for the htBC (18.5-31.2 %) than the pyrBC (0.0-1.1 %). The biodegradation of htBC increased significantly with particle size fractions and was larger in sand than in loamy sand. The effect of BC on soil microbial communities was investigated after total DNA extraction from soil-BC mixtures by PCR amplification of bacterial 16S rRNA gene fragments and subsequent denaturing gradient gel electrophoreses (DGGE) and Illumina amplicon sequencing. Bacterial communities of the two soils showed significant differences among each other but both bacterial community structures were not significantly affected by the BC amendment. However, specific bacterial communities were associated with BC particles (> 5 mm). The relative abundance of *Candidatus phylum TM7* significantly increased at htBC particles from 4 to 11 % in the sandy and from *Planctomycetes* as well as *Burkholderia* and *Pseudomonas of the Beta- and Gammaproteobacteria* increased in relative abundance at the htBC particles. In contrast to htBC the abundance of the phylum *Nitrospira* strongly increased at pyrBCs in the sandy loamy soil (from 0.5 to 11 %) indicating an increased nitrite oxidation activity at those particles which may be due to the absorption of ammonia by pyrBC. Realtime PCR quantification of the ammonium monooxygenase coding gene (amoA) of ammonium oxidizing Bacteria (AOB) showed also an increase of AOBs in the sand-loamy soils amended with pyrBC and at the pyrBC particles in both soils. Our data gave a first insight into the activity of BC associated microbes, which may affect carbon and nitrogen cycles in BC amended soils. However, the overall structure of soil bacterial communities was not directly affected.

EMP38 Toxicity of differently sized silver nanoparticles to Gram-positive and Gram-negative bacteria

* Y. Guo1, L. Y. Wick1, H. Harms1, S. Müller1
1 Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Leipzig, Germany

Question: Silver nanoparticles (AgNPs) with efficient antibacterial properties are currently the most widely manufactured nanomaterials, which can be found in various consumer products, such as textiles, room sprays, cosmetics and medical devices. Along with the rapid production and application of AgNPs, their release into natural ecosystems inevitably rose accordingly. Therefore, the ecosystems health may bear the risk of gradual accumulation of AgNPs, which might have negative consequences for impairing critical bacteria-driven nutrient cycles or biodegradation of organic matter. Over the last few years, rapid toxicity research in human health has been made, but there is still a critical lack of understanding in toxicity studies towards prokaryotes. In our study, we focused on investigating the toxicity of 10 nm and 30 nm AgNPs to Gram-positive bacteria *Mycobacterium frederiksborgense*, and Gram-negative bacteria *Pseudomonas putida* and *Escherichia coli*, under different physiological states.

Methods: Flow cytometry was used to analyze bacteria on single cell level, combined with fluorescent dyes propidium iodide (PI) and bis-(1,3-diharbituric acid)-trimethine oxanol (DiBAC4(3)) for indicating the bacterial viability.

Results: Our data showed that with the increasing concentration of AgNPs, bacterial growth was delayed, with Gram-positive *M. frederiksborgense* being the most sensitive species, followed by Gram-negative *P. putida* and *E. coli*. In addition, exponentially growing cells of all strains were much more vulnerable than stationary phase cells. Finally, we demonstrated that the toxicity of AgNPs was size-dependent with smaller sizes AgNPs causing higher toxicity.

Conclusion: AgNP have a negative impact on both Gram-positive and Gram-negative bacteria with smaller AgNP exhibiting highest toxicity to highly active bacteria, i.e. cells in the exponential growth phase.
EMP39
Fermenters in the earthworm gut are affected by the feeding guild
*T. Oppermann1, P. Depkat-Jakob1, H. L. Drake2
1Universität Bayreuth, Ökologische Mikrobiologie, Bayreuth, Germany

The earthworm alimentary canal is an anoxic microzone in aerated soils, and cultivable numbers of microorganisms capable of anaerobiosis are up to 1000-fold higher in the gut compared to preingested soil. The feeding habits of Lumbricus terestris, which feeds on leaf litter and soil (anecid), and Aporrectodea caliginosa, which feeds only on soil (endogeic), are distinct. Due to these contrasting ecotypes, we hypothesised that fermenters along the two alimentary canals are dissimilar and would yield contrasting processes.

Fermentation products of the crop/gizzard, fore-, mid- and hindgut sections of L. terestris and A. caliginosa (both Lumbricidae) were analysed by GC and HPLC. 16S rRNA and 16S rRNA gene sequences were obtained by Illumina sequencing. L. terestris and A. caliginosa specimens emitted approximately 11 and 4 nmol H2 per g fresh weight after 6 h, respectively. The foregut of L. terestris and A. caliginosa had high concentrations of glucose (11 mM and 17 mM, respectively) and succinate (5 mM and 8 mM, respectively). Acetate concentrations were similarly high in the crop/gizzard and foregut (5 mM and 2 mM for L. terestris and A. caliginosa, respectively). All detected organic molecules decreased towards the hindgut. 16S rRNA sequences within alimentary canal sections of A. caliginosa were similar in relative abundance, with quantitative differences between gene and transcript sequences. In marked contrast, dynamic changes in relative gene abundance occurred along the alimentary canal of L. terestris and was even more pronounced at the transcript level. Proteobacteria and Actinobacteria were the most dominant phyla detected.

These results indicate that mixed acid fermentation leads to the production of fatty acids that could be subsequently assimilated by the earthworm. The detected taxa are capable of facilitating mixed acid fermentations, and the phylogenetic dissimilarity of the taxa in L. terestris and A. caliginosa likely reflects the different feeding guilds of these earthworm species. H2, a product of mixed acid fermentation in the gut, is emitted in vivo by the earthworm and could act as a source of energy and electrons in aerated soils.

EMP40
The marine Bacteroidetes strains Formosa sp. Hel3_A1.48 and Hel1_33_131 are key players in polysaccharide utilization during North Sea phytoplankton blooms
*F. Unfried1,2, J. Harder2, H. Teeling3, H. L. Drake1, R. L. Hahnke3,4, S. Markert1,5, T. Oppermann1, P. Depkat-Jakob1, H. L. Drake2
1Institute of Pharmacy, Ernst Moritz Arndt University Greifswald, Germany
2Max Planck Institute for Marine Microbiology, Bremen, Germany
3Institute of Microbiology, Ernst Moritz Arndt University Greifswald, Germany
4Max Planck Institute for Marine Microbiology, Bremen, Germany
5National Center of Scientific Research/Pierre and Marie Curie University

The genomes of the isolates Formosa sp. Hel1_33_131 and Formosa sp. Hel3_A1.48 were fully sequenced and manually annotated in order to characterize their potential to degrade algal polysaccharides. In vitro cultivations with defined substrates and comparative proteome analyses were performed to identify proteins induced by specific sugar conditions and to identify the specificity of detectable genetic polysaccharide utilization loci (PULs).

Results: Genome annotation of both Formosa strains identified PULs for possible utilization of the diatom storage polysaccharide laminarin (a beta-1,3-linked glucose polymer) and putative clusters for the degradation of mannan and chitin. Semiquantitative analyses of the intracellular, membrane-associated and extracellular proteome fractions revealed a substrate-specific response of Formosa sp. Hel1_33_131. For example, laminarinases were only detected when laminarin was available, but also other proteins involved in the recognition, uptake or degradation of algae polysaccharides were expressed on a significantly higher level with laminarin instead of glucose as a substrate.

Conclusion: Our analyses indicate that while the overall niches of the North Sea Formosa species Hel1_33_131 and Hel3_A1.48 are similar, they differ with respect to polysaccharide utilization, which allows them to coexist during algae blooms.

EMP41
Microbial analyses of fungal N2O-production in permanent grassland under elevated CO2
*C. Maisinger1, S. Ratering1, M. Cardina1, C. Müller2,3, S. Schnell1
1Justus Liebig University Gießen, Institute of Applied Microbiology, Gießen, Germany
2Justus Liebig University, Department of Plant Ecology, Gießen, Germany
3University College, School of Biology and Environmental Science and Earth Institute, Dublin, Ireland

Nitrates (NOx) are both a potent greenhouse gas and destructive to the stratospheric ozone layer. During a long-term Free Air Carbon dioxide Enrichment experiment (FACE) on a permanent grassland site near Gießen, Germany, a significant positive feedback on NOx emissions under elevated atmospheric carbon dioxide (eCO2; +20 %) was observed [1]. The responsible microorganisms and mechanisms of the elevated NOx emissions are still unknown. Previous studies on this grassland site indicated that fungi might contribute to NOx production [2].

The aim of this study was to investigate the effects of increased C supply in soil through eCO2 on fungal diversity and fungal denitrification activity in soils under permanent grassland. The outcome of this research will reveal a better understanding of microorganisms involved in NOx emissions under eCO2.

Soil samples were taken from the FACE (ambient and eCO2 rings) and different soil compartments were extracted: rhizospheric soil, bulk soil and soil below the root zone. Fungal functional and phylogenetic diversity were investigated by molecular analyses of the fungal nitrite reductases (nirK) and ITS2 rDNA as a phylogenetic marker, applying quantitative real-time PCR (qPCR) and Ion Torrent high throughput sequencing.

Results presented give first insights into the fungal diversity and abundance of fungal functional genes involved in denitrification of different soil compartments of permanent grassland soil that might explain higher NOx emissions under eCO2.

EMP42
Diversity of bacterial microbiota associated with the flower pollen
*B. Amahka Maniruaj1, M. Cardina1, S. Ratering1, S. Schnell1
1Justus Liebig University, Gießen, Institute of Applied Microbiology, Gießen, Germany

All plants host a complex microbiome that provides important ecological services, thus having a drastic impact on the plant fitness. Diverse microorganisms colonize the different plant-microhabitats, such as rhizosphere, phyllosphere and endosphere. Some plant-microhabitats are poorly investigated and the role of the associated microbes is still unravalled. Among them, flower pollen was studied so far only with respect to the fungal community, while little is known about the ecology of the associated bacteria. Considering that pollen is involved in the reproduction, we expect that the associated bacteria could be specifically selected by the plant to be transmitted to the next generation.
The aim of this research is to investigate the ecology of the bacterial microbiota associated with different flower pollen through cultivation-dependent and molecular methods. The results of both methods will shed light onto the bacterial community structure, composition, dynamics as well as specificity with respect to various types of flower pollen. Flower pollen samples were collected from birch (Betula pendula), rape (Brassica napus), yew (Taxus baccata), and autumn crocus (Colchicum autumnale) from three different locations. Bacteria were isolated on various media including pollen extract-enriched medium, and were identified by 16S rRNA gene sequencing and phylogenetic analysis. Ion Torrent next-generation sequencing of pollen metagenomics DNA was used to assess the structure and diversity of the bacterial microbiota associated with pollen of different plants. Fluorescent In Situ Hybridization (FISH) with rRNA targeting probes and confocal laser scanning microscopy (CLSM) allowed for the visualization of bacteria within the flower pollen habitat.

Cultivated bacterial isolates from flower pollens belonged to the Phyla Actinobacteria, Firmicutes and Proteobacteria, with notable differences between flower pollen of different plants. Typical plant-associated genera such as Pseudomonas and Bacillus were retrieved with quite low frequency. Other genera were more recurrent, including Staphylococcus, Exiguobacterium and Rhodococcus. The result of FISH-CLSM confirmed bacterial colonization of flower pollen and gave information about the colonization pattern.

EMP34

Identification of naphthalene carboxylase subunits of the sulfate-reducing cultur

2. Universität Duisburg-Essen, Aquatische Mikrobiologie, Essen, Germany
3. Helmholtz Zentrum München, Institute of Groundwater Ecology, Neuherberg, Germany
4. Helmholtz Zentrum München, Research Unit Protein Science, Neuherberg, Germany

Non-substituted polycyclic aromatic hydrocarbons are very difficult to degrade in the absence of molecular oxygen and the underlying anaerobic biochemical reactions are only poorly understood. Metabolite analyses have indicated that for the model compound naphthalene, carboxylation was the first reaction activating such a chemically stable molecule. Moreover, Mouttaki et al. recently brought biochemical evidence confirming the carboxylation reaction in the sulfate-reducing culture N47. Naphthalene carboxylase converts naphthalene and 13C-labelled bicarbonate to 2-[carboxyl-13C]naphthoic acid at a rate of 0.12 nmol min-1 mg-1 of protein in crude cell extracts of N47. Additionally, it exhibits an isotopic exchange capability indicating the formation of free reversible intermediates. Previous proteogenomic studies of N47 and the marine naphthalene-degrading strain NaphS2 allowed identification of a gene cluster whose products were suggested to be carboxylase-like subunits potentially involved in the initial reaction of naphthalene degradation. So far, it is unclear whether this enzyme using N47 raw extract was unsuccessful. Therefore, we developed alternative strategies to identify the native naphthalene carboxylase subunits. A differential protein induction analysis on blue native PAGEs led to the identification of potential subunits of the naphthalene carboxylase of N47. Moreover, the identified subunits are encoded in an operon structure within the previously mentioned naphthalene carboxylase gene cluster. Here, we were able to show the interaction of the gene products of this cluster for the first time. Additionally, these findings were supported by a pull-down approach revealing in vitro interaction partners of a heterologously produced GST-tagged naphthalene carboxylase subunit. Based on these lines of evidence, we propose the naphthalene carboxylase to be a complex of at least 750 kDa.

EMP35

Remineralization of fresh water sediments

1. S. Kutschke, C. Bobeth, R. Berthau, K. Pollehn
2. Helmholtz-Zentrum Dresden-Rossendorf, HIF, Dresden, Germany

Remineralization is an actual development in mining industry and focuses on mining residues as valuable resource for mining. There are different methods for this approach. It is not necessary digging up new ores for metal production, metals of today's awareness were used in former times, and third reason it minimize environmental impact of the tailings. The tailings stored in landscapes up to hundred years. During this time a microbial population could be developed in tailing body. These microbial community is a close metabolic network, where some of the organisms actively contribute to the carbon, nitrogen, sulfur, and phosphorous cycle and other microorganisms interact with minerals, metals, and pollutants. On the one hand such a microbial community is well adapted to environment and on other hand it is influenced by the geochemical parameters. Investigation of microbial community of tailings and reference material give a glance inside the development of microbial communities.

Tools describing anthropogenic and natural microbial community are genomic, biochemical, and microbial methods. The most sensitive describing tools are culture independent genomic methods. Metagenomic data will be matched with already existing genomic databases. Genetic methods like PCR fingerprinting techniques and biochemical tests used to identify and quantify microorganisms. Finally different culture techniques will be used to isolated microbial strains from the samples. As sample material from zinc production and lateritic soil will be used.

16 S rDNA analyses were done from the samples. The group of Pseudomonas was the strongest. Moreover different cultures were enriched, but some mixed culture and few pure cultures. Biochemical tests (Api 50CH) show similar results as Burkholderia cepacia. Pseudomonas isolate don’t metabolize adonitol, trehalose, and 2-keto-gluconate. Further analyses of recA gene are planned to characterize the Burkholderia strain. Enzymatic activities will be analyzed to describe the isolates.

EMP36

Cable bacteria in 1-methyl-naphthalene degrading enrichment culture

1. H. Müller, S. Marozava, T. Luenders, L. P. Nielsen, R. Meckenstock
2. Helmholtz Zentrum München, Institute of Groundwater Ecology, München, Germany
3. University, Aarhus, Denmark
4. University, Duisburg-Essen, Germany

Question: Filamentous Desulfobulbaceae, so-called cable bacteria, couple spatially separated sulfur oxidation and oxygen reduction by a long-distance electron transfer over centimeter distances in marine sediments [1], freshwater streams [2], and contaminated aquifers. However, the function of closely related Desulfobulbaceae in habitats without molecular oxygen or nitrate as terminal electron acceptors is presently unknown. Within this study...
EMP47 Relation of conversion rates and temperature dependence of microbial sulphate reduction in acid mine drainage (AMD)

*Y. Adomat1
1Hochschule für Technik und Wirtschaft, Chemieingenieurwesen, Dresden, Germany

Question: Acid mine drainage (AMD) is a major environmental problem that affects aquatic ecosystems around the world. AMD results from the oxidation of metal sulphides from abandoned mines. It is characterized by low pH-values and high concentrations of heavy metals and sulphate. Using microbiological processes for AMD treatment sulphate-reducing bacteria (SRB) can be deployed for sulphate reduction and heavy metal removal [1].

Methods: To increase the prosperity of the AMD biotreatment, attempts were made to sustain the anaerobic reduction of sulphate using inexpensive carbon sources. In order to find a proper source SRB were incubated anaerobically with different carbon substrates. In addition the influence of temperature and microbial concentration was examined to obtain more information about the substrate conversion rate of sulphate.

Results: Testing various organic carbon sources the reduction of sulphate by SRB is most effective with straw. Furthermore the prosperity of the microbiological treatment in AMD can be increased by raising the pH-value. In addition the relation of sulphate, iron and biomass development was shown and the influence of different temperatures on sulphate consumption is presented.

Conclusion: Altering microbial growth conditions such as pH-value, temperature or organic carbon sources during cultivation allows efficient bioremediation with SRB. The knowledge of relations of conversion rates is helpful in order to manage microbial biotreatment of AMD efficiently.

References:

EMP48 Awakening of the Undead: Regeneration of chlorotic Synechocystis sp. PCC 7803 cells

*A. Klotz1, L. Bučinska2, W. Höss3, K. Forchhammer1
1Universität Tübingen, Organismische Interaktionen, Tübingen, Germany
2Czech Academy of Science, Institute of Microbiology, Trebon, Czech Republic
3University Freiburg, Institute of Biology III, Freiburg, Germany

Question/Introduction: Chlorosis is a process that describes the depigmentation of cyanobacterial cells triggered by different environmental influences. Boesch (1910) was the first to describe the chlorosis as a change in the color of the cyanobacterial culture. This state ensures long-term survival due to low-level photosynthesis (Görll et al. 1998, Sauer et al. 2001). Chlorosis is not a dead end for cyanobacteria; actually they are able to regenerate within 48 hours after the addition of a nitrogen source and start to divide again. What is the role of storage compounds in chlorosis and recovery and what are the molecular pathways of recovery?

Objectives: To gain deeper insight in this process, we examined the physiological, morphological and transcriptomic changes during long-term nitrogen starvation and regeneration in the model organism Synechocystis sp. PCC 7803.

Methods: Spectral analysis, pulse-amplitude modulation and oxygen consumption/evolution measurements were used to describe the physiological regeneration taking place during the first 24 hours after the addition of nitrogen.

Conclusion: Based on the performed analyses the regeneration process can be defined in three phases: the first phase, which describes the regeneration of the metabolic apparatus, the second phase, which includes regeneration of cellular structures such as thylakoid membranes as well as the increase of DNA and the third phase, in which the cells start to divide again and enter exponential growth.

EMP49 Comparative genome analysis of plant associated heavy-metal resistant Pseudomonas spp. isolates

*J. Nesme1, B. Cania2, U. Zadel1, G. Plaза1, M. Schloter1
1Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Environmental Genomics, Neuherberg, Germany
2ProBiotics Polska, Brudzew, Poland
3Institute for Ecology of Industrial Areas, Microbiology Department, Katowice, Poland

Plant-associated microbial communities can actively enhance plant-growth by various direct or indirect mechanisms such as improved nutrient availability, protection against pathogens or synthesis of phyto-hormones. Microorganisms were also shown to greatly enhance phytoremediation of trace elements contaminated soils. Yet, inferring complex phenotype, such as heavy-metal resistance or plant-microbe interaction, from genomic data is far from trivial. We therefore seek in this study to use comparative genomics to identify genes involved in such traits and describe their genomic context.

To address these questions we focused on the genus Pseudomonas often found associated with plants and contaminated environments. We recovered isolates from rhizospheric soil and plant tissues of two biomasstested P. putida EMP49 and P. putida W619. A set of shared genes among the recovered isolates from rhizospheric soil and plant tissues of two biomassproducing species: Miscanthus x giganteus and Sida hermaphrodita in Bytom, Poland. This site has a long history of trace elements contamination typical of calamine soils (Zn, Cd and Pb). All isolates were tested in-vitro for production of siderophores, indole-3-acetic acid or hydrogen cyanide, phosphorous solubilization (i.e. plant growth promotion traits) and heavy-metal resistance to Zn, Cd and Pb. Ten strains identified as members of the Pseudomonas genus on based on 16S rRNA gene similarity were sequenced using Illumina MiSeq platform. Genomes were assembled and compared with all publicly available Pseudomonas spp. genomes with verified phenotypes of plant-association and/or heavy metal resistance.

Using this information, we computed genome-wide phylogenies using sets of proteins markers. The tree based on the full genomes was only partially congruent with 16S rRNA tree, congruent with 16S rRNA tree, emphasizing the need of large sets of proteins markers for phylogenetic delineation of closely related isolates. When coupling ecological data and genomic results, we identified a cluster within the Pseudomonas putida species complex showing elevated resistance to heavy metals tested and endophytic lifestyle, closely related to the poplar endophyte strain P. putida W619. A set of shared genes found only in endophyte genomes was identified. The genomic contexts of predicted heavy-metal resistance genes show that many are localized on genomic islands and shows associations with mobile genetic elements. This suggests lateral acquisition of resistance genes allowing endophytes to withstand higher concentration of metals found in tissue of plants accumulating metals.
EMP50

FISH- and qPCR-based quantification of methanotrophic bacteria in a rapid sand filter of a groundwater treatment plant

J. Schmitt, B. Bendinger

DEGW-Forschanstelle TUHH, Hamburg, Germany

Question: Although representing a widespread constituent of reduced groundwater, methane is often neglected in drinking water production from groundwater resources. After oxygenation methane can affect the treatment negatively since it enables the growth of aerobic methane oxidizing bacteria (MOB). Especially in rapid sand filters, biomass and metabolic activities of MOB can cause diverse problems including incomplete manganese and ammonium removal, formation of slimy biofilms, hygienic problems and declined filter hydraulic. A reliable quantification of MOB by molecular methods is necessary for the identification of MOB as one cause among others for treatment difficulties. The objective of this study was to clarify whether quantitative real-time PCR (qPCR) represents a more reliable and faster method for MOB quantification than Fluorescence in situ Hybridisation (FISH).

Methods: A rapid sand filter loaded with reduced groundwater containing 50 to 190 µg/L methane and operated with non-optimal backwashing conditions exhibited slime accumulation, channel formation and an increase in filter grain size. Samples from filter material were taken at different depths and analyzed for MOB. Biomass-containing sludge was detached from the surface of the filter material and used for FISH and qPCR. FISH was performed with EUB338-1, EUB338-2, type I and type II MOB (MY849+MY705, MY669, Cremo445, Mer450). MOB-specific FISH analyses were complemented by quantifying α-, β- and γ-Proteobacteria (ALF1B, BET42a, GAM42a) as well as Eubacteria (EB338+EUB338II+EB338III). The qPCR-based quantification was performed with a SYBR® Green qPCR assay targeting the 16S rRNA gene of type I MOB (primers U785F, MethT1bR) as well as Eubacteria (EB338+EUB338II+EUB338III). Type I MOB gene copy numbers detected by qPCR were about one order of magnitude higher than MOB cell numbers detected by FISH (8 × 10^9 to 1 × 10^10 gene copies Biom+alg^−).

Results: While type II MOB were not detected at all, absolute cell numbers of type I MOB quantified by FISH varied from 7 × 10^9 to 3 × 10^10 cells per gram of dry weight of sludge. Corresponding relative cell numbers of MOB ranged from 7 to 12 % of total cell count. Type I MOB gene copy numbers detected by qPCR were about one order of magnitude higher than MOB cell numbers detected by FISH (8 × 10^9 to 1 × 10^10 gene copies Biom+alg^−).

Conclusion: At an elevated raw water methane concentration and non-optimal operation conditions of the rapid sand filter a high abundance of MOB was detected. This hints towards a contribution of MOB to the observed treatment problems. The discrepancy between FISH results and qPCR results indicate 1) an overestimation of cell numbers by qPCR due to multiple 16S rRNA gene copy numbers per cell and detection of inactive/dead cells and/or 2) an underestimation of cell numbers by FISH since cells with low ribosome content are not detected. The qPCR method is more precise, faster and enables the handling of higher sample numbers.

EMP51

Active bacterial community composition in the horizontal salinity gradient of the Baltic Sea

C. M. Benke, E. Pollehne, M. Labrenz

Leibniz Institute for Baltic Sea Research, Rostock, Germany

Microorganisms react sensitively and rapidly to any environmental changes. Many studies have shown that salinity has a major impact on distribution patterns of pelagic bacteria in transition between marine and freshwater habitats. The Baltic Sea provides such a natural salinity gradient with highest salinities around 30 PSU at the Skagerrak/Kattegat and lowest salinities (below 4 PSU) at the Bothnian Bay. Based on 16S rRNA gene analyses Herlemann et al. (2011) could show that the bacterial community of the Baltic Sea was separated into three distinct communities: marine-brackish, brackish and brackish-freshwater communities. Furthermore, they could show that Gammaproteobacteria (Alphaproteobacteria and Gammaproteobacteria as well as Bacteroidetes increased in relative abundances with increasing salinity and that Actinobacteria and Betaproteobacteria had highest abundances at low salinities. We were interested if the activity of the organisms, represented by 16S RNA as activity indicator, would follow the succession of bacterial assemblages accordingly. For this, surface seawater samples were obtained during the research cruise AL439 on the RV ALKOR in June 2014. During this cruise samples were taken for DNA and RNA analysis, phytoplankton community analysis, inorganic nutrients, oxygen, and chlorophyll a as well as dissolved organic carbon. The phytoplankton community revealed a distinct pattern with mainly Diatoms present in the Skagerrak/Kattegat and the Belt Sea. Dinoflagellates were exclusively present in the Bothnian Bay and filamentous Cyanobacteria were found mainly in the Baltic Proper. The bacterial community composition was determined by 16S rRNA gene/16S rRNA taq sequencing from selected stations within the salinity gradient covering the most biogeographical regions of the Baltic Sea; and the results supported the bacterial structures described by Herlemann et al. (2011): Actinobacteria increased with abundances up to 15 % at low salinities (below 6 PSU), whereas Betaproteobacteria had their highest abundances at medium salinities. On the other hand Bacteroidetes were the only phylum which was significantly positive correlated with salinity, representing more than 1/3 of the total community in the Kattegat. Cluster-analysis showed that the microbial community was clearly separated by salinity into marine-brackish and brackish communities. However, first data on 16S rRNA level revealed a different community and cluster structure on the activity level. Because the 16S rRNA usually better describes the active portion of the community, our data could reflect environmental short-term influences on the 16S rRNA diversity, a prerequisite for the use of 16S rRNA blueprints as indicators of environmental stressors.

EMP52

Poking around in microbial dark matter

J. Vollmers, J. Pratscher, M. Freihup, A.-K. Kaster

Leibniz Institute DSMZ, Single Cell Genomics, Braunschweig, Germany

Introduction: The majority of existing microorganisms still remains uncultured, obscuring our knowledge of microbial diversity, metabolic potential and evolutionary histories. The constant improvement of next generation sequencing techniques as well as evolving assembly and analysis pipelines make meta-genomics a powerful tool to probe biological "dark matter". However, Computational resources and bioinformatic background knowledge are often limiting factors for microbiologists. Choosing the most appropriate tools from the available range of choices can be a challenging task for non-bioinformaticians.

Objectives: In order to aid the microbial scientific community, we evaluated the currently available metagenomics assembly tools in terms of ease of use, computational requirements, available documentation and their effect on the interpretation of phylogenetic and functional diversity, using highly diverse Marburg forest soil and low-diverse marine Kelp biofilm samples as examples.

Methods: DNA extracts from Marburg forest soil and Kelp Biofilm samples were sequenced on Illumina® HiSeq and MiSeq platforms. A range of publicly available tools were used to conduct assemblies, and different binning methods were employed to attempt partial genome reconstruction of single community members. The employed tools were then evaluated based on assembly statistics, specificity and captured diversity as well as user friendliness, and computational requirements.

Results: We show that the choice of assembly pipeline and analysis tools greatly affects the observed phylogenetic and functional composition of metagenome datasets.

Conclusion: Metagenomic data can give valuable insights into uncultured bacterial populations. However, the applied assembly and analyses pipelines should be fine-tuned not only for the available computational resources but also for the specific research goal.

EMP53

Transducing phages provide information on bacterial hosts and the potential transfer of functional genes involved in BTEX degradation

B. Kiesel, A. Heidmann, A. Chatzinotas

1 Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Leipzig, Germany

2 German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany

Bacteriophages represent one of the major factors regulating bacterial abundance and diversity by infecting and lysing their host cells. Additionally, many dsDNA phages are able to transfer genetic information via transduction which is caused by miss-packing bacterial DNA. Thus, generally transducing phages are thus especially interesting because they carry signatures of the corresponding host bacteria.

In this project we aimed to analyse transducing phages in pilot scale constructed wetlands receiving BTEX contaminated groundwater (up to 15 mg/l). The constructed wetlands were set up at a former refinery site near Ruma/Germany to investigate efficient low-cost and near-natural
remediation strategies for BTEX contaminated groundwater. One precondition for phage propagation is an active host, e.g. an actively BTEX degrading bacterium. Analysis of general transducing phages may thus point to the BTEX degrading part of the bacterial community in the pilot plants; comprehensive analysis could provide evidence for the potential spread of functional genes involved in BTEX degradation.

We will show that 16S RNA genes in particular from the Proteobacteria and the Firmicutes could be detected in the phage DNA, indicating that these taxa might be involved in transduction-mediated gene transfer. These taxa may thus also harbour potentially active bacteria. We further screened the phage DNA for the presence of mono- and dioxygenase genes relevant in BTEX degradation and compared these sequences with the respective genes present in the total community. Phage samples from different wetland systems indeed harboured some of these genes demonstrating the potential for horizontal gene transfer processes between phages and their hosts.

EMP54

Investigating long-term preservation of RNA for qualitative surveys of aquatic microbial metatranscriptomes
*S. Charvet1, A. Andersson2, G. Jost1, L. Riemann3, M. Labrenz3
1IOW-Leibniz Institute for Baltic Sea Research, Biology, Rostock, Germany
2KTH-Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
3Copenhagen University, Marine Biology Section, Helsingør, Denmark

Microbial communities are the main catalysts of global biogeochemical cycling for multiple elements essential for life. The rapidity of their response to stressors and abrupt environmental changes implies that even fast and infrequent events can affect local transformations of organic matter and nutrients. Studying dynamics in microbial functionality at these subtle temporal- and spatial-scales is complicated by the rapidity of gene transcript turnover in cells, especially with respect to the inevitable delay between the sampling of seawater and the extraction of its RNA. This general obstacle underscores the need for an instrument that will allow the reliable sampling of microbial metatranscriptomes at frequent pre-established or event-triggered intervals, for refined temporal- and spatial-resolution. To advance the development of such a sampling tool, we examined the suitability of phenol fixation for long-term preservation of transcripts.

An artificial bacterial community was aliquoted to be either fixed with 10 % v/v Stop Solution (5 % phenol, 95 % ethanol) or left untreated, and filtered at different time intervals over one month. Following fixation, cell numbers remained constant (~10^7 cells mL^-1) in contrast to increased cell counts in the unfixed aliquots. Both fixed and unfixed communities lost half their total RNA content after 48h but RNA Quality Number (RQN) revealed more extensive degradation in the fixed communities, at time of fixation and during the storage period. Interpreting this as an indication that 10 % v/v Stop Solution is too aggressive on RNA molecules, we explored alternative fixation methods on an in situ community in a second experiment. Fixation with 0.14 % (EC50) but less in 0.25mM for *P. putida* mt2. Zeta potential analysis revealed that *P. putida* mt2 cells were slightly more stable than *C. metallidurans* CH34 cells. Cell hydrophobicity analysis showed that *P. putida* mt2 cells behaved as an intermediate hydrophobic whereas *C. metallidurans* CH34 as hydrophobic at their respective EC50. Although belonging to the same Gram-negative group, both bacteria behaved differently in terms of changes in membrane fluidity. Expression of trans fatty acids was observed in *P. putida* mt2 strain (0.45 %) but not in *C. metallidurans* CH34 strain (0 %). Similarly, cyclopropene fatty acids were observed more in *P. putida* mt2 strain (0.06-0.14 %) but less in *C. metallidurans* CH34 strain (0.01-0.02 %). Degree of saturation of fatty acids decreased in *P. putida* mt2 (36.8-33.75 %) which increased in *C. metallidurans* CH34 (35.6-39.3 %). Homoviscous adaptation is a survival strategy in harsh environments which includes expression of trans fatty acids and cyclo fatty acids in addition to altered degree of saturation. Different bacteria showed different approaches to homoviscous adaptations.

EMP55

Partial purification and characterization of a low molecular weight and industrially important chitinase enzyme from *Streptomyces chilikensis* RC1830, a novel strain isolated from Chilika Lake, India
*L. Ray1
1KJF University, School of Biotechnology, Bhubaneswar, India

Chilika Lake is the largest coastal estuarine brackish water lagoon in Asia situated on the east coast of India and is a designated Ramsar site. In the current study, several chitinolytic microorganisms were isolated and screened by appearance of clearance zone on 0.5 % colloidal chitin agar plate. A strain designated as RC 1830 displayed maximum colloidal chitin degradation by release of 112 μmol/ml/min of N-acetyl-D-glucosamine (GlcNAc) in 48h. The strain was taxonomically identified by polyphasic approach based on a range of phenotypic and genotypic properties and was found to be a novel species named *Streptomyces chilikensis* RC1830. The organism was halophilic (12 % NaCl w/v), alkaliphilic (pH10) and was capable of hydrolyzing chitin, starch, cellulose, gelatin, casein, tributyrin and tween 80. The partial purification of chitinase enzymes from RC1830 was performed by DEAE Sephacel anion exchange chromatography which revealed the presence of a very low molecular weight chitinase (10.5KDa) which may be a probable chitobiobioisomerase enzyme. The study reports the presence of a low MW chitinase (10.5KDa) and a chitin deacetylase from a novel *Streptomyces* strain RC1830 isolated from Chilika Lake. Previously chitochireses less than 20.4KDa have not been reported from any other *Streptomyces* species. The enzymes was characterized with respect to optimum pH, temperature, and substrate specificity and temperature stability.

EMP56

Cell surface responses of *Cupriavidus metallidurans* CH34 and *Pseudomonas putida* mt2 to cadmium stress
*S. Shamim1
1Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan

Cupriavidus metallidurans CH34 and *Pseudomonas putida* mt2 were used as cadmium (Cd) resistant and sensitive bacteria respectively, to study the effect of Cd on physicochemical surface properties (including surface charge, hydrophobicity) and membrane fluidity. For studying the physicochemical surface properties, first EC50 (effective concentration 50) was calculated by the method of Pepi et al., (2008). Surface charge was measured by zeta potential and checked by modifications in the methods of Loosdrecht (1987) and Neumann et al., (2006). Whole cell hydrolyzate method of Hartig et al., (2005) was followed to study the membrane fluidity. EC50 of *C. metallidurans* CH34 was found to be 2.5mM while 0.25mM for *P. putida* mt2. Zeta potential analysis revealed that *P. putida* mt2 cells were slightly more stable than *C. metallidurans* CH34 cells. Cell hydrophobicity analysis showed that *P. putida* mt2 cells behaved as an intermediate hydrophobic whereas *C. metallidurans* CH34 as hydrophobic at their respective EC50. Although belonging to the same Gram-negative group, both bacteria behaved differently in terms of changes in membrane fluidity. Expression of trans fatty acids was observed in *P. putida* mt2 strain (0.45 %) but not in *C. metallidurans* CH34 strain (0 %). Similarly, cyclopropene fatty acids were observed more in *P. putida* mt2 strain (0.06-0.14 %) but less in *C. metallidurans* CH34 strain (0.01-0.02 %). Degree of saturation of fatty acids decreased in *P. putida* mt2 (36.8-33.75 %) which increased in *C. metallidurans* CH34 (35.6-39.3 %). Homoviscous adaptation is a survival strategy in harsh environments which includes expression of trans fatty acids and cyclo fatty acids in addition to altered degree of saturation. Different bacteria showed different approaches to homoviscous adaptations.

EMP57

Diurnal changes of microbial processes in a toluene-degrading constructed wetland model
*V. Lünsmann1, U. Kappelmeyer2, A. Taubert1, M. von Bergen3, J. A. Müller1, H. J. Heipieper1, N. Jehmlich2
1Helmholz Centre for Environmental Research – UFZ, Environmental Biotechnology, Leipzig, Germany
2Helmholz Centre for Environmental Research – UFZ, Proteomics, Leipzig, Germany
3University of Leipzig, Institute of Biochemistry, Leipzig, Germany

Question: Constructed wetlands are economical and efficient options for the treatment of contaminated waters. In these systems, organic pollutants are primarily degraded in the rhizosphere by microbial processes. Plants provide oxygen and organic exudates to the root zone, thereby stimulating microbial activity. This plant root exudation depends on photosynthetic activity, and thus shows day-night fluctuations. While diurnal changes in CW effluent composition have been observed, the question remains whether these are caused by respective fluctuations of microbial processes.

Methods: Diurnal changes of microbial processes were investigated in a toluene-degrading wetland model. Qualitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic anaerobic toluene degradation. Additionally, proteomic analyses of day and night samples were carried out to investigate toluene metabolism as well as other microbial processes.
Results: Toluene was steadily degraded aerobically throughout day and night. Expression of the respective genes and proteins showed no diurnal rhythm. Although transcripts encoding for the anaerobic toluene degradation enzyme benzylsuccinate synthase (bxsA) were highly abundant, no respective proteins could be detected. Instead, proteomic analyses revealed diurnal protein patterns of other metabolic functions such as polyhydroxyalkanoate (PHA) metabolism, transport processes and amino acid metabolism.

Conclusion: Microbial processes such as PHA synthesis and transport seemed to be mainly influenced by diurnal patterns of plant root exudation rather than fluctuating oxygen release. Aerobic toluene degradation was stable throughout the diurnal cycles while anaerobic toluene degradation did not occur.

EMP58 Hot spots or cold spots? Modelling biodegradation dynamics in response to disturbances

*S. König1, A. Worrich2, L. Y. Wick1, M. Kästner3, A. Miltner3, K. Frank1, M. Thullner2, F. Centler2, T. Banitz1
1Helmholtz Centre for Environmental Research – UFZ, Ecological Modelling, Leipzig, Germany
2Helmholtz Centre for Environmental Research – UFZ, Environmental Microbiology, Leipzig, Germany
3Helmholtz Centre for Environmental Research – UFZ, Environmental Biotechnology, Leipzig, Germany

Microbial degradation of soil pollutants is an important ecosystem function. As soil systems are constantly exposed to disturbances of different spatial appearances and frequencies, their ability to recover the biodegradation function is crucial. However, the effect of disturbance regimes to the long-time biodegradation dynamic is not yet been examined.

We applied a numerical simulation model considering growth, degradation and bacterial dispersal to analyze the spatiotemporal dynamics of biodegradation in response to disturbance regimes. To investigate the influence of bacterial distribution, we simulated different spatial configurations of the disturbances with various degrees of fragmentation. Moreover, we considered bacterial dispersal networks to simulate bacterial movement along fungal networks in soil.

We found that the biodegradation performance decreases in response to periodic disturbances but tends to saturate around a mean. Level of the mean degradation performance increases in presence of dispersal networks and with increasing degree of fragmentation of the disturbance. Spatiotemporal observation of degradation dynamics reveal partitioning of the system in active hot spots and inactive cold spots. In hot spots the function is maintained on a certain level of saturation, whereas in cold spots degradation is completely down. However, size and distribution of hot and cold spots depend on spatial configuration of the disturbance. We identify a critical degree of fragmentation of the disturbance under which the degradation activity concentrates on hot spots. Is the disturbance higher fragmented the whole system is homogeneously active. This effect is due to variation in mean distance between disturbed and undisturbed area. The more distant a disturbed habitat from the next undisturbed the longer the lag-phase of biodegradation recovery and thus the system could absorb higher fragmented disturbances better. However, if dispersal networks are applied this critical degree is shifted as the networks are increasing bacterial dispersal.

Our results show that ecological interaction in reaction to the disturbance pattern is responsible for maintaining the biodegradation performance under disturbance regimes. The degree of fragmentation of the disturbance configuration influences the dynamics which indicates the relevance of spatial processes for functional stability. Besides, fungal networks may increase activity by enhancing bacterial dispersal. However, the influence of fungal networks, instead the degradation dynamics also regarding other functionalities like substrate/water transport should be analyzed further.

EMP59 Initiating a bacterial revival – mycelia-supplied water and nutrients activate dormant cells trapped in hostile conditions

*A. Worrich1, S. König2, K. Frank1, T. Banitz2, F. Centler2, M. Thullner1, H.-H. Richnow2, N. Musat1, H. Stryhanyuk1, A. Miltner2, M. Kästner3, L. Y. Wick1
1Helmholtz Centre for Environmental Research – UFZ, Environmental Microbiology, Leipzig, Germany
2Helmholtz Centre for Environmental Research – UFZ, Ecological Modelling, Leipzig, Germany
3Helmholtz Centre for Environmental Research – UFZ, Isotope Biogeochemistry, Leipzig, Germany

Microbial populations in response to disturbances can maintain growth and activity in water and nutrient depleted soil regions, because they are able to efficiently transport water and nutrients in their mycelium. Here we tested the hypothesis, that mycelia redistribute water and nutrients from a remote area, provide both to dormant bacteria and thus initiate a bacterial revival in a dry and oligotrophic environment.

Methods: Using microscopy and cultivation-dependent techniques we followed the germination of Bacillus subtilis endospores in presence and absence of Pythium ultimum hyphae, which have access to a source of water and nutrients apart from the dry and nutrient-free spore region.

Results: Microscopy revealed the development of vegetative cells only if mycelia were present in the direct surrounding of the spores. Moreover, we found an increase in total CFU numbers and a decrease of the relative proportion of spores in the presence of mycelia elucidating the diminished adverse conditions for bacteria located in the vicinity of hyphae. The examination of 16S, 13C and 15N incorporation into the bacterial biomass via NanoSIMS can provide direct evidence for the transfer of water and nutrients from the mycelium to the spores.

Conclusion: We propose that water and nutrients supplied by mycelia may trigger bacterial activity in soil, which promotes functional ecosystem resilience.

EMP60 Determination of the most effective inoculation strategy for anaerobic digestion of lignocellulosic biomass and effects on microbial populations

* E.G. Ozbayram1, O. Ince1, A. Akyol2, B. Ince2
1Istanbul Technical University, Environmental Engineering Department, Istanbul, Turkey
2Bogazici University, Institute of Environmental Sciences, Istanbul, Turkey

Animal manure has a great energy potential due to the high organic matter content mostly in the form of lignocellulose from an animal feed and a possible bedding used in the animal shelter. However, during anaerobic digestion process, hydrolysis rate of cellulose is so low and it is stated a rate limiting step in overall digestion. Because of its high cellulosytic activity, rumen liquid is used as a primary inoculum in these systems and using the enrichment of the existing cellulose-degrading bacteria can greatly support the hydrolysis step and improve the acidification rate. In this study, we aimed to determine the most effective inoculum for enhancing the biogas production of cow manure digestion and establish the effects on the microbial community structure. In this scope, three different inoculums (rumen fluid, digester sludge taken from full-scale plant and the enriched microorganisms responsible for the degradation of cellulosic material in the cow rumen) and their combinations were tested in the batch anaerobic digesters treating cow manure. The quantification of total bacteria, total archaea, and three important fibrolytic bacteria (Ruminococcus flavefaciens, Fibrobacter succinogenes, and Ruminococcus albus) were carried out by StepOnePlusTM platform (Applied Biosystems, Life Technologies). The highest biogas production was measured in the digester seeded with enriched culture and sludge. The abundance of total bacteria was not significantly changed for all digester conditions during the operation period. However, at the first day of operation, the quantity of total archaea was measured higher in digesters inoculated with the rumen fluid, then started to decrease. The number of Ruminococcus flavefaciens, Fibrobacter succinogenes and Ruminococcus albus were the highest in the digesters inoculated with...
EMP61
Marine epibiontic filamentous sulfur-oxidising bacteria
J. T. Harder
Max Planck Institute for Marine Microbiology, Microbiology, Bremen, Germany

Question: Hydrogen sulfide can be transported by diffusion or by advection to microbes. Gliding Beggiatoa live in the transition zone of diffusive systems, whereas attached-living Thiobrix are well known from advective freshwater systems (1). On a field trip, large white biofilms were discovered growing as epibionts on seagrass with an advective hydrogen sulfide source. Which microorganisms formed the white biofilm?

Methods: Morphological characterization by imaging techniques as well as isolation of filaments and partial 16S rRNA gene sequencing were applied.

Results: In a hydrogen sulfide-free flow system, the biofilm became colorless. This and the microscopic images suggested the presence of sulfur in the cells. The dominant population of filaments in the biofilm were 1000 to 1500 μm long and had a diameter of 4 μm. The presence of a sheath and the formation of small cells which were interpreted as gonidia indicated the morphology of Thiobrix spp. Many filaments served as attachment substrate for small sulfur containing cells, as previously described by Larkin (2). The community contained also filamentous sulfur-oxidising bacteria with the morphology of Beggiatoa as well as large, vacuolated, ensheathed cells in filaments with sizes up to 2000 μm long and 15 μm in diameter.

Conclusion: Unique environmental conditions have transiently formed optimal conditions for a bloom of sulfur-oxidising bacteria. The ongoing characterization of the biofilms may yield novel insights into the diversity of sulfur-oxidizing bacteria.

EMP62
YocM – a small heat shock protein involved in the stress response of Bacillus subtilis
J. Hanke, K. Turgay
Leibniz Universität Hannover, Institute of Microbiology, Hannover, Germany

Small heat shock proteins (sHsp) occur in all domains of life and fulfill their protective role in preventing the irreversible aggregation of proteins. These sHsp are intricately interacting with cellular protein aggregates. This ATP-independent protein aggregate binding activity is often linked to disaggregate and refold cellular protein aggregates. Until now, no small heat shock protein has been characterised in EMP63

Detecting and enriching oxygenic denitrifiers from contaminated groundwater and urban water systems
B. Zhu1, L. Bradford1, S. Huang2, A. Szalay3, A. Tancsics2, T. Lueders1
1 Helmholtz-Zentrum München, Munich, Germany
2 Szent István University, Gödöllő, Hungary

The microbial nitrogen cycle has been extensively investigated and was thought to be fully understood. Nonetheless, the recent discovery of a new nitrogen transformation pathway, nitric oxide (NO) dismutation into oxygen and nitrogen gas catalyzed by a putative NO dismutase (Nod), has changed this perspective. This so-called oxygenic denitrification enables microbes to utilize aerobic catabolism in anoxic habitats. Oxygenic denitrification coupled to aerobic methane- and alkane-oxidation has been reported for the denitrifiers Candidatus Methylirubinsulfum and the Gammaproteobacterium Hdn1, respectively. However, it is not at all clear how widespread oxygenic denitrification could be in natural habitats, and the diversity of potentially coupled oxygen-dependent catabolic pathways is unknown.

Therefore, we have developed the first specific primer sets capable of detecting putative nod genes, the key functional marker for oxygenic denitrification, in diverse environmental samples. nod sequences were successfully retrieved from anoxic sediments of a BTX-contaminated aquifer, and from different nitrogen-removing wastewater treatment systems. These genes showed only 70-90 % identity to the nod genes of M. oxyfera and Hdn1. The nod genes could also be detected in RNA extracts from the aquifer sediment, suggesting that they were actively transcribed in situ. In order to better understand the ecophysiology of these oxygenic microbes and determine whether aromatic hydrocarbon can serve as electron donor for oxygenic denitrification, enrichments were set up using nod-rich aquifer sediments as inocula under nitrate- and nitrite-reducing conditions. Enrichment of nod-possessing microbes is monitored by quantifying nod-gene copy numbers in these cultures. Our results suggest that oxygenic denitrification is much more widespread and abundant in natural and man-made environments than previously perceived, and could be an overlooked nitrogen transforming pathway of great appeal for groundwater remediation and in the urban water cycle.

EMP64 – withdrawn

EMP65
Salt-resistant bacteria isolated from mangroves promote growth of barley in greenhouse under salt stress conditions
R. Soldan1, F. Mapelli1, E. Crotti1, R. Marasco1, M. Fusi1, E. Rolli1, D. Daffonchio1,2, Z. Zeaiter1, S. Schnell1, S. Borin1,4, M. Cardinale1
1 University of Milan, Department of Food, Environmental and Nutritional Sciences (DeFENS), Milan, Italy
2 King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
3 Justus Liebig University, Institut für Angewandte Mikrobiologie, Gießen, Germany

Soil salinity is an increasing problem affecting agriculture of many countries. An environmental-friendly approach to reduce the effect of salinity on crops is based on the application of plant growth promoting bacteria (PGPB) that can support the growth of the plants by improving their resistance to salt stress.

Our aim was to isolate endophytic bacteria from the propagules (reproductive units) of Avicennia marina accounted among the most salt-tolerant mangrove tree species; to select potential PGPB; to test the best candidates on barley (Hordeum vulgare L.) in both gnotobiotic and natural environments.

Our recent experiments investigating thermostolerance development in B. subtilis suggested a role of a potential sHsp YocM in the stress response of B. subtilis. We observed that YocM-GFP interacts with protein aggregates in vivo and is therefore a possible tool to analyse the amount of protein aggregates, indicating the state of stress and the functionality of the stress response system in the cell. Interestingly, sensitivity of B. subtilis towards high concentrations of salt increased in a yocM deletion mutant strain. However, a strain that overproduced YocM showed an enhanced cellular survival after salt shock. Western blotting experiments revealed the salt stress induced synthesis and localization of YocM to protein aggregates after salt shock. The exact molecular function and role of YocM within the stress response machinery of B. subtilis remains to be elucidated in future experiments.
revealed the occurrence of additional bacteria (native seed endophytes) which built up mixed colonies with the inoculated strains.

This is the first study showing mangrove’s propagules as a promising source of potential salt-resistant PGPB. Our results using barley as model species, suggest that mangrove endophytes might play a major role in supporting plant growth under saline conditions.

EMP66

Fate of antibiotic resistant bacteria (ARB) and of antibiotic resistance genes (ARG) during sewage treatment and in receiving rivers - culture-based versus qPCR data

C. Gallert, *S. Helt*

1 University of Applied Science Emden Leer, Microbiology - Biotechnology, Emden, Germany

Introduction: Although the number of studies analyzing bacterial communities and abundances of antibiotic resistance genes in soil or aqueous environment by molecular genetic approaches (qPCR, metagenomics) increased, the European guidelines for monitoring the hygienic quality of drinking water (EU drinking water directive, 2011) or bathing water (EU bathing water directive, 2006) are still relying on culture-based approaches.

Objectives: Microbial and molecular-genetic characterization of sewage and river water samples by culture-based and by qPCR assays, comparison of obtained results and discussion whether the thresholds defined e.g. in the EU bathing water directive for culture-based assays could be adopted to quantitative molecular genetic assays.

Material & Methods: 44 sewage samples (raw and treated) and 40 samples taken from the respective receiving river water were analyzed for their inventory of total bacteria, Escherichia coli, enterococci and staphylococci as well as for the presence of clinically relevant antibiotic resistance genes.

Results: Whereas plating and qPCR data for all bacteria correlated well in raw sewage, qPCR data of treated sewage and of river water indicated higher cell numbers for *E. coli*. It is unknown if these cells are “only” not growing under standard conditions or if they are dead. Corresponding to the amount of non-culturable cells, the “breakpoints” for monitoring water quality should be adapted. The abundances of clinically relevant antibiotic resistance genes in river water were in the same order of magnitude or even higher as in treated sewage.

Conclusion: For estimation of the resultant health risk, it is necessary to know which species the respective antibiotic resistance genes carry and if they are disseminated via horizontal or lateral gene transfer.

EMP67

A multidisciplinary approach towards the evolutionary history of the large sulfur bacteria *Achromatium*, *Beggiaota*, and *Chromatiaceae*

V. Carvalho, *S. Schorn*, *D. Ionescu*, *H.-P. Grossart*, *H. Cyponka*

1 Max Planck Institute for Marine Microbiology, HGF MPG group for Deep Sea Ecology and Technology, Bremen, Germany
2 Carl von Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres, Oldenburg, Germany
3 Leibniz Institute of Freshwater Ecology and Inland Fisheries, Experimental Limnology, Stechlin, Germany

The large sulfide-oxidizing members of the Gammaproteobacteria comprise a heterogeneous group of organisms, not only in terms of size, morphology, physiology, and habitat range, but also in the diversity of storage compounds and compartmentalization. The *Beggiaota* and *Achromatium* are chemolithotrophs while the *Chromatiaceae* are photolithotrophs. All members store elemental sulfur intracellular as electron donors, and they thrive in gradient systems at the interfaces of oxygen and sulfide. While the *Beggiaota* contain a large central vacuole with only a thin peripheral cytoplasmic layer, the *Chromatiaceae* and *Achromatium* contain a continuous network of thin cytoplasmic strings stretching around the inclusions across the entire cell. In line with this shared cell architecture but to the contrary of their physiology, *Achromatium* are closer related to *Chromatiaceae* than to *Beggiaota*. A feature that makes the *Achromatium* unique compared to all currently known Bacteria and *Archeae* is their ability to store massive amounts of intracellular calcite. The ecophysiology of large sulfur bacteria is mainly known from in situ measurements, and experiments. Culturing has so far only been successful for a few members of the *Chromatiaceae* and *Beggiaota*, and insights into the genomic repertoire of the three families are still in their infancy. Marine *Achromatium* have only recently been rediscovered, and the diversity as well as genetic information of the family is slowly becoming available. Here we present a multidisciplinary investigation of the *Achromatium*, combining traditional and modern staining methods with high-resolution microscopy to elucidate the distribution and localization of intracellular compounds such as calcite and free calcium, elemental sulfur, DNA, and polysulfide. With the application of different specific membrane dyes we investigate the compartmentalization of the cell interior, such as the formation of cytoplasmic membrane invaginations, intracellular vesicles and vacuoles. Our findings are directly compared to known structures in the *Beggiaota* and *Chromatiaceae*. Tackling their physiological capabilities, we are testing the storage and usage of nitrate by *Achromatium*, which is in line with capabilities of their close relatives, the *Beggiaota*. The major difference being that *Beggiaota* contain a large aqueous vacuole for nitrate storage while the location for nitrate storage in *Achromatium* remains to be revealed. Finally we integrate our morphological and physiological results with a genomic comparison between the sulfur bacteria families. We were able to generate high-quality draft genomes from marine and freshwater *Achromatium*, which allows an unprecedented insight into the phylogenetic history and evolution of this exciting group of large sulfur bacteria.

EMP69

Temperate phages of potentially pathogenic *Vibrio* species from North Sea

A. Garin-Fernandez, *I. V. Kirstein*, *S. Kirmizi*, *G. Gerds*, *A. Wichels*

1 Alfred Wegener Institute, Biosciences, Shelf Sea System Ecology, Helgoland, Germany

Question: Temperate phages play a major role in bacterial genomic diversity, by transferring mobile genetic elements. Phages may contribute to emergence of disease-causing strains from environmental *Vibrio* species. Thus, potentially pathogenic Vibrio species from the North Sea were subjected to phage induction to gather information on the vibriophage related genepool.

Methods: Screening for lysogenic phages from potential pathogenic *Vibrio* strains isolated from North Sea in 2014 was performed. *V. vulnificus*, *V. parahaemolyticus* and *V. cholerae* strains were induced using Mitomycin C. After phage induction, each sample was checked for phage production using epfluorescence microscopy. Positive phage induced samples were used for a host screening assay using 154 potentially pathogenic Vibrios of the respective species.

Results: During the research cruise 39 potentially pathogenic *Vibrio* strains from the coastal waters were isolated from stations near the coastline. Temperate phages were successfully induced from 18 potentially pathogenic *Vibrio* isolates, in detail 14 correspond to *V. parahaemolyticus, 3 to V. vulnificus* and 1 to *V. cholerae*. All inducible phages were found in *Vibrio* strains from coastal stations of Germany and the Netherlands. The induced phage samples presented inhibitory activity against half of the tested *Vibrio* strains, mostly environmental isolates from North and Baltic Sea.

Conclusion: About 46 % of *Vibrio* isolates possess inducible temperate phages, all of them isolated from coastal waters. These phages might play a role in transference of pathogenic genes into the environment. This will be subject of further studies. The present work shows the first insights of temperate phages presence on potential pathogenic *Vibrio* strains from Northern European seawaters.

EMP70

Plasmid spreading during conjugative DNA transfer in *Streptomyces*

L. Thoma, *B. Vollmer*, *A. Latus*, *G. Muth*

1 Universität Tübingen, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin IMIT, Mikrobiologie/Biotechnologie, Tübingen, Germany

Conjugative DNA-transfer in filamentous bacteria of the genus *Streptomyces* is a unique process requiring a single plasmid-encoded transfer protein (Tra/TraB). After the initial transfer from donor to recipient, *Streptomyces* plasmids colonize the recipient mycelium very efficiently. It was speculated that plasmid-encoded Spread (Spd)-proteins promote migration of the plasmid within recipient hyphae including the passage through cross-walls1. This study2 addressed the following questions: i) Which parts of the hyphae are involved in plasmid transfer ii) Can plasmids spread within recipient hyphae? iii) Which plasmid-encoded proteins are involved in plasmid spreading?

We constructed an eGFP-encoding reporter plasmid based on the *Streptomyces lividans* plasmid pIJ101, leading to a uniform green fluorescence in plasmid-carrying cells. To clearly distinguish donor and
recipient in matings, we used a recipient strain that constitutively expressed mCherry. Matings of these differentially labeled donor and recipient strains were analyzed by fluorescence microscopy. Additionally genetic crosses using S. lividans strains resistant to different antibiotics and replica plating were used to determine the extent of plasmid spreading. Conjugative DNA-transfer was previously proposed to occur at the hyphal tips. Surprisingly, fluorescence microscopic images of matings with the reporter plasmid suggest that plasmid transfer happens at the lateral walls of touching donor and recipient hyphae. The mating junction did not involve complete fusion of donor and recipient compartment, as mCherry was never detected in the donor. In the recipient, the eGFP signal was observed far away from the contact site to the donor, demonstrating that the plasmid has spread within the recipient hyphae through cross-walls. Intramycelial spreading was significantly impaired when the putative spd (spread) genes were inactivated showing that effective plasmid spreading depends on the presence of the Spd-proteins. In genetic crosses efficient spreading of a tra deletion mutant plasmid was only detected if tra was provided in trans in the donor and in the recipient, demonstrating that Tra is not only required for the primary transfer, but also for intramycelial plasmid spreading. Moreover, interaction of Spd-proteins and Tra in bacterial two hybrid studies suggest that Tra and Spd-proteins work together to distribute the plasmid in the recipient mycelium. In adaptation to the filamentous lifestyle of their host, Streptomyces plasmids developed a two-step conjugation mechanism. After the initial plasmid transfer at the lateral wall, plasmids invade neighbouring compartments dependent on Tra- and Spd-proteins thereby rapidly colonizing the recipient mycelium. The observed fungal species use AS as regulatory mechanism. It was possible to determine a number of AS events under various conditions, including pH and stress adaption in Candida glabrata. In this fungus, some detected differential spliced genes are present under multiple conditions. A higher number of AS events was identified for all species were compared for a better understanding of the role of AS in human-pathogenic fungi.

FPB02
Spatio-temporal shift in fungal and bacterial community structure and composition in preserved and non-preserved wood
S. Lasota1, *M. Noll1
Coburg University of Applied Sciences and Arts, Bioanalytics, Coburg, Germany

Copper-based preservatives are used for wood and plant protection, which leads to an enrichment of copper tolerant microbial communities in respective soil environments. Such communities are overall able to decompose copper-based preserved wood and thus leading to major damages in wooden stakes. To investigate the effect of wood preservatives on fungal and bacterial community structure and composition, three compartments (attached to wood, 1 mm and 7 mm inside of wood) from two sites were evaluated after 17 and 36 weeks of field incubation. Wooden specimens were impregnated with water (A as non-preserved wood) or different biocide-based preservation treatments (containing triazoles and benzalkonium chloride, encapsulated; containing triazoles and benzalkonium chloride, non-encapsulated; and containing copper). Moreover, spatial resolution of attached soil to the wood specimens (2×2×36 cm) and two wood specimen depths were studied. For the assessment of the fungal and bacterial soil community, next-generation sequencing and quantitative PCR by ITS and 16S rRNA gene region were performed, respectively. Both, the fungal and bacterial gene copy numbers decreased significantly over wood depth profile in both soil environments. While the fungal and bacterial copy numbers in attached soil increased over time the respective copy numbers in wood remained unaffected. For all dominant taxa, the structure of fungal and bacterial communities were significantly depth specific and remained less affected by the wood preservative treatment. However, the fungal community structure of both environments differed in treatment A to other wood preserving treatments. In addition, bacterial community structure was less affected by wood preservatives. In conclusion, a decreasing fungal community composition over time indicates that few fungi with accompanying bacterial diversity can cope wood preservative treatments and perform the main wood decay process.

FPB03
Toxicity effects of different substances from pyrolysis oil on growth and production of malic acid by Aspergillus oryzae
*S. Dörsam1, C. Syldatk1, K. Ochsenreiter1
Karlruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences Section II: Technical Biology, Karlsruhe, Germany

Question: As part of the "food or fuel" debate a biotechnological malic acid production based on alternative carbon sources which do not compete with food or feed would be desirable. It could be shown, that A. oryzae is able to convert several alternative carbon sources, like xylose, which is also a part of lignocellulosic material (1) to malic acid. Therefore, alternative carbon sources based on lignocellulose, such as pyrolysis oil, as substrates for malate production by Aspergillus would be conceivable. Beside usable carbon sources, a lot of possibly toxic compounds are formed during the pyrolysis process. Some of the substances are also well known environmental pollutants. In this study, the toxic effects of different compounds, which represent different chemical groups from pyrolysis, were tested for their influence on growth and malic acid production of the model organism A. oryzae.

Methods: A. oryzae was cultivated in preculture medium in shaking flasks for 24 hours. Due to nitrogen limitation and an excess of glucose in the production medium the fungus started to produce malic acid. In this phase, main culture medium was mixed with eleven different substances from pyrolysis oil in different concentrations to determine the level where a total malic acid production reached. These concentrations were used for determine growth limitation concentrations on agar plates.

Results: Toxicity tests showed that A. oryzae tolerates pyrolysis oil content between 1 % and 2 % depending on stationary production phase or growth phase. To investigate the reason for this low tolerance level, eleven representative substances from pyrolysis oil, e.g. aldehydes, organic acids, phenols and other compounds were chosen and the limiting concentration for growth and malic acid production determined. Some of the analyzed substances are very critical for both, growth and acid production, some only for one of these phases. On the other hand some of them showed no inhibition in the tested concentration range. One substance could be found, to be responsible for the toleration of 2 % pyrolysis oil in the growth phase.

Conclusions: A. oryzae DSM1863 tolerates a pyrolysis oil content between 1 % and 2 % depending on stationary production phase or growth
phase. The inhibitory concentrations of several substances from pyrolysis oil could be determined and possible problematic compounds were identified.

FBP04

p-Hydroxybenzoic acid, a phenolic acid, produced by the AcreA mutant of the wheat pathogenic fungus Zymoseptoria tritici during in vitro growth experiments

A. Brauchler1, A. Schueffler2, A. Yemenli3, G. Le Goff4, J. Ouaazami5, M.-H. Lebrun5, E. Thines1,2
1Johannes Gutenberg-Universität Mainz, Biotechnology, Mainz, Germany
2Institute of Biotechnology and Drug Research, Kaiserslautern, Germany
3Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
4INRA-Agro Paris Tech, Biologie et Gestion des Risques en Agriculture BIOGER-CPP, Thiverval-Grignon, France

Question: Do phytotoxins contribute to the infection of wheat by Zymoseptoria tritici and if so, do these compounds have any impact on host resistance/susceptibility by inducing the host defense response? Methods: Fungal growth of the Z. tritici AcreA mutant was performed in minimal medium (MM) with 10% wheat leaf extract in a 20 L fermenter. The culture filtrate was extracted with ethyl acetate, methanol and dichloromethane (3:2:1). The crude extract was tested on wheat leaves evaluating the phytotoxic potential and was then fractionated by normal phase chromatography. Each active fraction was further purified by preparative HPLC, allowing us to collect the purified compounds for further analysis. The structure of one of the active substances was elucidated by NMR. To investigate if the characterized compound is involved in the induction of the defense response in wheat, real-time quantitative PCR (RT-qPCR) analysis was performed. Therefore 10 days old wheat leaves were placed into Petri dishes containing 300 μM p-hydroxybenzoic acid, 300 μM methyl jasmonate as positive control or water as negative control for 24 hours. RNA was isolated and used as template for RT-qPCR analysis, measuring the changes in the transcript levels of pathogenesis related proteins (PR proteins).

Results: One of the phytotoxic compounds we isolated from culture filtrates of the Z. tritici AcreA mutant was identified as p-hydroxybenzoic acid (p-HBA), a phenolic acid. p-HBA and its derivatives are known as common allelopathic agents and were previously reported to be produced by plants in order to inhibit germination, growth and development of neighboring plants. In fermentation experiments performed in MM complemented with 100 μM benzoic acid we were able to show that in Z. tritici p-HBA is synthesized by hydroxylation of benzoic acid. The results of RT-qPCR analysis indicate that p-HBA is not involved in the induction of PR proteins in wheat.

Conclusions: Since to date there have been no reports of phytotoxic metabolites isolated from Z. tritici but their potential existence is expected to play a crucial role within the pathogenic development, this work is likely to make the first contribution to this field of research. The loss of AcreA, the major regulator of nitrogen metabolism leads to a defect in nitrate assimilation and appears to be coinciding with a modification of Z. tritici secondary metabolism, as no p-HBA production was observed upon fermentation of the wildtype strain under the same cultivation conditions. We propose that during infection Z. tritici is able to metabolize benzoic acid from wheat into p-HBA to facilitate the infection process by the phytotoxic activity of p-HBA. We suppose that toxicity does not occur via induction of the immunity response and the subsequent programmed cell death in wheat, since no changes in the transcript level of PR proteins were detectable by RT-qPCR analysis.

FBP05

Conditional gene expression in Aspergillus niger – perspectives and limitations of inducible expression systems

P. Boecker1,2, F. Wanka3, R. D. Süssmuth1, M. Arentshorst3, M. Arentshorst3,1,2, F. Wanka1, R. D. Süssmuth2, M. Arentshorst3, B. D. Süssmuth2
1Berlin University of Technology, Applied and Molecular Microbiology, Berlin, Germany
2Berlin Institute of Technology, Biological Chemistry, Berlin, Germany
3Leiden University, Molecular Microbiology & Biotechnology, Leiden, Netherlands

Synthetic biology tools allowing precise regulation of gene expression are powerful tools to study gene functions in vivo and to streamline metabolic pathways. Inducible, tunable and metabolism-independent gene switches are of special interest as they can be easily controlled and shut on or off at any stage during the life cycle of the organism of interest. Recently, we established a tetracycline-dependent expression system for the industrial platform organism Aspergillus niger that can either be used to switch the expression of a certain gene on (the Tet-On system) or off (the Tet-off system) upon addition of the inducer tetracycline or its derivative doxycyclin.1,2 However, if more genes have to be controlled independently, this system reaches its limits. We were aiming to design additional inducible expression systems functioning in A. niger and other filamentous fungi. We tested the performance and efficacy of two conditional expression systems responding to the antibiotics inducer erythromycin or to the hormone analog diethylstilbestrol. We used luciferase as a reporter gene and applied a MTP-based assay to evaluate and compare the systems with the established Tet-On and Tet-off systems. Corresponding results will be shown.

FBP06

Phagocytic escape and survival mechanisms of Aspergillus during interaction with the fungivorous amoeba Protostelium mycophaga

*P. Vliedendorff1, S. Voerbroch1, F. Wanka2,3
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoll Institute, Molecular and Applied Microbiology, Jena, Germany

The Aspergilli are ubiquitous saprophytic filamentous fungi along with several species cause fatal infections in immunocompromised individuals. Of these, the highest incidences of mortality rates are reported for Aspergillus fumigatus. The absence of any specific virulence factors suggest that a number of general fungal virulence determinants could have emerged long before the appearance of innate immune systems of infected vertebrates. Amoeba represent one of the largest and most diverse groups among the protozoa, but all share a predatory life-style. Only a handful of bacterivorous species have been studied in more detail, of which the social amoeba Dicyostelium discoideum has become a model organism for phagocytosis. Comparably little is known on the evolutionary impact of any fungivorous species. Here, we have studied the antagonistic interactions of the filamentous fungus Aspergillus fumigatus with the model amoeba D. discoideum and its fungivorous relative Protostelium mycophaga. During in vitro confrontation with D. discoideum, fungal conidia covered with the green DHN-melanin layer were phagocytosed much less effective than white conidia of an A. fumigatus phkP-mutant, unable to synthesize the surface-coating pigment. Similar results for conidia have been obtained with innate immune cells, supporting the idea of a universal role to avoid recognition by phagocytes. We are currently testing this hypothesis by extending our model to other fungivorous amoeba P. mycophaga. A natural isolate of P. mycophaga was found to feed on a wide range of fungi and lives in tight association with a Pseudomonas strain which role is currently unclear but was able to prevent invasive growth of hyphae. When exposed to P. mycophaga, rodlet and DHN melanin layers efficiently protected the conidia from phagocytosis. Following conidal germination the rodlet and melanin disappeared thereby exposing cell wall polysaccharides which triggered an enhanced amoeba’s assault on the fungal hyphae. These first experiments confirmed that the surface composition of the fungus plays a major role during recognition by P. mycophaga support the idea that escape from phagocytosis is major virulence determinants of A. fumigatus which origin could have been stimulated by environmental predation.

FBP07

Transcription factor PRO1 is a “Master Regulator” of multicellular development in Sordaria macrospora

*E. Steffens1, I. Teichert1, U. Kück1
1Ruhr-Universität Bochum, Allgemeine und Molekulare Botanik, Bochum, Germany

Question: Since the late 1950s the homothallic ascomycete Sordaria macrospora is used as a model organism to study fungal sexual development. In recent years, our laboratory has investigated several sterile mutants that generate only immature (protoperithecia) but never mature fruiting bodies (perithecia). One of these mutants is pro1, which carries a gene deletion of a transcriptional regulator, that was thus named PRO1. The protein is characterized by a GAL4-like Zn(II)Cys6 binuclear cluster, a DNA binding
motif at the N-terminus, and a putative nuclear localization signal (NLS). We were interested in identifying target genes that are controlled by transcription factor PRO1.

Methods: We used chromatin immunoprecipitation coupled with high throughput sequencing (ChIP-seq) to identify the genome-wide distribution of PRO1 DNA-binding sites. This analysis was performed with a GFP-tagged version of PRO1 either under control of the constitutive gpd promoter or under control of the endogenous pro1 promoter. *In vitro* protein-DNA binding studies and gene expression analyses were used to validate the results.

Results: We identified PRO1 target genes that belong to different signaling pathways of *S. macrospora* and regulate sexual development. Among these target genes are examples for gene encoding different MAP kinases and a scaffold protein of the cell wall integrity pathway. Furthermore, we predicted a conserved PRO1 DNA-binding motif that is enriched in promoter regions of some target genes.

Conclusion: In summary, our results show that PRO1 seems to control sexual differentiation of *S. macrospora* by regulating different signal transduction pathways. PRO1 can therefore be considered as a “master regulator” of fungal multicellular development.

FBP08

Sexual development affects volatile production of Schizophyllum commune

S. Wirth, L.-M. Ahrens, S. Broska, K. Krause, M. Kunert, W. Boland, E. Kothe

Friedrich Schiller University, Microbial Communication, Jena, Germany

Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Jena, Germany

Understanding signal transduction pathways by heterotrimetric guanine-nucleotide binding protein (G-protein) signaling is critical for pheromone response in the basidomycete *Schizophyllum commune*. Regulators of G-protein signaling (ROs) are involved in the modulation of heterotrimetric G-protein signaling cascades and control mycelia growth, hydrophobicity and sexual development. G-proteins might be also an important control point for activation of fungal secondary metabolism. In *S. commune* a spontaneous occurring mutation of the RGS gene *thn1* is caused by transposon insertions. These mutants show a partial defect in mating, abnormal clamp formation and an absence of fruiting body development. The aerial mycelia formation is reduced and mutants show an easily wettable phenotype, which indicate that Thn1 regulates surface hydrophobicity. Deletion of *thn1* has a similar effect on vegetative growth, but the *Δhth1* strain was found to mate unilaterally, suggesting the regulation of pheromone signaling by Thn1. This is reflected in the volatilome. The chemical composition of volatiles was investigated using solid phase microextraction coupled with GC-MS. The wild-type was found to produce mainly esters, whereas transposon mutants and *thn1* deletion strain emit a mixture of different sesquiterpenes, including *d*abolol as the main component. These findings reveal that synthesis of sesquiterpenes depends on the activity of Thn1. Sesquiterpenes have diverse biological functions, e.g. as autoinducers, in attraction of pollinators or as defense compounds. In bioassays, volatiles of sesquiterpene producing *S. commune* strains inhibit the growth of various tester fungi. It could be shown that the sesquiterpenes α-bisabolol and bisabolene contribute to the observed growth inhibition. In the genome of *S. commune* we identified 3 genes encoding terpene synthase-like enzymes. They are supposed to be organized in gene clusters with transporters and substrate modifying enzymes. Also transcriptome analysis indicates a regulation of genes involved in the synthesis of sesquiterpenes and suggests a genetic connection between pheromone signaling and secondary metabolism.

FBP09

Analysis of the antymycotic effect of yeast killer toxin zygocin

S. Gier, F. Weiler, M. Schmitt

Universität des Saarlandes, Molekular- und Zellbiologie, Saarbrücken, Germany

The increase in local and systemic fungal infections and also in antifungal drug resistance is one of the major concerns in clinical medicine. Unlike bacteria, eukaryotic yeast and fungal cells are closely related to mammalian cells and, therefore, the treatment of mycosis is often accompanied by many adverse side-effects. Furthermore, most of the common antymycotics either target fungal ergosterol synthesis, which reflects - to a big extent - mammalian cholesterol biosynthesis, or interfere with yeast or fungal cell wall components. However, none of these drugs efficiently kills a broad spectrum of pathogenic yeasts and fungi. In addition the molecular mechanisms of yeast cells’ adaption processes leading to antymycotic insensitivity are poorly characterized. A promising candidate as potential antifungal is the killer toxin Zygocin secreted by the spoilage yeast Zygosaccharomyces bailii. This monomeric toxin possesses an unusual wide killing spectrum against various human as well as plant pathogenic yeasts and fungi, including Candida albicans and Candida glabrata. In this study the biochemical and structural properties of Zygocin and its effects on mammalian cell lines will be further characterized.

FBP10

Genome-wide ChIP-seq analysis of PeVeLa identifies methyltransferase PelLmA as a regulator of development and morphogenesis in *Penicillium chrysogenum*

Rahm-Universität Bochum, LS Allgemeine und Molekulare Botanik, Bochum, Germany

Universität zu Köln, Botanisches Institut, Cologne, Germany

Oregon State University, Department of Biochemistry and Biophysics, Corvallis, USA

P. chrysogenum is the sole industrial producer of the β-lactam antibiotic penicillin, the most commonly used drug in the treatment of bacterial infections. In *P. chrysogenum*, secondary metabolism and morphogenesis were shown to be co-regulated via velvet, a highly conserved multi-subunit protein complex. However, until today, the output mechanisms of genome-wide velvet protein-mediated regulatory functions on a molecular level remained enigmatic.

We performed chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) analysis of PeVeLa, one of the core components of the velvet complex. Follow-on analysis included verification of selected PeVeLa target genes, DNA-binding studies, as well as functional characterization of a new PeVeLa downstream factor. We present a genome-wide DNA-binding profile and DNA-binding motif of PeVeLa, providing experimental evidence for PeVeLa acting as a transcriptional regulator on DNA level. Besides a remarkable number of direct PeVeLa target genes related to known velvet regulatory functions, e.g. in terms of conidiation, we also identified at least seven PeVeLa target genes coding for putative methyltransferases. One of the corresponding proteins, PelLmA, was submitted to further functional characterization, revealing direct interaction with PelVeLa on protein level as well as an involvement in regulation of conidiosporogenesis, pellet formation, and hyphal morphology.

Our work provides deep insight into PeVeLa regulatory functions on a genome-wide scale and introduces PelLmA as a new regulator of development and morphogenesis in *P. chrysogenum*. Most importantly, it sheds light on the whole extent of PeVeLa’s ambiguous nature as a transcriptional regulator on the one hand and as one of the core components of the multi-subunit velvet complex on the other hand.

FBP11

UV mutants of the homothallic zygomycete Zygorychus moelleri affected in sexual morphogenesis

E. Schulz, J. Wetzel

Friedrich Schiller University, Jena, Chair of General Microbiology and Microbial Genetics, Jena, Germany

Developmental mutants are invaluable for the elucidation of morphogenetic processes. In mucorales fundamental problems like the understanding of the hormone-induced sexual development and homothallism may be solved using morphogenetic mutants. Induced by UV-mutagenesis, we have isolated a set of developmental mutants that are impaired at defined, morphologically characterized stages. Heterothallic mucoralean fungi need two complementary mating types, designated (+) and (-), in order to undergo the typical sexual developmental programme from in early stages of the sexual development accumulate a yellowish-orange pigment in a light dependent or independent way, furthermore. In UV44 and UV48 the formation of the gametangial wall is inhibited. Mutant
UV554 seems to be defective in formation of the zygospore, while in UV112 zygosporangial wall formation is repressed. Another mutant, UV127, was isolated as a mating defective mutant, originally. During mutant characterization it was striking that this mutant is a methionine auxotroph. Several experiments showed that the developmental defects of this mutant can be bridged by addition of enhanced methionine concentration and other intermediates of the methionine biosynthesis pathway. This fact reveals the importance of methionine in the developmental processes of Z. moelleri. This set of mutants provides an excellent experimental system for the identification of molecular and genetic mechanisms involved in the sexual morphogenesis of Z. moelleri.

FBP12
Complete genomes of the mucoralean fusion parasite Parasitella parasitica and its host Absidia glauca substantiate the frequency of gene transfer between host and parasite

* S. Ellenberger1, A. Burnnester1, J. Wöstemeyer1
1 Friedrich Schiller University Jena, Chair of General Microbiology and Microbial Genetics, Jena, Germany

The mucoralean fungus Parasitella parasitica is a facultative biotrophic parasite of many zygomycetes. Fusion parasitism is linked with the transport of organelles from the parasite to the host and gives rise to frequent formation of genetic recombinants between host and parasite. Transfer and expression of genes residing in nuclei have been verified in the host Absidia glauca for several genes involved in amino acids biosynthesis. Elucidating the genomes of P. parasitica (plus mating type) and A. glauca (minus mating type) provides the chance to study a highly efficient laboratory model of horizontal gene transfer among eukaryotes.

The two genomes were obtained by Illumina and 454 sequencing (Eurofins Genomics, Ebersberg, Germany). Prediction of genes was based on AUGUSTUS v3.0.2, using Rhizopus oryzae as reference organism. Genes were functionally annotated using BLASTp and InterProScan.

The total genome size of P. parasitica amounts to 45 Mbp. The GC content of the P. parasitica assembly is 39.0 %. 4,507 protein coding genes were identified. The complete mtDNA sequence of P. parasitica (1) has a GC content of 30 % and a total length of 83 kbp. A special feature is the remarkably high number of 27 homing endonucleases. The total genome size of A. glauca amounts to 49 Mbp. The GC content of the A. glauca assembly is 44.5 %. 15,594 protein coding genes were identified. The complete mtDNA sequence of A. glauca has a GC content of 28 % and a total length of 65 kbp. The number of homing endonucleases is lower in this fungus. The mtDNA harbours only ten endonucleases. Compared with others, P. parasitica ranges among fungi with larger mtDNA, whereas A. glauca shows a more typical chondriome size. For other zygomycetes, lengths differ between 54 kbp in Rhizopus oryzae and 82 kbp in Phialophora bleekodeekenii. The data support the idea that introns, rendered mobile by acquisition of homing nuclease genes, develop an evolutionary tendency for enrichment in an organism acting as gene donor. Apart from being spread through different populations of the same species after sexual fusion, P. parasitica’s mobile introns seem to have found a way for spreading over the host range of the parasite. The larger genome size and the higher number of genes in A. glauca indicate the acquisition of genetic material from the parasite by the host.

DNA analysis will facilitate understanding this efficient, naturally occurring horizontal gene transfer system. Further more, comparison of both genomes will support the identification of plus mating type specific enzymes needed for cooperative trisporic acid biosynthesis and new regulatory mechanisms in the complex communication system of zygomycete fungi.

FBP13
Differential gene expression and oxidative stress tolerance in the rock-inhabiting fungus Knufia petricola A95

N. Knabe1, F. Heeger2, C. Mazzoni2, A. Gorbushina1,2
1 Federal Institute for Materials Research and Testing, 40 Materials and the Environment, Berlin, Germany
2 Berlin Center for Genomics in Biodiversity Research, Bioinformatics, Berlin, Germany
3 Freie Universität Berlin, Earth Sciences, Berlin, Germany

The ability to survive almost absolute dehydration through air-drying is a remarkable feature of a number of prokaryotes and very few eukaryotes. Microcolonial fungi (MCF), which colonise rock surfaces in hot and cold deserts as well as sub-aerial material surfaces in other climatic zones are able to survive temperature fluctuations, UV-radiation and absolute desiccation (also followed by subsequent re-hydration). MCF are a taxonomically diverse group of melanised ascomycetes that possess a compact colonial structure. This simplified meristematic morphology harbours an impressive range of stress resistance mechanisms. It has been shown that an ancient clade of rock-inhabiting MCF is ancestral to both symbiotic (e.g., lichenized fungi) and pathogenic ascomycetes, which makes them an attractive model to study establishment of symbiotic interactions and evolution of fungal pathogenesis. This study is focusing on responses to oxidative stress - one of the most significant environmental challenges encountered by MCF - using the rock fungus Knufia petricola (Chaetothyriales) strain A95. In comparison to the wildtype strain, treatment with the oxidative agent H2O2 (up to 30 mM) shows no dose-dependent reduction of growth rate in the ßPKS mutant. Knock-out of the single type I polyketide synthase (PKS) in K. petricola leads to a complete loss of melanin. Comparative gene expression analyses of a wild type and a ßPKS mutant are used to identify genes which are especially regulated under oxidative stress conditions to help elucidate mechanisms of cell wall maturation and oxidative stress defence strategies.

FBP14
Transcription factor SomA is required for adhesion, development and virulence of the human pathogen Aspergillus fumigatus

C.-S. Lin1,2, T. Heinekamp2,3, M. Straßburger2,3, V. T. Tran1, B. Herzog1,2, S. A. Braus-Stromeyer1, G. H. Braus1
1 Georg-August-Universität Göttingen, Institute of Microbiology and Genetics, Göttingen, Germany
2 Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany
3 Friedrich Schiller University, Institute for Microbiology, Jena, Germany

Adherence to host cells represents a key step for pathogenesis of bacterial and fungal microorganisms. Several gene families have been shown to be responsible for adherence in different organisms, among them the FLO adhesins (flocculins) of Saccharomyces cerevisiae [1, 2]. The transcription factor Flo8/SomA controls filamentous growth in S. cerevisiae and virulence in the plant pathogen Magnaporthe oryzae and is activated by the cAMP dependent protein kinase A (PKA) signaling pathway [3]. Consequently we investigated the heterologous transcription factor SomA of the human pathogen Aspergillus fumigatus. Via cross-species complementation we found out that A. fumigatus SomA rescued in yeast flo8 mutant strains several phenotypes including adhesion or flocculation in haploid and pseudohyphal growth in diploids, respectively. A β-galactosidase assay and subsequent analysis of a set of 14 reporter constructs showed that A. fumigatus SomA acts similarly to yeast Flo8 on the promoter of FLO11 encoding a major adhesin in S. cerevisiae. In a GTP-experiment followed by LC/MS analysis we found that SomA physically interacts with PtaB, which is related to yeast Mfg1 which is part of an activator complex for FLO11 expression in yeast. Loss of the somA gene in A. fumigatus resulted in a slow growth phenotype and a block in asexual development leading to aerial hyphae without further differentiation. The deletion phenotype was complemented by a conditional expression of somA using the inducible Tet-on system. A biofilm formation assay with the conditional somA expression strain indicated that SomA is required for adhesion as well. A ptaB deletion strain showed a similar phenotype suggesting that the SomA/PtaB complex controls A. fumigatus adhesion. Transcriptional analysis showed that SomA regulates expression of genes for several transcription factors which control conidiation or adhesion of A. fumigatus. Infection assays with fertilized chicken eggs as well as with mice revealed that SomA is required for pathogenicity. Our data corroborate a complex control function of SomA acting as a central actor of the transcriptional network, which connects adhesion, spore formation and virulence in the opportunistic human pathogen A. fumigatus.

The COP9 signalosome (CSN) is conserved from filamentous fungi to humans and functions at the interface between cellular signaling and protein quality control. CSN shows high structural similarity to the 26S proteasomal Lid domain that leads to ongoing comparisons between those two complexes [1]. Both consist of six PCT and two MPN domain-containing subunits. The MPN+ domain (JAMM motif) in CSN5/CSnE confers isopeptidase activity to CSN [2]. Only the fully assembled CSN complex is able to mededdeylate cullin-RING ligases (CRLs) [3]. The order of complex assembly for CSN is not known so far. Consequently, we investigated the integration of CSN5/CSnE into CSN in Aspergillus nidulans. We showed, that A. nidulans strains deleted for a single csn subunit gene have a severe phenotype but, in contrast to higher eukaryotes, are viable. All A. nidulans single deletions show similar defects in deneddylation activity, coordination of development and secondary metabolism. In vivo deneddylation assays with each csn deletion showed no activity towards CRLs. Those strains cannot develop mature sexual fruiting bodies (cleistothecia) as they stop development at the stage of primordia. The influence of single csn deletions on secondary metabolism was observed through presence of orsellinic acid derivatives in hyphae and surrounding media. Applying GFP-Traps with subsequent LC/MS analysis and in vivo deneddylation assays, we found a stable seven-subunit pre-complex lacking the catalytically active subunit CSN5/CSnE. CSN isopeptidase activity was only reconstituted by the addition of recombinant CsnE to the pre-complex [4]. A stable seven subunit pre-CSN intermediate is present in A. nidulans and its deneddylation activity is controlled by CSN5/CSnE integration as final assembly step. These findings demonstrate a new level of enzymatic activity regulation based on the order of macromolecular complex assembly.

Fungi are the major recyclers of lignocellulosic biomass in nature, but at the same time are constant threats to the service life of construction wood. One aim of our group is to contribute to a reduction of wood decay through a better understanding of the fungal responses to lignocellulose. The model filamentous Ascomycete Neurospora crassa is useful in this respect since it colonizes woody plant material and shows robust growth on many lignocellulosic substrates. Taking advantage of the functional genomics tools available for N. crassa we are deciphering the mechanisms of plant cell wall perception and deconstruction by defining the transcriptional regulatory network underlying the response to different nutritional conditions. For instance, studying the cellulose and mannan regulatory networks and utilization pathways in N. crassa, we found that both signaling pathways are interconnectee and compete with each other - both at the level of inducer uptake and intracellularly. The further elucidation of this interconnection on a molecular level will aid in the identification of key targets for a rational inhibition of cellulose perception. Ultimately, this knowledge will allow us to develop novel wood protection techniques and more environmentally friendly wood preservation methods.

The transport of mRNAs ensures a defined localization of encoded proteins as well as a spatiotemporal regulation of expression. In the plant pathogen Ustilago maydis, different mRNAs, for example septin mRNA, are transported in large messenger ribonucleoprotein (mRNP) particles. These contain the key RNA-binding protein Rtm4, the poly(A)-binding protein Pab1 and additional transport promoting factors [2]. mRNP are co-transported on early endosomes along the microtubule cytoskeleton in a bidirectional manner. It is hypothesized that mRNA transport is coupled with local translation of encoded proteins due to co-localization of the mRNAs and the encoded proteins [3]. In order to verify local translation of mRNAs on endosomes, we want to establish the method Translating RNA Imaging by Coat protein Kick-off (TRICK) which is based on a RNA live imaging technique. In TRICK, the mRNA contains two distinct heterologous RNA binding sites introduced into the open reading frame (ORF) and the 3'UTR, respectively [3]. By virtue of these RNA aptamers different RNA binding proteins (RBP) fused to either green or red fluorescence proteins are recruited to the RNA. Upon the first round of translation, the RBP bound to its cognate RNA hairpins in the ORF is released from the transcript by the ribosome. Hence, a shift in the detectable fluorescence from yellow to red indicates translation of the labeled mRNA. Here we present promising results for establishing TRICK in the filamentous fungus U. maydis.

The basidiomycete Schizophyllum commune has been studied for tetrapolar mating since the early 1900s. Intracellular signal transduction after recognition of mating pheromones involves MAPK, cAMP and Ras signaling. In addition, inositol monophosphatase (IMPase) in inositol signaling is a second messenger which is specifically inhibited by lithium. In S. commune, aberrant morphology, growth inhibition, down-regulation of imp gene expression, and lower enzyme activity has been observed under lithium presence. Furthermore, imp gene expression is down-regulated in a Ras dependent manner, indicating there is a crosstalk between Ras and inositol phosphate signaling cascades. A two dimensional gel-based proteomic approach under LiCl effect was performed in both wild type and constitutively active Ras mutant strains. In the presence of LiCl, inositol phosphatase/fructose-1,6-bisphosphatase (FBPase), Ran BP1, and actin are down regulated in Ras dependent manner strain. FBPase is known to shares similar sequence motifs (Asp-Pro-Ile-Leu-Asp-Gly-Ser-Thr-Ser) with IMPase and known to be inhibited by lithium, Ran BP1 is an important precursor in G-protein Ran signaling cascade which is essential for the translocation of RNA and proteins through the nuclear pore complex. Actin plays a control role in cell polarity, tip growth and long-distance intracellular transport, its down-regulation seems to be linked to growth reduction and hyphal morphology alteration.
To understand the complex host-pathogen interactions of the human immune system with Candida albicans, computational systems biology approaches are very useful. C. albicans is one of the most important human pathogenic fungi. Alterations in the host environment can render the commensal factors of the fungus into virulence attributes once the conditions favor pathogenicity. C. albicans then causes infections ranging from superficial mucosal diseases and thrush in immunocompetent hosts to severe, life-threatening systemic infections in immunocompromised individuals. Those systemic infections are associated with a severe morbidity, an unacceptably high mortality and high healthcare costs. With the innate immune system as the primary line of defense against systemic fungal infections the host defense relies mainly on phagocytes, especially neutrophils and macrophages. Using mathematical modeling, particularly game theory and dynamic optimization we gain insights into the interactions of C. albicans and macrophages. We start by setting up a differential equation model to simulate the complex dynamics of the host-pathogen interactions and perform dynamic optimization to predict optimal regimes. We then determine pure and mixed Nash equilibria to explain why macrophages sometimes release phagocytosed Candida cells instead of killing them, a process known as nonlytic expulsion.

FBP20

Metal homeostasis in Candida albicans

V. Skrahina, S. Brunke*, J. Linde1, B. Hube1

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany

Question: Metals serve as both structural and catalytic co-factors for many enzymes and are required in a multitude of biological processes. Iron and zinc availability is recognized as a central factor in bacterial and fungal infections and mammals restrict access to essential metals in order to prevent infection in a process known as ‘nutritional immunity’. However, pathogens can counter this defense through the expression of high affinity transporters and metal binding proteins in order to capture limited metals from the host environment. The aim of this project is to investigate metal homeostasis in C. albicans and to determine the mechanisms fungus exploit in order to cope with metal restriction.

Methods: Microarray and qRT-PCR analyses were performed in response to iron and zinc limitation. Genes which were differentially regulated were selected and the corresponding knock-out mutants were created. These mutants were phenotypically analyzed using metal limitation growth assays.

Results: The transcription factor Hap43 was shown to be essential for adaptation to iron limitation in fungal pathogens [1-3]. The ortholog of Hap43 - HapX - consists of cysteine-rich domains, which regulate the adaptation to iron limitation in Aspergillus fumigatus [4]. These domains are also present in the C. albicans Hap43 protein. Phenotypic analyses of mutants, lacking each domain, did not show their requirement for proper protein function under low iron levels. Transcriptome analyses showed that many biological processes are directly affected by zinc limitation. As expected, the ‘zincophore’ zinc acquisition system, consisting of the secreted Prz1 and the zinc transporter Zrt1, was up-regulated during our in vitro zinc starvation system. Moreover, up-regulation of genes of the vacuolar zinc homeostasis systems (ZRT3 and ZRCI) reflected external zinc limitation. The zr2A, lacking the central zinc import protein Zrt2, exhibited a severe growth defect under zinc limitation. Zr2A is largely unable to obtain free zinc, but we found that it is still able to mobilize zinc citrate.

Conclusion: C. albicans is able to adapt to metal restriction. Hap43 is required under low iron levels in C. albicans, although the conserved domains, described for other fungi, are not essential for proper protein function. The zinc up-take and storage machineries are up-regulated under low zinc content and critical for C. albicans growth. The ability of the zr2A to grow better in the presence of zinc citrate indicates that the fungus may use zinc citrate as an alternative source of zinc.

FBP21

Growth impairment of the plant pathogenic fungus Verticillium by fluorescent pseudomonads requires only phenazine in a redundant glucose medium but a gacA/gacS controlled combination of secondary metabolites in a plant pectin environment

*R. Harting*1, K. Nesemann2, S. A. Braus-Stromeyer1, C. E. Stanley2, M. Stöckl1, M. Landesfeind1, C. Timper1, A. deMello2, M. Künzler3, M. Aebi4, G. H. Braus1

1Georg-August-Universität Göttingen, Institut für Mikrobiologie und Genetik, Göttingen, Germany

2ETH, Department of Chemistry and Applied Biosciences, Zürich, Switzerland

3ETH, Institute of Microbiology, Zürich, Switzerland

Verticillium dahliae and Verticillium longisporum are plant pathogenic fungi. Whereas V. dahliae can infect a variety of different host plants, V. longisporum infects Brassica napus. To antagonize fungal crop infection, the biocontrol potential of fluorescent pseudomonads is utilized. We investigated the relevance of different secondary metabolites like phenazines and gacA/gacS-regulated mycotoxins secreted by fluorescent pseudomonads in co-culture with Verticillium. The extracellular potential of Pseudomonas with and without production of phenazines or gacA/gacS-controlled metabolites against Verticillium was quantified in a glucose- or pectin/amino acid-rich environment, by microfluidic in situ- and in planta co-cultivation. Verticillium transcriptome under Pseudomonas influence was analyzed to identify genes and related pathways, which might be involved in the fungal response towards the bacterium. Different strains used in our experiments displayed different biocontrol potential. Pseudomonas fluorescens derived from Brassica-rhizosphere exhibited a similar inhibition potential for the Brassica napus pathogen V. longisporum as for the tomato pathogen V. dahliae. Bacterial strategies to control fungal growth are distinct in different environments. The Pseudomonas mycotoxin phenazine specifically reduced Verticillium growth in high glucose conditions whereas in plant pectin environment the gacA/gacS-regulation-system of multiple mycotoxin pathways is essential for the biocontrol function. Pseudomonas influences Verticillium hyphal polarity through phenazines or gacA/gacS-regulated mycotoxins. P. protegens caused the strongest polarity defect in V. longisporum which coincides with 16 % up-regulated genes and a decrease of about half of the fungal transcripts. Fluorescent pseudomonads can control Verticillium infection in planta via a gacA-mediated pathway. Taken together our results suggest that fluorescent pseudomonads establish their biocontrol activity against the plant pathogen Verticillium depending on the nutritional habitat either via the secretion of phenazines or via a combination of gacA/gacS-controlled mycotoxins.

FBP22

Three alcohol dehydrogenase genes are responsible for ethanol degradation in Y. lipolytica

M. Gatter1, S. Ottlik1, Z. Kőves1, G. Barth1

1Technical University Dresden, Germany

The non-conventional yeast Y. lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and different hydrophobic molecules [1]. Although most metabolic pathways for the utilization of these substrates have been clarified by now, the responsible genes for ethanol degradation have been neither identified nor characterized. It was still unclear whether ethanol is degraded by alcohol dehydrogenases [2] or by an alternative oxidation system [3]. In order to detect the genes that are required for ethanol degradation in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADHI, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Adh2p is considered to be the main enzyme for ethanol degradation because it showed by far the highest enzyme activity of the three enzymes. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol [1]. To establish alcoholic fermentation, the respective key genes of S. cerevisiae, ScADHI and ScPDC1, were overexpressed in an ADH deletion strain of Y. lipolytica. But instead of producing ethanol, the respective strain regained the ability to utilize ethanol as single carbon source and was still not able to grow under anaerobic conditions.

FBP23 New interpretation of Circinella simplex based on molecular phylogenetic and morphological analysis

Y. Ling.

The genus Circinella (Mucorales, Mucoromycotina) is morphologically similar to Mucor differing only in the production of cirrinate supporting hyphae of the sporangia. The last revision of the genus originates from 1955 and resulted in the acceptance of eight species. A recent molecular phylogenetic study of the diversity of the Mucorales showed that Circinella is a polyphyletic group, with C. simplex and C. rigida being nested in the genus Mucor. Therefore, the authors transferred C. rigida to Mucor (M. durus), but they maintained C. simplex due to the fact that no type material of this species was available and only a single strain had been studied. During a study on the diversity of Mucorales in soil of the Atlantic Rainforest in Brazil, some strains that fit into the currently recognized concept of C. simplex where isolated. Our primary intention was to use these strains in order to perform a proper neotypification of Circinella simplex. Therefore we performed molecular phylogenetic analyses based on the three different DNA regions (ITS, LSU and mcm7), mating experiments, morphological studies as well as a research of the original literature. The phylogenetic analyses clearly show that the studied strains represent a monophyletic lineage belonging to the genus Mucor. However, all strains studied had irregularly shaped sporangiopores, were isolated from soil or plant material and originated from South America, Africa and Oceania, while the strain of the original description of Van Tieghem (1875) had ellipsoid spores and was isolated from dog dung in France. In our opinion the irregular shape of the sporangiopores is a striking character that could not be overlooked by Van Tieghem. Based on the differences in the shape of the spores together with the deviating ecology and distribution we interpret the studied strains as a discrete undescribed species for which we propose the name Mucor circinatus sp. nov.

FBP24 Mucor laxorhizus and M. indicus (Mucoromycotina, Mucorales) where isolated for the first time in South America

Y. Ling.

Mucor Fresen. comprises species characterized by producing simple or branched sporangiophores that emerge directly from the substrate bearing non-apathezy sporangia. Some species can present rhizoids and stolons. Mucor is a ubiquitous saprophytic mould with clinical relevance, since this fungus is capable of causing life-threatening diseases in immunocompromised patients. During infection, sufficient iron supply is crucial for fungal growth. Iron is a vital nutrient, but can be harmful in excess by triggering the formation of cell damaging reactive oxygen species (ROS).

FBJ25 Laboratory evolution of Candida albicans in macrophages rewired the hyphae signaling network

Y. Ling.

The genus Candida (Ascomycota, Saccharomycotina) is a polyphyletic group, with M. indicus being one of the species studied in this context. M. indicus was isolated from soil of the Atlantic Rainforest in Brazil, some strains that fit into the currently recognized concept of C. simplex where isolated. Our primary intention was to use these strains in order to perform a proper neotypification of Circinella simplex. Therefore we performed molecular phylogenetic analyses based on the three different DNA regions (ITS, LSU and mcm7), mating experiments, morphological studies as well as a research of the original literature. The phylogenetic analyses clearly show that the studied strains represent a monophyletic lineage belonging to the genus Mucor. However, all strains studied had irregularly shaped sporangiopores, were isolated from soil or plant material and originated from South America, Africa and Oceania, while the strain of the original description of Van Tieghem (1875) had ellipsoid spores and was isolated from dog dung in France. In our opinion the irregular shape of the sporangiopores is a striking character that could not be overlooked by Van Tieghem. Based on the differences in the shape of the spores together with the deviating ecology and distribution we interpret the studied strains as a discrete undescribed species for which we propose the name Mucor circinatus sp. nov.
species. As a result, A. fumigatus has evolved fine-tuned mechanisms to maintain iron equilibrium. Adaptation to iron limitation is mediated by the bZIP transcription factor HapX, which represses iron consuming pathways and activates iron uptake. Additionally, HapX contributes to resistance against iron excess by activation of vacuolar iron storage (Gsaller et al., 2014).

For gene repression during iron starvation and activation of iron detoxification, the physical interaction of HapX with the heterotrimERIC CCAAT-binding complex (CBC) is essential. Currently, it is unclear whether cooperation of HapX with the CBC is also required for gene activation under low-iron conditions. In this study, we analyzed the functional role of both HapX CBC-binding domain and DNA-binding domain in gene activation in vitro and in vivo.

Via surface plasmon resonance interaction analysis using recombinant A. fumigatus CBC and HapX proteins that included deletion of the CBC-binding domain or mutations within the DNA-binding domain, we demonstrate here that both the CBC-binding and DNA-binding domain of HapX are mandatory for combinatorial sequence-specific DNA-binding of the CBC and HapX in vitro. In vivo, lack of either the HapX CBC-binding domain or the HapX DNA-binding domain phenocopied HapX-deficiency. Activation of siderophore biosynthesis was repressed in both mutant strains, whereby deletion of the CBC-binding domain had a greater impact than mutation of the DNA-binding domain.

In summary, these data provide first evidence for combinatorial DNA-binding of HapX with the CBC to activate siderophore biosynthesis during iron starvation.

Gsaller et al. (2014) The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. EMBO J 33:2561-76

FBP27

Dicer-dependent small RNA formation in the β-lactam producing fungus *Penicillium chrysogenum*.

* T. A. Dahlmann¹, U. Kück¹
1 Ruhr-Universität Bochum, Allgemeine und Molekulare Botanik, Bochum, Germany

Small non-coding RNAs (sRNAs) with a size of about 22 nt can trigger post-transcriptional regulation of gene expression in a wide range of eukaryotes. In this study, we identified and characterized sRNAs in the industrial β-lactam producer *Penicillium chrysogenum* P221aD18 [1]. Therefore, sequencing of sRNAs representing different growing conditions and developmental stages were performed. Furthermore, single and double deletion mutants of the two Dicer-like protein encoding genes dcl2 and dcl1 were constructed and sRNA sequencing libraries of the recipient strain and the Dicer-deficient double mutant were constructed and sequenced. To distinguish between Dicer-dependent and -independent sRNA formation, a comparative transcriptomic analysis was performed and 616 loci were identified that produce sRNAs in a Dicer-dependent manner. 368 of these loci generate sRNAs in sense and antisense orientation from the same genomic source, mostly originating from intergenic and exonic regions [2]. Moreover, the amount of sRNAs on both strands of selfish genetic element, like Copia-like transposable elements, was significantly reduced in the Dicer-deficient double mutant. This observation is consistent to results in other fungi and support the existence of a defense mechanism against selfish regulatory elements in *P. chrysogenum*. Furthermore, in silico predictions revealed 34 sRNA loci that share typical characteristics of previously discovered fungal microRNA-like RNAs (miIRNAS), like the RNA stem-loop formation, a strong preference for uracil at the 5′-end, and the typical length distribution [3]. Northern blot hybridization of two miRNAs validated the existence of miIRNAS and demonstrated that miRNA are processed from a single stem-loop RNA precursor either in a complete or partial Dicer2-dependent manner. Our study highly suggests that the diverse classes of sRNAs in *P. chrysogenum* play a so far undescribed role in post-transcriptional gene regulation in *P. chrysogenum*. This will help us to increase our knowledge of sRNA-dependent gene regulation processes, which is an important prerequisite to develop effective strategies for improving industrial fermentations with *P. chrysogenum*.

FBP28

Mycoparasites on *Agaricus macrosporus* observed in nature

K. Lakkireddy¹, O. Voigt², U. Kües³
¹University of Göttingen, Molecular Wood Biotechnology and Technical Mycology, Göttingen, Germany

White button mushroom (*Agaricus bisporus*) industry is threatened by various mycoparasites such as *Lecanicillium fungicola* causing dry bubble disease and *Cladosporium dendroides* causing cobweb disease. The pathogens infect stages in mushroom development. They induce various symptoms on the host, such as bubbles, split stipes and spotty caps and destroy theirs host’s hyphae [1, 2]. Observations on these mycopathogens in nature are rare. Here, we observed some new mycopathogens in nature, isolated them and tested the behavior with different basidiomycetes in the laboratory.

Mushrooms of *Agaricus macrosporus* regularly appear on grounds of the University of Göttingen in August to November as drumstick-like closed young fruiting bodies underneath a Pseudotsuga menziesii tree. Within 3 days the mushrooms open by perforating the veil at the edges of the cap, the caps flatten in the next 2 days, to stretch out their pinkish-brownish gills for spore release to subsequently degenerate. In 2015, deformed fruiting bodies of irregular stipe and cap shape appeared. Fluffy mycelium covered the surface of the mis-shaped parts of the fruiting bodies. Microscopic analysis revealed ascomycetous types of conidiophores producing multiple 1-3 celled conidia. The pathogens were isolated from infected *A. macrosporus* mushroom tissues and used to infect in the lab commercially produced *Agaricus bisporus* and *Pleurotus ostreatus* mushrooms. The pathogens were very aggressive towards *A. bisporus* and produced huge amounts of conidiophores on the mushrooms. *P. ostreatus* in contrast was highly resistant and slight infections were observed only in few cases at stipe regions of *P. ostreatus*. The pathogenicity was further tested on vegetative cultures of lab strains *Coprinopsis cinerea* and *Pleurotus ostreatus*. Only *C. cinerea* was attacked by the mycoparasites. ITS sequencing is done to determine the identity of the isolates.

FBP29

Evaluation of cellulolytic activities for consolidated bioprocessing

*1. Schlembach¹, E. Antonov², M. Rosenbaum¹, L. Regestein², J. Buechs³
²RWTH Aachen University, Institute of Applied Microbiology, Defined mixed cultures, Aachen, Germany
³RWTH Aachen University, Biochemical Engineering Department, Aachen, Germany

Question: Cellulose could replace fossil oil as renewable feedstock for the production of various compounds. A main economical challenge, thereby, is the hydrolysis of cellulose into soluble sugars, which relies on the effective production of cellulolytic enzymes.

Many efforts have been made to screen different organisms for their cellulolytic potential. However, the hydrolytic activity of their culture-broth is low compared to the theoretical cellulosic potential. The activity is much lower in cellulosic substrate which do not necessarily represent true plant biomass. With this approach, mainly cellulase producers that produce high amounts of soluble extracellular cellulases were identified that are especially effective in hydrolyzing model substrates under optimized conditions. In our search for effective cellulase producers for consolidated bioprocessing we therefore reevaluated cellulase producing organisms under in situ fermentation process conditions.

Methods: *Trichoderma reesei* RUTC30 is the best publicly available cellulase producer evaluated by classical screening procedures such as filter paper assay. The cellulase activity of this fungus was compared against other fungi with different methods, including the standard filter paper assay and newly developed methods that monitor the total in situ cellulase activity including cell and substrate bound cellulase activities. Thereby, the influence of substrate loading on the different methods was investigated.

Results: *T. reesei* shows by far the highest filter paper activity among all tested fungi. The partitioning between soluble and cell or substrate bound cellulases differs between organisms but also during cultivation of the same organism, suggesting a release of cell bound cellulases over time. The activity measured by filter paper assay depends strongly on the substrate loading of the sample and cellulases can be simply removed from

the supernatant by adding substrate. In contrast when measuring the total cellulase activity, substrate loading has only minor effect.

Conclusion: Classical supernatant-based cellulase assays are highly biased towards soluble cellulases and therefore inadequate for evaluating the true cellulolytic potential of an organism. We propose instead a method to evaluate the activity based on the in situ sugar release rate measured in the fermentation broth under fermentation conditions, while blocking sugar uptake of the organism.

FBP30

New trp1 based marker system for sequential transformation of *Coprinopsis cinerea*

B. Dönste1, *U. Kües1

1University of Göttingen, Molecular Wood Biotechnology and Technical Mycology, Göttingen, Germany

Question: A mayor bottleneck in DNA-mediated transformation of fungi is the limited number of available selective marker genes, especially when sequential transformations of the same strain are necessary. In the model basidiomycete *Coprinopsis cinerea*, the *trp1* gene is commonly used as selection marker for transformation to complement *trp1* auxotrophies. The *trp1* encoded tryptophan synthase is a bifunctional enzyme which catalyzes the final two reactions in the biosynthetic pathway of tryptophan. Each of the final two reactions is carried out by a separate functional domain. The N-terminal A-domain (encoded by the *trp1* α-subunit) is responsible for the conversion of indole-3-glycerol-phosphate into indole, while the C-terminal B-domain (encoded by the *trp1* β-subunit) catalyzes the final step, the subsequent production of tryptophan from serine and indole. The *trp1*1.1.6 mutant allele used in *C. cinerea* hosts for transformation carries a mutation in each domain, which prevents the strain from completing tryptophan biosynthesis. Due to the locations of the mutations, both final catalytic reactions of tryptophan biosynthesis are independently blocked. Taking advantage of this situation, we developed from the *trp1* vector pC1001 a new set of vectors containing either just the A- or the B-domain encoding sequences. Using vector pC1001 containing the complete wild type *trp1* gene in transformation leads to simultaneous complementation of both mutations, whereas the new marker set enables the independent complementation in separate transformations.

Methods: Vectors containing either the single α- or β-subunit under regulator control of the original *trp1* promoter and terminator sequences were created via homologous recombination in yeast using the yeast shuttle vector pRS426. Plasmids pYSK7 harboring the *C. cinerea* laccase gene *lec1* and p004iGM3 containing the egfp gene were used in co-transformations of *C. cinerea*. Laccase expressing transformants were detected using a plate assay with 50 μM ABTS and egfp expression was observed using a fluorescence microscope.

Results: Using the α-subunit containing vector in co-transformation with pYSK7 in the first transformation enabled positive transformants to grow on indole supplemented selection medium. Positive transformants showing laccase expression (25 % of total colonies) were selected and used in a second co-transformation with the β-subunit containing vector and p004iGM3. Transformants were tryptophan prototroph and 15-18 % of the transformants show also egfp expression.

Conclusion: In this study we successfully created a new set of *trp1* based auxotrophic markers to sequentially transform *C. cinerea*, avoiding the need of creating strains with multiple auxotrophies. Furthermore, this is the first report of functional fungal tryptophan synthase domains which are not encoded together by a single ORF.

FBP31

Characterization of some developmental regulators in the mushroom *Coprinopsis cinerea*

W. Khonsuttia1, B. Dönste1, *U. Kües1

1University of Göttingen, Molecular Wood Biotechnology and Technical Mycology, Göttingen, Germany

Three putative genes involved in developmental processes in *Coprinopsis cinerea* FLU1-II, crgl and NWD2 are being investigated. In *Aspergillus nidulans*, the homolog of FLU1-II (fluG) and crgl (*flb4*) work jointly to activate the process of conidiation by initiation of the expression of the gene *brlA* [1]. Inactivation of these two genes in *A. nidulans* results in fluffy colonies [2]. *A. nidulans* FluG contains an N-terminal amidohydrolase and a C-terminal glutamine synthase I (GSI)-like domain and only the GSI-like domain is essential for function as a regulator to activate the specific developmental pathway [3]. In *C. cinerea*, there are two FLU1-II genes coding only for the C-terminal GSI-like domain. *C. cinerea* Crgl possesses two DEP (Dishevelled, Egl-10, and Pleckstrin) domains which function in subcellular targeting, and a C-terminal regulator of G-protein signaling (RGS) domain. *crgl* homologs have been reported before in several fungi and shown to participate in regulation of processes such as vegetative growth, assexual sporulation, mating, mycotoxin and pigment production and pathogenicity [4]. The *C. cinerea* nwd2 gene encodes a signal transduction protein with NACHT-NTPases and has been found to suppress a defect in primary hyphal knot formation (pknl) of *C. cinerea* mutant Pro159. We are investigating the functions of *crgl* and FLU1-II in oidiation, mating, vegetative growth of mono- and dikaryons, and fruiting body formation, with the aid of over-expression of FLU1-II, crgl and *NWD2* and by homologous gene targeting using a Δ*Δ*70 *C. cinerea* monokaryon that is inactivated in the non-homologous end joining pathway and was derived from crosses of a wildtype *A. B6* monokaryon with the self-compatible *Amut Bmut ΔΔ*70 homokaryon generated by Kamada and colleagues [6].

FBP32

Two new species of *Mucor* (Mucromycotina, Mucorales) isolated from the semi-arid region of Brazil

C. Fragoso1, D. X. Lima1, R. Oliveira1, G. Silva1, *A. Santiago2

1Federal University of Pernambuco, Brazil, Mycology, Pernambuco, Brazil
2Federal University of Pernambuco, Micoteca UMB, Brazil, Mycology, Pernambuco, Brazil

Mucor Fresen. is characterized by the production of simple or branched sporangiophores that bears non-aphysate, globose and/or subglobose sporangia. Few species produce rhizoids and stolons are not observed. This genera has a worldwide distribution, with most species described as saprobes commonly isolated from soil, stored grains, fruits, vegetables and the excrement of herbivores. In a study of the Mucorales from semi-arid regions in Brazil, two *Mucor* specimens that differ morphologically and genetically from the other species of the genus were isolated from soil and dung samples collected in the cities of Buíque and Arecevedo, located in Pernambuco State of Brazil, and are being described as new to science. A morphological description was performed in malt extract agar and in potato dextrose agar at 15, 20, 25, 30 and 35°C for 15 days. Phylogenetic analyses of the sequence datasets ITS (ITS1-5.8S-ITS2) and LSU (D1 and D2 domains) of rDNA of the specimens confirmed them as new to science. *Mucor caatingensis* sp. nov. is distinguished from the other species of the genus as it simultaneously produces numerous chlamydospores in mycelia (sometimes in sporangiophores), unbranched or weakly branched sporangiophores, columnae and sporangiospores that are variable in shape and size. *Mucor meridica* sp. nov. is morphologically similar to *M. circinelloides* f. *circinelloides*. The former is distinguished from *M. circinelloides* f. *circinelloides* as it produces globose, subglobose and aplannate columnae, differing from the ovoid to ellipsoidal columnae of *M. circinelloides* f. *circinelloides*. Additionally, *M. meridica* sp. nov. presents sporangiophores smooth-walled, mostly ellipsoid to fusiform, but also ellipsoid and subglobose, whereas *M. circinelloides* f. *circinelloides* sporangiophores are only ellipsoidal. This study contributes to the knowledge of the diversity of Mucorales in the semi-arid region of Brazil.
Question: As an opportunistic pathogen, Candida albicans (CA) may cause severe infection associated with a high mortality rate in immunocompromised patients. This is due to late recognition and treatment of the pathogen, but it has also been shown that CA can escape immune response in whole blood infection models. 10-15% of the inoculated fungi remained extracellular, proposing an unknown mechanism that makes them resistant to phagocytosis by neutrophils and macrophages. To elucidate this question, Raman spectroscopy was used which allows an insight into the overall biological state of cells, fungi or bacteria. Combined with chemometric methods, it is possible to characterize even small changes in cells.

Methods: From whole blood of healthy volunteers neutrophils were isolated by negative selection. The untouched cells were then co-incubated with CA for 90 min before the sample was split in half in order to characterize extracellular and phagocytized fungi. In the first aliquot, extracellular fungi were measured using a confocal Raman microscope. In the second sample, extracellular CA were fluorescently labelled using specific antibodies prior to cell lysis. Retrieved phagocytized fungi were spectroscopically characterized and compared to non-phagocytized fungi using multivariate statistical methods. For imaging of intracellular CA, neutrophils were fixed and scanned. The recorded Raman maps were analysed using the N-FINDR algorithm.

Results: Significant spectral differences could be identified between intra- and extracellular CA in the fingerprint region of the Raman spectra indicating biochemical differences between the two groups. In the mean spectra of both groups the most significant differences were detected in the bands of phenylalanine and C/C/C-N stretching vibrations representing mainly differences in protein composition. A classification model was built from the Raman data using combined principal component analysis (PCA) with linear discriminant analysis (LDA). Furthermore, false color Raman images visualizing structural features of phagocytized CA within neutrophils could be obtained just using the spectral information without any further labeling steps.

Conclusions: Although the extracellular fungi were often hyphae, the identified marker bands found were not the same bands which occur if yeast and hyphae are compared. It has been shown that 75% of the extracellular fungi stay viable in a blood infection model which indicates that the spectral differences we found are not just caused by the killing process, but that it is probable that these marker bands point to the molecular mechanism behind the escape process.

References:
3. Financial support of DFG via JSMC. BMWII via the CSCF (FKZ 01EI1502) and EU via the project ‘Hospec’ [CN-631882] are highly acknowledged.

FBP34 Cellular division of Schizosaccharomyces pombe studied by single molecule localization microscopy

D. Virant1,2, U. Endesfelder2, D. Landi2, E. Lause2

1Max Planck Institute for Terrestrial Microbiology, Department of Synthetic Microbiology, Marburg, Germany
2University of Cambridge, Department of Biochemistry, Cambridge, Great Britain

After DNA replication, each chromosome in the cell consists of two sister chromatids, both of which contain identical genetic information. In order for a cell division to result in two fully functional new cells, these chromatids must be segregated, divided and pulled apart with great precision, so that both daughter cells end up with identical genomes. The microtubules that move the chromatids cannot bind directly to DNA; instead they require a specialized linker. The kinetochore is a multi-protein complex which acts as the linker between DNA and microtubule and as such, regulates chromosome segregation. Since incorrect distribution of genetic material during division usually results in non-viable or heavily deficient cells, the kinetochore plays an absolutely vital role in the cell cycle.

By the use of state-of-the-art quantitative single molecule localization microscopy techniques and heavily supported with localization based algorithms for data analysis and molecular techniques for the design of model organism strains it now becomes possible to target also complex processes like the cellular division of Schizosaccharomyces pombe (Lando et al. 2012). Here, we discuss the current strategies for accessing the inner core kinetochore components as well as the freshly replicated DNA by single molecule methods and present our recent results on the individual protein counts and their replenishment in the complex following the cell cycle, their spatial distribution and their co-localization.

FBP35 Studying the regulatory networks governing polysaccharide perception in the filamentous fungus Neurospora crassa

1J. P. Benj1
2Technical University München - Holzforschung, Wood Bioprocesses, Freising, Germany

Question: Due to their active role in biomass mineralization, fungi are an indispensable part of the global carbon cycling. In particular filamentous fungi are of great economic importance as sources of industrial enzymes such as for polysaccharide hydrolysis, but also as a cause for food spoilage and soft-rot decay of construction wood. However, both, the rational engineering of filamentous fungi for improved plant cell wall deconstruction, as well as the development of novel wood-protection mechanisms, is hampered by incomplete knowledge of the regulatory and metabolic networks under various nutritional conditions.

Methods: Holistic, systems-level analyses are the best way to achieve a sufficient knowledge base and predictive power for targeted strain bioengineering. The filamentous ascomycete Neurospora crassa is ideally suited for this kind of analysis since it is not only a well-known model system for eukaryotic cell biology and genetics, but also shows robust growth on lignocellulosic material. Leveraging the genomic resources for N. crassa, we initiated a large-scale study elucidating the transcriptional responses of N. crassa to nutritional variations.

Results & Conclusions: Our comparative analysis of fungal carbon perception has already led to the identification of several novel factors taking part in plant cell wall degradation processes as well as the construction of metabolic maps and regulatory networks going well beyond what was possible so far. Moreover, based on these data, gene annotations could be validated on a genome-wide scale.

FBP36 Identification of pathogenicity factors in basal fungi by comparative genomics and pathogenomics approaches

V. U. Schwartze1,2, J. Linde1, T. Klassert1, R. Krägel1, M. Marcet-Houben1,3, T. Gahalaut1, S. Roos1,2, M. Marz1, H. Slevogt1, K. Volz1,2
1Friedrich Schiller University Jena, JMRC, Jena, Germany
2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Department of Molecular and Applied Microbiology, Jena, Germany
3Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Institute of Systems Biology/Bioinformatics, Jena, Germany
4Centre for Innovation Competence Septomics, Host Septomics, Jena, Germany
5Friedrich Schiller University Jena, RNA Bioinformatics and High Throughput Analysis, Jena, Germany
6Universitat Pompeu Fabra, Barcelona, Spain

Mucormycoses are life-threatening infections caused by members of the fungal order Mucorales. Although these infections are uncommon fungal infections they have been increasingly recognized in patients during the last decades. More than twenty different species are associated with mucormycotic infections and Lichtheimia species represent the second-most common cause of mucormycosis in Europe. To date, only three of the six
 described *Lichtheimia* species are known to cause infections in humans. Despite their clinical importance little is known about the pathogenicity and the molecular virulence determinants of these fungi. Moreover, only few genomes of mucoralean fungi are available and information about genome structure and evolution in basal fungi is still lacking. In order to get insights into genome structure and evolution of mucoralean pathogens the genomes of several strains of *Lichtheimia* species were sequenced and analyzed. Strains were selected based on phylogeny, physiology and virulence potential. Comparative genomics of different clinical and non-clinical *Lichtheimia* species revealed a high similarity in gene content and genome organization between the species. In addition, putative virulence factors were conserved also in non-clinical species. Additional transcriptomic analyses under selected stress conditions gave first insights into the stress-response of these basal fungal pathogens. The genome sequences of additional strains of the clinical species with reduced virulence and distinct physiological defects were analyzed using comparative genomics in order to identify factors which explain differences in physiology and virulence of the species. This is the first study comparing various strains from closely-related species of mucoralean fungi and gives first insights into virulence factors of basal fungal pathogens.

FBP37 – withdrawn

FBP38 Humanized yeast – a tool to study Parkinson’s disease

"B. Popova" 1,2, H. Shahpasandzadeh 1,3, A. Kleincknecht 1,2, G. Braus 1,2,3, A. Kleinknecht 1,2, G. Braus 1,2

1 Georg-August-Universität Göttingen, Dept. of Molecular Microbiology and Genetics, Göttingen, Germany
2 Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
3 University of Göttingen Medical School, Göttingen, Germany

Parkinson’s disease is a neurodegenerative movement disorder, associated with the progressive loss of dopamine-producing neurons in the substantia nigra. The pathological hallmark of the disease is the accumulation of intracytoplasmic inclusions known as Lewy bodies (LBs) that consist mainly of the presynaptic protein α-synuclein. The budding yeast *Saccharomyces cerevisiae* represents an established model system to study the molecular mechanisms associated with neurodegenerative disorders. Expression of α-synuclein in yeast leads to inclusion formation similar to neurons and significant growth reduction, resembling the pathology of the disease. This eukaryote represents a valuable model system for studying cellular pathways that are involved in the degradation of protein aggregates, associated with neurodegenerative diseases. Various modifications change α-synuclein posttranslationally and alter its inclusion formation, cytotoxicity and the distribution to different clearance pathways. Several of these modification sites are conserved from yeast to human. Phosphorylation is one of the major modifications of α-synuclein in LBs, whereas sumoylation has recently been described. The interplay between α-synuclein phosphorylation and sumoylation is poorly understood. Here, we examined the interplay between these modifications as well as their impact on cell growth and inclusion formation in yeast. We found that phosphorylation of α-synuclein is suppressed in vivo at the same sites in yeast as in human cells. Impaired sumoylation resulted in reduced yeast growth and increased number of cells with inclusions suggesting that this modification plays a protective role. Inhibition of sumoylation prevented autophagy-mediated aggregate clearance. Phosphorylation of α-synuclein at serine-129 by expression of human G protein-coupled receptor kinase 5 (GRK5) suppressed the defect, associated with impaired sumoylation and rescued the autophagic aggregate clearance. These findings suggest a complex interplay between sumoylation and phosphorylation of α-synuclein, which may open new opportunities for the development of therapeutic strategies for Parkinson’s disease.

FBP39 The biotechnological potential of *Ustilago maydis*: from basic research to applied sciences

T. Marus 1, S. Janpeter 1, S. Parveen 2, S. Kerstin 1

1 Heinrich Heine University Düsseldorf, Institute for Microbiology, Düsseldorf, Germany
2 University of Göttingen Medical School, Göttingen, Germany

Ustilago maydis is currently gaining increasing momentum as a eukaryotic model organism. Diverse areas of basic research ranging from homologous recombination, cell biology, plant-pathogen interactions, RNA biology, to the production of valuable secondary metabolites and organic acids, promising enzymes with novel properties, biomass degradation by intrinsic hydrolytic enzymes, to the production of proteins via a novel unconventional secretion machinery evading N-glycosylation. Unconventional secretion has only recently been observed in the filamentous fungus *C. tropicalis* during basic research. This enzyme does not harbor a classical N-terminal secretion signal and thus, circumvents the Endoplasmic Reticulum pass by conventionally secreted eukaryotic proteins. Interestingly, Ctsl can be a deal as a carrier to export heterologous proteins of interest, thereby avoiding N-glycosylation. Hence, Ctsl is currently exploited to establish a novel protein production platform. Pharmaceutical proteins are one interesting target of this secretory pathway, because inappropriate N-glycosylation may lead to allergic reactions in humans. The system is currently optimized on different levels including extracellular protease activity, culturing conditions and downstream processing to achieve competitive protein yields in the future.

FBP40 C-terminal tyrosine modifications play a major role in α-synuclein cytotoxicity in yeast model of Parkinson’s disease

A. Kleincknecht 1,2, B. Popova 1,2, D. F. Lázaro 3,4, O. Valerius 1, T. F. Lázaro 3,4, G. Braus 1,2

1 Georg-August-Universität Göttingen, Dept. of Molecular Microbiology and Genetics, Göttingen, Germany
2 Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
3 University of Göttingen Medical School, Göttingen, Germany
4 University of Göttingen Medical School, Göttingen, Germany

Parkinson’s disease (PD) represents a neurodegenerative disorder affecting six million people worldwide. PD proceeds with selective loss of dopamine-producing neurons in the substantia nigra leading to movement disorders. Phenotypic hallmark of PD are six C-terminal tyrosine residues that are part of proteinaceous inclusions called Lewy bodies (LB). One established system for modelling human diseases is *Saccharomyces cerevisiae*. Overexpression of α-Syn in *Saccharomyces cerevisiae* results in growth impairment and formation of cytoplasmic inclusions resembling the aggregates observed during pathogenesis of the disease. We use yeast as model tool to elucidate the effect of post-translational modifications of tyrosines on α-Syn cytotoxicity. The C-terminal tyrosine residues 125, 133, 136 (Y125, Y133, Y136) are proposed as putative nitration and phosphorylation targets. Phosphorylation of α-Syn at serine 129 (S129) is prominent in PD and influences autophagic clearance of α-Syn inclusions. Previous studies show that α-Syn is nitrated in vivo and forms stable α-Syn dimers originating from covalent crosslinking of two tyrosine residues. Analysis of the tyrosine residues involved in crosslinking revealed that rather α-Syn C-terminus than N-terminus is modified by nitration and di-tyrosine formation. The α-Syn variant that is not toxic in yeast forms more dimers than the wild-type α-Syn. In contrast, the nitration level of wild-type α-Syn is higher compared to A30P implicating that tyrosine residues but not di-tyrosine dimers contribute to α-Syn cytotoxicity. Notably, modification of Y133 is required for protective phosphorylation of α-Syn at S129 and for S129 induced nitration. Increased cellular nitrosative stress by deletion of the yeast flavohemoglobin gene *YHB1* resulted in increased cytotoxicity of A30P and A30P-induced mitochondrial fragmentation. Overexpression of the human homolog of *YHB1* neuroglobin protects against α-Syn aggregation in mammalian cells. Our findings reveal that post-translational modification of Y133 plays a major role in α-Syn aggregate clearance by promoting phosphorylation of S129. Our data suggest that increased nitration level of C-terminal tyrosines is involved in pathogenicity which can be partially detoxified by α-Syn dimerization. This reveals a complex interplay between S129 phosphorylation and C-terminal tyrosine modifications of α-Syn.

FBP41 Studying the regulatory networks governing polysaccharide perception in the filamentous fungus *Neurospora crassa*

J. P. Benz 1,2

1 Technical University Munich, Wood Bioprocesses, Freising, Germany
2 Technical University Munich, Wood Bioprocesses, Freising, Germany

Question: Due to their active role in biomass mineralization, fungi are an indispensable part of the global carbon cycling. In particular filamentous fungi are of great economic importance as sources of industrial enzymes such as for polysaccharide hydrolysis, but also as a cause for food spoilage and soft-rot decay of construction wood. However, both, the rational engineering of filamentous fungi for improved plant cell wall deconstruction, as well as the development of novel wood-protection...
mechanisms, is hampered by incomplete knowledge of the regulatory and metabolic networks under various nutritional conditions.

Methods: Holistic, systems-level analyses are the best way to achieve a sufficient knowledge base and predictive power for targeted strain bioengineering. The filamentous ascomycete Neurospora crassa is ideally suited for this kind of analysis since it is not only a well-known model system for eukaryotic cell biology and genetics, but also shows robust growth on lignocellulosic material. Leveraging the genomic resources for N. crassa, we initiated a large-scale study elucidating the transcriptional responses of N. crassa to nutritional variations.

Results & Conclusions: Our comparative analysis of fungal carbon perception has already led to the identification of several novel factors taking part in plant cell wall degradation processes as well as the construction of metabolic maps and regulatory networks going well beyond what was possible so far. Moreover, based on these data, gene annotations could be validated on a genomewide scale.

FNP42 – withdrawn

FNP43

In-depth characterization of the Aspergillus fumigatus mating-type system

*Y. Yu*1, C. Will1, E. Szewczyk2, J. Amich2, S. Glenn3, C. C. C. Wang1, S. Krappmann1

1University Hospital Erlangen, Institute of Microbiology, Erlangen, Germany
2Julius Maximilian’s University Würzburg, Research Center for Infectious Diseases, Würzburg, Germany
3University of Southern California, School of Pharmacy, Los Angeles, USA

Sexual reproduction of the human fungal pathogen Aspergillus fumigatus was assumed to be absent or cryptic until fertile crosses among geographically restricted environmental isolates were described in 2008 by O’Gorman et al. The existence of cryptic sexuality in this species had been proposed before, based on genomic and genetic analyses revealing the presence of mating-type idiomorphs (MAT1-1 and MAT1-2) and of several putative genes orthologous to recognized determinants of pheromone signalling, mating, karyogamy, meiosis, or fruiting body formation in the fertile species Aspergillus nidulans. Furthermore, the products of A. fumigatus MAT1-1 and MAT1-2 genes were shown to be functional in A. nidulans. We provide evidence for mating, fruiting body development, and ascospore formation accomplished by genetic recombination between unrelated clinical isolates of A. fumigatus, which reveals the generality and reproducibility of this long-time undisclosed phase in the lifecycle of this heterothallic fungus. Furthermore, we demonstrate that successful mating requires the presence of both mating-type idiomorphs MAT1-1 and MAT1-2, as does expression of genes encoding factors presumably involved in this process. Comprehensive transcriptional profiling studies reveal the depth of the MAT1-driven transcriptional responses. Functional categorization of genes that are significantly up- or down-regulated in these transcriptionomes led us to further investigation of candidate genes and gene clusters that are under control of the bipolar mating-type system, especially those involved in secondary metabolism, which are ideal for validation on the product level. Secondary metabolite profiling of recombinant strains that are deregulated or mis-regulated in sexual development confirms the association. Furthermore, functional analysis of a novel presumed mating-type gene MAT1-2-4 associated with the MAT1-2 idiomorph indicates its necessity for fruiting body formation, assigning the corresponding gene product a functional role in the mating process. With the help of yeast two-hybrid screening we were able to identify an interactor with the product of MAT1-2-4, and further investigation of this genuine interaction is ongoing.

FNP44

Comparative transcriptomics of the two β-lactam producers Penicillium chrysogenum and Acremonium chrysogenum elucidate the regulatory effects of conventional strain improvement programs.

T. A. Dahlmann, D. Terferl1, J. Kluge1, U. Kück1

1Ruhr-Universität Bochum, Allgemeine und Molekulare Botanik, Bochum, Germany

The filamentous fungi Penicillium chrysogenum and Acremonium chrysogenum are the only industrial used producers of β-lactam antibiotics. While P. chrysogenum is used for the production of penicillins, A. chrysogenum is a cephalosporin producer. Beside the ability to generate anti-infectives, both species do not have much in common and are taxonomically only distantly related within the Ascomycota. To achieve higher amounts of β-lactam antibiotics in each fermentation run of P. chrysogenum and A. chrysogenum, the wild-type isolates P. chrysogenum NRRL1951 and A. chrysogenum ATCC 11550 were randomly mutated during several rounds of conventional mutagenesis. Since the beginning of strain improvement programs, various strains and lineages were generated from the wild-type strains that produce increased amounts of the desired antibiotic. Although, previously research had discovered the complete β-lactam biosynthesis pathway and the enlarged knowledge about regulatory processes involved in the formation of penicillin and cephalosporin C, there is still a lack of knowledge how the increased β-lactam production was achieved during the conventional strain improvement programs.

To elucidate regulatory effects that occurred during strain improvement, we performed RNAseq analysis of the two wild-type strains, an industrial production strain of both species (P. chrysogenum P2niaD18 and A. chrysogenum A3/2), and a deletion mutant of the regulator of secondary metabolism ΔPcevA in P. chrysogenum and, respectively, ΔacevA in A. chrysogenum [1,2]. Comparative transcriptomics of the dataset including intra- and interspecific analyses gave an insight into the regulatory changes that were caused through conventional strain improvement. Furthermore, comparison of the effects found in the industrial producer strains and the deletion strains ΔPcevA and ΔacevA revealed a highly interesting intra- and interspecific correlation of the regulatory control of secondary metabolite gene clusters within these strains. Our results will contribute to develop novel strategies for strain improvements of the β-lactam antibiotic producers P. chrysogenum and A. chrysogenum.

FNP45

Inhibition of cellulose perception through manipulation of endogenous signaling pathways in Neurospora crassa

*L. Hassel*1, J. P. Benz1

1Technical University Munich, Wood Bioprocesses, Freising, Germany

Fungi are the major recyclers of lignocellulosic biomass in nature, but at the same time are constant threats to the service life of construction wood. One aim of our group is to contribute to a reduction of wood decay fungi through a better understanding of the fungal responses to lignocellulose. The model filamentous ascomycete Neurospora crassa is useful in this respect since it colonizes woody plant material and shows robust growth on many lignocellulosic substrates. Taking advantage of the functional genomics tools available for N. crassa we are deciphering the mechanisms of plant cell wall perception and deconstruction by defining the transcriptional regulatory network underlying the response to different nutritional conditions. For instance, studying the cellulose and mannan regulatory networks and utilization pathways in N. crassa, we found that both signalling pathways are interconnected and compete with each other - both at the level of inducer uptake and intracellularly. The further elucidation of this interconnection on a molecular level will aid in the identification of key targets for a rational inhibition of cellulose perception. Ultimately, this knowledge will allow us to develop novel wood protection techniques and more environmentally friendly wood preservation methods.

FNP46

A transcriptome meta-analysis proposes a novel biological role of the antifungal protein AnAFP in Aspergillus niger

*S. Jung*1, P. Schäpe1, N. Paege1, B. M. Nitsche2, V. Meyel1

1Berlin University of Technology, Institute of Biotechnology, Department of Applied and Molecular Microbiology, Berlin, Germany
2Leiden University, Institute of Biology, Department Molecular Microbiology and Biotechnology, Leiden, Netherlands

Although Aspergillus niger is used since decades in industrial biotechnology for the production of organic acids and proteins, it largely depicts a black box and we are far from understanding how most of the internal cellular processes work on the molecular level. However, the availability of its genome sequence and hundreds of microarray data for this fungus make it a feasible to shed light into this black box. Our interest in AnAFP is due to the fact that the growth-inhibitory effect of the protein and its homologs from other filamentous Ascomycetes seems to be restricted to fungi. No detrimental effects have been observed against bacterial, plant and mammalian systems, making this group of proteins interesting for applications in red, green and yellow biotechnology.

We have recently established a database that stores 377 high-throughput microarray data for A. niger. The database includes 158 different
IBP01
Molecular characterization of *Dichelobacter nodosus* serogroup H from footrot of sheep of Andhra Pradesh, India.

*V. K. Nagaram*1, D. Sreenivasulu1, A. Karthik1

1College of Veterinary Science, SV Veterinary University, Department of Veterinary Microbiology, Tirupati, India

Question: Footrot is a contagious disease causing lameness in sheep and goats with interdigital necrotic or suppurative lesions. The disease is caused by primary pathogen *Dichelobacter nodosus* an anaerobic, Gram-negative, rod shaped bacterium, and is often heavily fimbriated. The fimbrae are highly immunogenic for sheep and are the major host-protective immunogen. The current Australian classification system classified *D. nodosus* in to 10 serogroups (A-I and M) based on K-type agglutination. Despite its worldwide presence, the disease has significant economic impact in those sheep farming countries that have temperate climates such as Australia and New Zealand. In India the disease has become enzootic in throughout the state of Jammu and Kashmir with temperate climate for the last 18 years. Tropical climate of Andhra Pradesh which is considered as unusual niche for the survival of the causative organism *D. nodosus* still recorded incidence of ovine footrot. Prevalence of serogroups A, B, C, E, F and I were reported so far in Andhra Pradesh. Present report deals with the identification of serogroup H for the first time in the region and its characterization.

Method: A total of 331 foot swabs collected from inter digital spaces of sheep with clear cut footrot lesions were screened for 16 rRNA of *D. nodosus* by PCR. Out of the 331 samples, 129 (38.97 %) were found to be positive. All the positive samples were subjected to multiplex PCR for targeting *flbA* gene for identification of serogroup of *D. nodosus*.

Results: Srogroup B was found to be predominant (41.86 %) followed by serogroup I (25.58 %), A (13.95 %), C (10.85 %), E(3.10 %) and H(4.65 %). The serogroup H was identified for the first time from the Indian subcontinent. The sequence and phylogenetic analysis of the present sequence was done with the available serogroup H sequences of GenBank revealed close association with the serotype H1.

Conclusions: Multiple serogroups of *D. nodosus* are responsible for footrot in sheep in India.

IBP02
Structure and specificity of *Helicobacter pylori* aminopeptidase

J. Modak1,2, W. Raf1, L. Wijeyewickrema1, R. Pile1, M. Drag1, A. Roujénikova1,2,3,4

1Monash University, Department of Microbiology, Clayton, Australia
2Monash Biomedical Discovery Institute, Infection and Immunity Program, Clayton, Australia
3Wroclaw University of Technology, Department of Bioorganic Chemistry, Wroclaw, Poland
4Monash University, Department of Biochemistry and Molecular Biology, Clayton, Australia

Question: The standard *H. pylori* eradication therapy has lost its efficacy, with an eradication rate dropping to as low as 30 % in Western Europe. Attempting to develop an alternative therapy, we have performed initial characterisation of *H. pylori* M17 aminopeptidase (HpM17AP). To address the structural basis of catalysis and inhibition of this enzyme, we have established its specificity towards an N-terminal amino acid of the substrate and determined the crystal structures of HpM17AP and its complex with the inhibitor bestatin.

Methods: We have analysed the diffraction data sets for HpM17AP and its bestatin complex. HpM17AP activity was screened against a fluorogenic substrate library containing both natural and unnatural amino acids.

Results: The position of phenylalanine moiety of the inhibitor with respect to the active-site residues and with respect to other M17 aminopeptidases suggested that it represents the S1 subsite. In contrast to most characterized M17 aminopeptidases, HpM17AP displays preference to L-Arg over L-Leu.

Conclusions: A close similarity between the structures of HpM17AP and its homologues from other bacteria has allowed the structural features that determine differences in their substrate specificity to be analysed. The results have interesting implications for metabolic utilisation of arginine for the production of primary amines, and cysteine scavenging through degradation of mucosal glutathione.

IBP03
Influence of *Enterococcus faecalis* mobile genetic elements on proteome composition and virulence

*D. Zühlke*1, B. Neumann2,1, J. Bender2, G. Werner2, K. Riedel1

1Ernst Moritz Arndt University, Institute for Microbiology, Greifswald, Germany
2Robert Koch Institute, Wernigerode, Germany

Question: *Enterococcus faecalis* is a commensal Gram-positive bacterium inhabiting the gastrointestinal tract of humans and animals. However, *E. faecalis* is also a major nosocomial pathogen causing a number of diseases, like endocarditis, sepsis or urinary tract infections. The pathogenicity of *E. faecalis* derives from an arsenal of different virulence factors and the treatment of *E. faecalis* infections becomes increasingly difficult due to a variety of antibiotic resistances. *E. faecalis* is highly recombinant and can modify its pathogenic properties thereby representing the possibility of acquisition and transfer of virulence-related genes from and to other pathogens. In the current study we analyzed the proteome composition and phenotypic changes that accompany the transfer of a pathogenicity island (PAI) between two different *E. faecalis* strains.

Methods: To assess the influence of the pathogenicity island the common laboratory strain *E. faecalis* OG1RF and a transconjugant carrying the PAI of strain UW3114 were analyzed with regard to the expression of different virulence factors. Proteins isolated from planktonic and biofilm-grown cells were subjected to a comprehensive, quantitative mass spectrometry-based analysis for a global view on protein expression using GeLC-MS/MS and LC-IMS² approaches. Phenotypical assays were carried out to complement the results from our proteome analysis. Finally, the virulence of OG1RF and the PAI-carrying transconjugant was tested in a *Galleria mellonella* infection model.

Results: In total, we could analyze the expression of more than 1,100 proteins in the cytosol as well as in the extracellular fraction. Expression of PAI-encoded genes in the transconjugant could be verified by proteomics approaches. The Gls24-like protein, which is probably important for virulence of *E. faecalis*, is one of the most abundant proteins in the transconjugant. Cytolytic activity and biofilm formation are enhanced as well. In addition, the *G. mellonella* infection model revealed a higher virulence of *E. faecalis* OG1RF after acquisition of the PAI.

Conclusion: The transfer of the pathogenicity island from the *E. faecalis* isolate UW3114 led to phenotypic changes and enhanced virulence in the laboratory strain OG1RF supporting the idea that mobile genetic elements are important factors in adaptation of *E. faecalis* to clinical environments.
IBP04

Genome sequencing of two novel EHEC/EAE hybrid strains isolated from human infections

* C. Lang1, R. Prager1, P. Auran1, A. Fruth1, E. Tietze1, A. Flieger1
1 Robert Koch Institute, Wernigerode, Germany

Introduction: The so far highest number of life-threatening hemolytic uremic syndrome was associated with a food-borne outbreak in 2011 in Germany which was caused by an enterohemorrhagic Escherichia coli (EHEC) of the rare serotype O104:H4. Most importantly, the outbreak strain harbored genes characteristic of both EHEC and enteropathogenic E. coli (EAE). To evaluate the importance of EHEC/EAE hybrid strains in human disease, we analysed the EHEC strain collection of the German National Reference Centre for Salmonella and other Enteric Bacterial Pathogens (NRW). Additionally to molecular methods, we here analysed the strains of interest by means of whole genome sequencing (WGS).

Methods: The search for EHEC/EAE strains and their subsequent analysis included the following methods: PCR or Southern blotting for the detection of EHEC (such as stx and eaeA) and EAE marker genes (such as aatA) as well as for aggregative adherence fimbriae genes (AAF), characterization of adherence pattern and cytotoxity, analysis of antibiotic resistance profile, macrorestriction analysis / pulsed-field gel electrophoresis, multi locus sequence typing, stx sequence analysis and PacBio and Illumina MiSeq WGS.

Results: After exclusion of O104:H4 EHEC/EAE strains, out of about 2400 EHEC strains sent to NRC between 2008 and 2012, two strains exhibited both EHEC and EAE marker genes, specifically were stx2 and aatA positive. One of the novel EHEC/EAE, isolated from a patient with bloody diarrhea in 2010, harboured stx2a, was serotyped as O59:H1, belonged to MLST ST1136, and exhibited genes for type IV AAF. The second strain was isolated from a patient with diarrhea in 2012, harboured stx2b, was typed as Orough:H4, and belonged to MLST ST26. No AAF genes corresponding to fimbrial types I to V were detected in this strain. The WGS data enabled us to confirm and newly detect virulence markers, to perform genosotyping and to compare the core genome of the strains with those of the same MLST sequence type, the outbreak strain EHEC/EAE O104:H4, EHEC O157:H7 EDL933 and EAE O44:H18 042.

Conclusion: So called mixed E. coli pathovars or hybrid strains have been seldom described and show a high virulence potential. We found two novel strains isolated from human disease cases in Germany in 2010 and 2012 that belong to MLST sequence types and/or serotypes seldom associated with human disease. In addition to stx2 these strains harbour EAE characteristics which further qualify them to cause severe disease.

IBP05

Biological growth and toxin release in silicone breast implants as a cause for adverse events?

* J. Reimüller1, A. Reimüller2
1 Klinik am Sonnenberg, Wiesbaden, Germany
2 Universität Mainz, Institut für Physik, Mainz, Germany

Silicone gel mammary prostheses are composed of an outer shell of a highly cross-linked silicone elastomer and an inner partly cross-linked silicone gel serving as a filler material. The industrial production should follow GMP principals to avoid chemical and biological contaminations. We here report on investigations in explanted silicone gel breast implants indicating the possibility of biological growth like fungi or bacteria inside the gel. We identified a series of approximately 10 % of the total explanted silicone mammary prostheses with intact shells which showed small visible inclusions of brown flakes in the inside gel resembling organic growth. In turn this would give rise to the assumption of toxin production and release by the micro-organisms which are protected by the silicone shell and gel against the immune system. The prerequisites for biological growth implicate failures of the manufacturing causing biological contaminations of the inside material, failure of sterilisation as a final step of production, influx of nutrients and water once being implanted, optional oxygen supply, and convenient growth conditions inside the implant or body respectively. We explain how these conditions may accidently coincide. Toxin release may be a new explanation for the development of complications associated with silicone gel implants including loss of breast tissue by apoptosis and the development of anaplastic large cell lymphoma [ALCL]. We demonstrate in this presentation a series of photographs and micrographs to visualise the phenomenon. The clinical impact of our findings may be underlined by the fact that ALCL as a site specific lymphoma is reported in a still rising number in the literature and seems to be associated with silicone breast implants. Up to now the understanding of this development is poor.

IBP06

Effect of antibiotics treatment on the microbiome of bacterial vaginosis patients

* C. Gottschick1, M. Vital1, C. Masur3, W. Mendlung1, C. Abels1, D. Pieper3, I. Wagner-Döbler1
1 Helmholtz Centre for Infection Research, Microbial Communication, Braunschweig, Germany
2 Robert Koch Institute, Wernigerode, Germany
3 Center for Infections in Gynecology and Obstetrics, Wuppertal, Germany

Bacterial vaginosis (BV) is a disease of the female genital tract which is characterized by a change in bacterial diversity from a uniform flora dominated by Lactobacilli to a flora that is highly diverse. BV has a high rate of recurrence which might be caused by biofilms that survive antibiotic therapy. Therefore a clinical study was conducted to test antimicrobial treatments after standard therapy with the antibiotic metronidazole.

16S rDNA amplicon sequencing showed that all women diagnosed with BV and a biofilm on clue cells had a highly diverse microbial flora with Ascoplobium vaginatum being the most abundant species followed by L. iners, Streptococcus sp., Prevotella sp. and Gardnerella vaginalis among many others. All of these taxa were present in every woman with BV. In the majority of cases (n=37, 84 %), metronidazole treatment changed the microbial profile drastically to a healthy flora dominated by Lactobacilli, concurrent with lack of clinical symptoms. Recurrence to a microbial community with high diversity similar to BV was observed in 11 (30 %) of those 37 cured women during the next 4 months. Interestingly, Lactobacilli in women diagnosed with BV were dominated by L. iners (69 %) even after successful treatment, whereas healthy women from a control cohort were colonized mainly by L. crispatus and L. gasseri (80 %) and only to a smaller extent by L. iners (16 %). This confirms the ambiguous role of L. iners in vaginal health. Most importantly and unexpectedly, these results show the effectiveness of metronidazole in treating acute BV. Further work will focus on the factors leading to recurrence of BV and will investigate why some women did not respond to metronidazole treatment using RNA sequencing.

IBP07

Seroprevalence of Helicobacter pylori among asymptomatic students in Jazan university, Saudi Arabia

* K. Sayeed Ismail1, M. Alabboud2, T. Beg1, S. H. Arif1
1 Jazan University, Biologiy, Jazan, Saudi Arabia

Helicobacter pylori has been associated with peptic ulcer and gastric carcinoma. The present study aimed to find the seroprevalence of Helicobacter pylori infection in some male students of Jazan University, Kingdom of Saudi Arabia.

A total of 41 students were enrolled in this study (n=41). Informed consent was obtained from the students. 2 ml of blood was collected intravenously in a vacutainer evacuated blood collection tube with no additives. The blood was allowed to clot at room temperature. The serum was separated and tested for Helicobacter pylori antibodies immediately using I-tell™ Rapid diagnostic test for the ivitro diagnosis of Helicobacter pylori antibodies. A total of 23 (56.10 %) students tested positive for Helicobacter pylori antibodies. The seroprevalence of Helicobacter pylori was found to be high in some male University students and is a cause of concern regarding their health. The students were counselled and were encouraged to undergo confirmatory test and get medical intervention. Further large scale studies need to be done to plan action against this disease causing organism so as to improve the health of students.
IBP08 Magnitude of gene mutations conferring drug resistant in Helicobacter pylori

M. Bauer1, T. P. Schmidt1, S. Weßler1

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany

Question: The opportunistic human pathogen *Aspergillus fumigatus* is the most important cause of fatal fungal infections in immunocompromised individuals, such as chemotherapy patients or solid organ transplant recipients. Generally, infection is established by fungal conidia which are ubiquitously present in the air. To date, a reliable diagnosis is difficult and treatment options are limited resulting in high mortality rates of infected patients. Phagocytes, i.e. monocytes and neutrophil granulocytes, are in the first line of defense against invading fungi. We aim at the elucidation of potentially different responses of human phagocytes towards *A. fumigatus* from immunosuppressed patients versus healthy controls to promote a better understanding of the mechanism of invasive fungal infection, which is the key towards improved prophylaxis and therapy of patients.

Methods: To this end, leucocytes from healthy blood donors or from immunosuppressed patients were co-incubated with resting or pre-swollen FITC-labelled *A. fumigatus* conidia for 0.5 hours, 2 hours and 4 hours. Leucocytes without conidia served as control. Afterwards, cells were analysed by flow cytometry for phagocytosis as well as monocyte and neutrophil antigen marker expression.

Results: Up to 63 % of leucocytes from healthy donors performed phagocytosis of *A. fumigatus* conidia. This maximum was achieved by neutrophils after 2 hours and by monocytes after 4 hours of co-incubation. Preliminary analysis of patient-derived cells revealed no significant difference in monocyte behaviour but phagocytosis by neutrophils was massively impaired (55 % or lower) at all time points. The known upregulation of neutrophil-specific CD66b upon cell activation was observed in both healthy and immunosuppressed neutrophils. However, in healthy neutrophils, CD11b was upregulated after 0.5 hours of co-incubation compared to conidia-free controls and returned to basal levels within 4 hours. By contrast, CD11b expression in patient-derived neutrophils remained at elevated levels after an initial increase. These effects could not be observed in monocytes. Instead, upon co-incubation monocytes and neutrophils of both healthy and immunosuppressed origin showed a massive down-regulation of CD33 and monocytes also of CD274.

Conclusion: Compared to healthy individuals, we assume a delayed response of neutrophils against *A. fumigatus* conidia in immunosuppressed patients due to a decreased phagocytosis rate as well as the lack of upregulated CD11b returning to a basal level. The relevance of these findings is to be analysed.

IBP11 The role of the pore-forming toxin Ecel1 of Candida albicans during translocation through the intestinal epithelial barrier

T. Förster1, S. Mogavero1, D. Wilson1, M. Mayer1, S. Allert1, S. Höß1, J. Naglik1, D. Hube1

1Institute of Medical Sciences, Fungal Group, Aberdeen, Great Britain
2Kings College, Dental Institute, London, Great Britain

The opportunistic pathogen *Candida albicans* is a common and mostly harmless inhabitant of the human gastrointestinal tract. However, the fungus can cause life-threatening blood stream infections in immunocompromised patients by translocating from the gut lumen into the blood stream. To date, the molecular mechanisms of this translocation are widely unknown. It is clear, however, that a healthy microbiota is important to restrict the overgrowth and virulence of *C. albicans*. We discovered that the well-known hyphae-associated gene ECE1 encodes a polypeptide, which is processed into eight peptides via the protease Kex2.
One of the peptides, Ecel-III, acts as a pore-forming toxin. Here we want to elucidate the effect of Ecel-III on probiotic bacteria and its role for the translocation of C. albicans.

We created an ece1ΔΔ deletion mutant, a revertant ece1ΔΔ+ΔECE1 and a mutant that lacks only the Ecel-III-encoding sequence and assessed their influence on different processes that contribute to translocation. These include barrier function integrity (measurement of electrical resistance, TEER), damage (LDH assay) and a newly established translocation assay. For all analyses we used differentiated Caco-2 C2BB61 intestinal cell monolayers. We also tested various synthetic Ecel-III variants to investigate the role of specific substitutions on damage or TEER of C2BB61 cells. The same Ecel-III variants were tested for their ability to kill probiotic bacteria by measuring metabolic activity, membrane integrity or minimal bactericidal concentration.

Data obtained with the ece1 mutants showed that Ecel-III is dispensable for filamentation, adhesion and invasion, but is essential for epithelial damage, integrity loss and translocation through Caco-2 cells. However, the synthetic Ecel-III variants have almost no effect on Caco-2 cells except for an N-terminal truncated version (Ecel-III(1-149)). All tested bacteria were not killed but agglutinated by Ecel-III and they were effectively inhibited by Ecel-III(142).

Ecel-III of C. albicans is an important factor responsible for damage by and translocation of the fungus through intestinal epithelia, which presumably needs hyphal formation for full function. Probiotic bacteria aggregate, but are not killed by native Ecel-III. However, a shorter peptide version of Ecel-III efficiently killed bacteria.

IBP12

Protein S-mycothiolation functions in redox regulation of the glyceraldehyde 3-phosphate dehydrogenase Gap in the pathogen Corynebacterium diphtheriae

M. Saleh1, B. Pedrec, M. Hillion1, M. Imber1, S. Maafi1, D. Becher2, J. Messens2, H. Antelmann1

1Freie Universität Berlin, Institut für Biologie-Mikrobiologie, Berlin, Germany

2Vrije Universiteit Brussel and Brussels Center for Redox Biology, Structural Biology Research Center, Brussels, Belgium

3Ernst Moritz Arndt University of Greifswald, Institute for Microbiology, Greifswald, Germany

Question: C. diphtheriae utilizes mycothiol (AcCys-GlcN-Ins, MSH) as thiol-redox buffer. In response to oxidative stress, MSH forms mixed disulfides with proteins, termed as protein S-mycothiolation. Protein S-mycothiolation was identified as important reduct modification in Actinomycetes that protects proteins against overoxidation and regulates protein functions. In C. diphtheriae, we have recently identified 28 S-mycothiolated proteins under hypoxochlorite stress. The glyceraldehyde-3-phosphate-dehydrogenase GapA (DIP1310) was the most abundant S-mycothiolated in C. diphtheriae that is a conserved target for redox-regulation and protein S-thiolation across all domains of life. Thus, we were interested to study the changes in the activity of GapA in response to oxidative stress and the redox-regulation of this enzyme by protein S-mycothiolation and the mycoredoxin and thioetheroxin pathways.

Methods: To identify and quantify S-mycothiolated GapA in C. diphtheriae we applied shotgun-LC-MS/MS and the OxICAT approach. Recombinant GapA was produced as His-tagged fusion protein in *E. coli* and used for antibody production. The GapA antibody and the electron transfer pathways in *C. diphtheriae* were monitored spectrophotometric by consumption of NADH and NADPH, respectively.

Results: The results revealed that GapA is S-mycothiolated in C. diphtheriae under hypochlorite stress at its active site Cys153. Using enzyme kinetics, GapA’s glycolytic activity could be reversibly inhibited by increasing H2O2 concentrations in the presence of MSH due to S-mycothiolation and could be reactivated by DTT. Inactivation of GapA using H2O2 without MSH was irreversible due to overoxidation of the active site Cys since no reactivation was possible with DTT. Further results revealed that both, the Mrx1 and Trx-pathways are able to reduce Gap-SSM to restore its activity.

Conclusion: Our results document the important role of protein S-mycothiolation and the Mrx1 and Trx reducing pathways as mechanisms for GapA redox regulation during oxidative stress conditions. As key enzyme in the glycolysis, Gap provides the energy by regulation of the substrate level phosphorylation step. Thus the reversible redox-regulation and protection of Gap under oxidative stress conditions is essential for bacterial survival.

IBP13

Suppression of the heat sensitive AgrsB phenotype by mutants affecting the initial step of peptidoglycan biosynthesis in *Listeria monocytogenes*

J. Rismondo1, J. Bender2, U. Nübel2,3, S. Halbedel1

1Robert Koch Institute, Wernigerode, Germany

2Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany

Question: DivIVA proteins are involved in various processes like cell division, growth and virulence in most Gram-positive bacteria. Firmicutes possess a DivIVA paralog, named GpsB, which is important for the septal coordinate and lateral cell wall biosynthesis in *Bacillus subtilis* (1) and essential for septal ring closure in *Streptococcus pneumoniae* (2). In the human pathogen *Listeria monocytogenes*, GpsB controls the activity of the bi-functional penicillin binding protein PBP A1, mediating the last two steps in cell wall biosynthesis (3). Deletion of gbsB caused morphological aberrations and strong virulence attenuation in *L. monocytogenes* due to defects in cell wall biosynthesis. Remarkably, the ΔgbsB mutant is unable to grow at elevated temperatures (42 °C) but can be stably maintained at lower temperatures (30 °C, 3). Besides its effect on PBP A1, the function of GpsB is only poorly understood. Here, we present a suppressor screen for the isolation of gbsB suppressors that restore viability at 42 °C.

Methods: A *L. monocytogenes* gbsB mutant was streaked on plate and incubated at 42 °C. Spontaneous suppressors became visible after two days of incubation, were isolated and sequenced using next generation sequencing (MiSeq) to map the mutations leading to the ability to grow at 42 °C. The identified genes and their impact on the heat-sensitive gbsB phenotype were studied in genetic experiments.

Results: We isolated two suppressors carrying a mutation in the clpC gene, which encodes the ATPase-subunit of the Clp-protase, and three suppressors, carrying mutations in the murZ (lmo2552) gene. MurZ is one of two UDP-N-acetylglucosamine 1-carboxyvinyltransferases, which are present in *L. monocytogenes*. All five suppressors showed wild-type growth at 42 °C. Deletion of the clpC and murZ genes in the GbsBΔ background also suppresses the GbsBΔ phenotype. Western blot analysis showed that MurA, the major UDP-N-acetylglucosamine 1-carboxyvinyltransferase of *L. monocytogenes*, is overexpressed in all suppressor strains as well as in the clpC and murZ deletion mutants. Mutations in other UDP-N-acetylglucosamine consuming pathways (decoration of wall teichoic acids by Lmo2550 and GtcA) also suppressed the gbsB phenotype. These data represent the first reported genetic link between gbsB and initiation of peptidoglycan biosynthesis.

Conclusion: Our results show that increased protein level of MurA can suppress the heat sensitive phenotype of the ΔgbsB mutant. MurA is responsible for the first step of peptidoglycan synthesis, therefore giving a further connection between GpsB and cell wall biosynthesis in *L. monocytogenes*.

(3) Rismondo et al. 2015 Mol Microbiol. accepted

IBP14

Candidalysin

S. Mogavero1, S. Hoefk, T. Luo2, T. Krueger2, D. Moyes3, J. Richardson1, T. Gutzmann2, O. Bader2, D. Wilson2, J. Naglik2, B. Hube1,3

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Microbial Patholytic Mechanisms, Jena, Germany

2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany

3King’s College London, Dental Institute, London, Great Britain

Question: *Candida albicans* is a well-known virulence factor, although the molecular mechanisms underlying the damaging potential of this fungal morphology remain to be unraveled. The Ece1 gene has long been known as a gene highly expressed during - but dispensable for - hyphae formation in *C. albicans*. This characteristic led to the hypothesis that its function might be accessory to hyphae formation. Here we
disassemble the role that Ece1 has in pore-forming mediated damage of human host cells.

Methods: A set of ece1 mutants have been phenotypically screened for damaging, adhering, and invading potential of different host cell types, including epithelial cells (ECs) and red blood cells (RBCs). Ece1-derived synthetic peptides were tested for damaging potential. LC-MS analysis was adopted to gain insight into the processing of the Ece1 polypeptide. Biophysical analysis was used to test the membrane composition that was most susceptible to peptide intercalation and pore formation.

Results: All ece1 mutants were indistinguishable from the wild-type in many traits, such as hyphal length, adhesion or invasion ability, but a new clear phenotype emerged: ece1AA was strongly reduced in its damaging potential during infection of all tested cells, including human oral, intestinal and vaginal ECs and RBCs. An in silico analysis of the Ece1 amino acidic sequence hinted towards the protein being a polypeptide composed of eight peptides ending (all except the last one) with a common motif, i.e. Lysin-Aarginin (KR). This is a recognition site for the endoprotease Kex2. All eight peptides have been synthesized and tested for their cytolytic activity, but only Ece1-III was able to cause damage. This potential was observed in all tested cells. Ece1-III intercalated into host membranes and formed lesions, a feature that was highly enhanced by the presence of phosphatidylserine, tested by Förster resonance energy transfer. LC-MS analyses confirmed the presence of Ece1-III in C. albicans hyphal supernatants, together with partial hits of other predicted peptides.

Conclusion: During hyphal formation, Ece1 is processed into smaller peptides and secreted into the surrounding media. The secreted C. albicans hypha-associated peptide toxin then intercalates into mammalian cell membranes, forming pores and resulting in host cell lysis. We named this toxin Candidysin. This is the first peptide toxin described in a human fungal pathogen.

IBP15

Identification of new immune evasion proteins of the human pathogen *Staphylococcus aureus*

A. Westphal, B. Olsken, M. Selle, S. Engelmann, P. Klockpot, P. F. Zipfel

1Friedrich Schiller University, Jena, Germany

2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany

3Ruhr University Bochum, Electrical Engineering and Plasma Technology, Bochum, Germany

Aims: To identify novel Factor H binding proteins of *S. aureus* that recruit human complement regulators to its surface in order to evade host complement attack. *S. aureus* and other pathogens e.g. recruit Factor H, a regulator of the alternative complement pathway. Here we identify two novel staphylococcal proteins that bind Factor H and protect the pathogenic bacterium from host complement attack: Complement regulator acquiring surface protein 7 (CRASP7) is a moonlighting protein that binds Factor H and is also involved in purine biosynthesis. CRASP8, the second staphylococcal Factor H binding protein is a member of a family of superantigen-like proteins.

Results: In order to identify novel Factor H binding proteins of *S. aureus* a screening via a protein microarray was performed. The two Factor H binding proteins CRASP7 and CRASP8 were identified, subsequently cloned, recombinantly expressed and purified. Binding was analysed by ELISA and biolayer interferometry. Factor H, when bound to each CRASP protein maintains complement regulatory activity, e.g. acts as a cofactor for the protease Factor I, assisting in cleavage of C3b. This cleavage decreases complement amplification at the level of the C3 convertase. Although both staphylococcal proteins bind to Factor H, they influence complement in different ways. CRASP8 inhibits the alternative pathway of complement, as demonstrated in a complement activation assay. However a staphylococcal CRASP7 insertion mutant, that does not express CRASP7, shows attenuation effects regarding survival compared to the wildtype in *in vivo* assays in the wax moth larvae *Galleria mellonella* and mice kidney abscess and lung infection models. Both staphylococcal CRASP6 and CRASP8 also bind C3, the central human complement component. Therefore further studies will investigate if the CRASP variants upon binding to C3 inhibit complement at the level of the C3 convertase via phagocytosis assays and complement specific experiments. *S. aureus* evolved multiple complement and immune evasion strategies. As there is an ongoing spread of antibiotic resistant staphylococci research aims to identify and characterize immune evasion proteins and identify their mode of action in order to develop new antistaphylococcal compounds. CRASP7 turns out to be a novel staphylococcal inhibitor of the alternative pathway, likely due to Factor H and C3 binding. CRASP8 may offer advantages in comparison to already known CRASP inhibitors. Thus CRASP7 and CRASP8 may provide prospective targets for therapeutic immune interference.

IBP16

B cells and antibodies in protective immunity to *Candida albicans* infection

M. Ferreira-Gomes, S. Greim*, I. D. Jacobsen*, B. Jungnickel*

1Friedrich Schiller University, Department of Cell Biology, Jena, Germany

2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany

Aims: To identify and characterize immune evasion proteins and identify mechanisms resulting in comparably short survival times of human C. albicans colonized mice. There may be an increase in IgA in the gastrointestinal tract of these mice. Moreover, at day 21 post-infection a significantly elevated amount of specific IgG1 can be detected in the blood of colonized mice. In 2012, Wächter et al. showed that epithelial cell damage caused by *C. albicans* is strongly reduced upon incubation with human serum. Analysis of *C. albicans*-infected epithelial cells showed that the reduced damage is serum concentration-dependent, and that although antibodies appear not to be the main responsible factor, they may contribute to this protection. Further analysis of the effect of human serum antibodies on *C. albicans*-infected epithelial cells will provide more insights into the role of antibodies in protection against cell/tissue damage.

To stimulate antibody production by B cells, fungal products might trigger specific signals in these cells. We are investigating the role of fungal cell wall components in B cell stimulation, differentiation and antibody production.

Results: Three distinct parts of the project attempt to clarify the role of *C. albicans*-induced antibodies in the response mechanisms against *Candida albicans* infection, since although the importance of adaptive immunity in *Candida albicans* infection has been extensively studied, the contribution of B cells and antibodies is still not clear.

IBP17

Genome-wide screening for plasma-sensitive mutants reveals molecular mechanisms for bacterial inactivation

M. Krewing, F. Jarzina*, J. Lackmann*, J. Benedikt*, J. Bandow*

1Ruhr University Bochum, Applied Microbiology, Bochum, Germany

2Ruhr University Bochum, Electrical Engineering and Plasma Technology, Bochum, Germany

3Ruhr University Bochum, Coupled Plasma-Solid State Systems, Physics and Astronomy, Bochum, Germany

Aims: Research on cold atmospheric plasmas in the field of biomedicine is of growing interest. Next to enhanced wound healing and improved blood coagulation, disinfection and sterilization are major applications of cold plasmas. Hitherto, little is known about the molecular and genetic mechanisms resulting in comparably short survival times of microorganisms when exposed to plasmas [1, 2].

The genetic features of bacteria supporting the survival of a critical plasma dose were investigated in the model organism *Escherichia coli* using a single-gene knockout library. This strain collection constructed at Keio University includes approximately 4,000 deletion mutants, each missing one non-essential gene [3]. A comprehensive screening of this library
against non-lethal doses of plasma generated by an atmospheric-pressure plasma jet was performed resulting in a set of 87 mutants with increased sensitivity towards plasma. For some of the genes knocked out in these mutants the involvement in the course of plasma tolerance appears obvious, such as aard for coding for an H2O2 detoxifying catalase and a transcriptional regulator of the oxidative stress response, respectively. For other genes, their part in plasma tolerance is not as clear, as for instance for flgG and flgC, both coding for proteins of the flagellar apparatus. In order to identify for each “plasma-tolerance” gene the individual plasma factor it mediates resistance against, the knockout mutants were further treated with different stressors mimicking single components generated by plasma, e.g. decreased pH value, paraquat as inducer of superoxide stress, diamide for simulation of disulphide stress, or peroxynitrite as reactive oxygen and nitrogen species. For more than 80 % of the 87 plasma-sensitive mutants at least one stressor was found causing a growth deficiency similar to plasma treated samples. The overall findings indicate that a set of plasma-tolerance genes increases the ability of bacteria to survive under life-threatening plasma conditions, while many of these genes seem to be involved in cellular stress resistance mechanisms protecting bacteria from various environmental stressors.

Results: The influence of divalent cations on HtrA’s E-Cadherin cleavage activity

*M. Huerer1, T. P. Schmidt1, S. Weißler1
1Paris-Lodron University Salzburg, Molecular Biology, Salzburg, Austria

Question: Eukaryotic as well as prokaryotic HtrAs (high temperature requirement A) act as serine proteases and molecular chaperones and therefore play an important role in protein quality control by degrading misfolded proteins. The epithelial adherence glycoprotein and tumour suppressor E-Cadherin has been shown to be actively cleaved on gastric epithelial cells by HpHtrA from the human pathogen and class I-carcinogen Helicobacter pylori (H. pylori). E-Cadherin cleavage has drastic consequences for the integrity of the epithelial barrier as it contributes to the loss of cell-cell adhesion, to alterations in cell signalling pathways and finally to carcinogenesis. The stability of E-Cadherin-mediated adherience is determined by calcium binding, which is essential for homophilic interactions of the ectodomains of E-Cadherin. However, we investigated the effect of calcium and other divalent cations on E-Cadherin cleavage by HpHtrA in cell culture and in vitro cleavage experiments.

Methods: To determine the effects of divalent ions (CaCl2, ZnCl2, MgCl2, MnCl2, and BaCl2) on E-Cadherin cleavage and HpHtrA activity, we performed infection experiments with different gastric epithelial cells and H. pylori as well as in vitro cleavage assays using recombinant human E-Cadherin as a substrate. The cleavage activity was measured by detection of the soluble ectodomain of E-Cadherin in the supernatant of infected cells or E-Cadherin fragments in in vitro cleavage assays. The regulation of the caseinolytic activity of HpHtrA by divalent ions was analysed by zymography.

Results: In vitro cleavage experiments revealed that calcium ions strongly inhibited E-Cadherin cleavage, whereas the chelators EDTA and EGTA favored the cleavage activity. This was also observed in infection experiments, but to a lesser extent. At the same time, calcium ions had no effect on the caseinolytic activity of HpHtrA, indicating a direct effect on E-Cadherin structure, but not on HpHtrA activity. Furthermore, we could show that zinc as well as manganese ions were able to inhibit E-Cadherin cleavage and decrease HpHtrA activity in vitro.

Conclusion: Calcium ions decrease E-Cadherin cleavage by HpHtrA in vitro as well as in infection experiments. We suggest that the inhibitory effect of calcium ions was due to alteration of the dimerization and accessibility of E-Cadherin for HtrA. Additionally, zinc ions and to a lower degree manganese ions seemed to inhibit HpHtrA activity, which leads to the conclusion that divalent salts can affect HtrA activity as well as the cleavage accessibility of E-Cadherin and therefore might influence H. pylori pathogenesis.

IBP18 Establishment of a commensal gut model to study interactions between C. albicans and Lactobacilli

*A. Dräger1, K. Graf1, B. Hube1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoll Institute, Microbial Pathogenicity Mechanisms, Jena, Germany

Question: Candida albicans is both, a harmless commensal on mucosal surfaces and the most common cause of life-threatening nosocomial fungal infections. The main reservoir for systemic C. albicans infections is the gut. In both stages, as a commensal and as a pathogen, C. albicans not only interacts with the host but also with other members of the microbial flora. Furthermore, removal or imbalance of the bacterial microbiota is a significant predisposing factor for disseminated candidiasis. Furthermore, removal or imbalance of the bacterial microbiota is a significant predisposing factor for disseminated candidiasis. As a read-out of these coincubations, we measured the interactions of C. albicans and Lactobacilli using a yeast and bacterial apparatus. In order to identify for each “plasma-tolerance” gene the individual plasma factor it mediates resistance against, the knockout mutants were further treated with different stressors mimicking single components generated by plasma, e.g. decreased pH value, paraquat as inducer of superoxide stress, diamide for simulation of disulphide stress, or peroxynitrite as reactive oxygen and nitrogen species. For more than 80 % of the 87 plasma-sensitive mutants at least one stressor was found causing a growth deficiency similar to plasma treated samples. The overall findings indicate that a set of plasma-tolerance genes increases the ability of bacteria to survive under life-threatening plasma conditions, while many of these genes seem to be involved in cellular stress resistance mechanisms protecting bacteria from various environmental stressors.

Results: The influence of divalent cations on HtrA’s E-Cadherin cleavage activity

*M. Huerer1, T. P. Schmidt1, S. Weißler1
1Paris-Lodron University Salzburg, Molecular Biology, Salzburg, Austria

Question: Eukaryotic as well as prokaryotic HtrAs (high temperature requirement A) act as serine proteases and molecular chaperones and therefore play an important role in protein quality control by degrading misfolded proteins. The epithelial adherence glycoprotein and tumour suppressor E-Cadherin has been shown to be actively cleaved on gastric epithelial cells by HpHtrA from the human pathogen and class I-carcinogen Helicobacter pylori (H. pylori). E-Cadherin cleavage has drastic consequences for the integrity of the epithelial barrier as it contributes to the loss of cell-cell adhesion, to alterations in cell signalling pathways and finally to carcinogenesis. The stability of E-Cadherin-mediated adherience is determined by calcium binding, which is essential for homophilic interactions of the ectodomains of E-Cadherin. However, we investigated the effect of calcium and other divalent cations on E-Cadherin cleavage by HpHtrA in cell culture and in vitro cleavage experiments.

Methods: To determine the effects of divalent ions (CaCl2, ZnCl2, MgCl2, MnCl2, and BaCl2) on E-Cadherin cleavage and HpHtrA activity, we performed infection experiments with different gastric epithelial cells and H. pylori as well as in vitro cleavage assays using recombinant human E-Cadherin as a substrate. The cleavage activity was measured by detection of the soluble ectodomain of E-Cadherin in the supernatant of infected cells or E-Cadherin fragments in in vitro cleavage assays. The regulation of the caseinolytic activity of HpHtrA by divalent ions was analysed by zymography.

Results: In vitro cleavage experiments revealed that calcium ions strongly inhibited E-Cadherin cleavage, whereas the chelators EDTA and EGTA favored the cleavage activity. This was also observed in infection experiments, but to a lesser extent. At the same time, calcium ions had no effect on the caseinolytic activity of HpHtrA, indicating a direct effect on E-Cadherin structure, but not on HpHtrA activity. Furthermore, we could show that zinc as well as manganese ions were able to inhibit E-Cadherin cleavage and decrease HpHtrA activity in vitro.

Conclusion: Calcium ions decrease E-Cadherin cleavage by HpHtrA in vitro as well as in infection experiments. We suggest that the inhibitory effect of calcium ions was due to alteration of the dimerization and accessibility of E-Cadherin for HtrA. Additionally, zinc ions and to a lower degree manganese ions seemed to inhibit HpHtrA activity, which leads to the conclusion that divalent salts can affect HtrA activity as well as the cleavage accessibility of E-Cadherin and therefore might influence H. pylori pathogenesis.
IBP21

In vivo imaging reveals foci of Candida albicans colonization in the murine gut

S. Rudolph1, I. D. Jacobsen1,2
Leibniz Institute for Natural Product Research and Infection Biology
Hans Knöll Institute, Microbial Immunology, Jena, Germany
Friedrich Schiller University, Jena, Germany

Question: Candida albicans is an opportunistic fungal pathogen, which is found as a commensal on mucosal epithelia, especially in the gut. Under predisposing conditions C. albicans can translocate through the intestinal barrier into the bloodstream. Enterin blood vessels, the fungus can disseminate into a variety of organs, leading to life-threatening disseminated infections. Both colonization and dissemination are poorly understood to date. Therefore, the aim of this project is to characterize colonization and translocation with regard to the involved anatomical sites, cell populations and immune response.

Methods: In order to determine at which anatomical sites translocation of C. albicans occurs and which host cells are involved, a murine in vivo colonization/dissemination model (according to Koh et al., 2008) was established. Following antibiosis, mice were infected orally by gavage with a bioluminescent strain of C. albicans. In order to characterize the model, fungal burden and morphology were analyzed in feces, intestinal and internal organs. Flow cytometry was employed to determine the host response. *In vivo* or *ex vivo* bioluminescence imaging was performed to visualize sites of colonization.

Results: Animals remained clinically healthy throughout the experiments. All fungal morphologies were found in the content and in the homogenates of the stomach, small intestine, cecum and colon at different time points after infection. While fecal burden remained relatively stable over the course of colonization, in vivo imaging revealed a rather dynamic behavior with changing intensity and localization of signals. Ex vivo imaging of the gastrointestinal tract revealed distinct foci with bioluminescent signals. By extracting these foci for flow cytometry analysis and comparison to control animals, a distinct immune response of the host was observed upon colonization.

Conclusions: While C. albicans was found to persistently colonize different parts of the murine gut in stable numbers during antibiosis, bioluminescence revealed foci with increased signal intensity. Whether these foci indicate sites of increased fungal density and/or focal invasion is currently under investigation.

IBP22

Bile-mediated resistance of Candida albicans against antifungals

S. H. Hsieh1, S. Brunke2, M. Brock1
Leibniz Institute for Natural Product Research and Infection Biology
Hans Knöll Institute, Microbial Biochemistry and Physiology, Jena, Germany
1University of Nottingham, School of Life Sciences, Nottingham, Great Britain
2Leibniz Institute for Natural Product Research and Infection Biology
Hans Knöll Institute, Microbial Pathogenicity Mechanisms, Jena, Germany

In previous studies an *in vivo* imaging system was applied to study efficacy of caspofungin and fluconazole in therapy of disseminated candidiasis caused by *Candida albicans*. Imaging revealed that fungal burdens in kidneys were significantly reduced under therapy and complete fungal clearance was observed between 5 and 10 days post infection. Interestingly, around 30 % of mice in the treatment group expressed a bioluminescence signal that derived from the gall bladder. This signal persisted despite successful clearance of infection in other organs. Subsequent *in vitro* analyses confirmed that bile significantly decreased antifungal drug efficacies. However, the reason for this protective effect remained unclear. Bile is a natural detergent produced by the liver and manes consists of bile acids or bile salts, cholesterol, phospholipids, biliverdin and proteins. Here, we analyzed the protective effect of different bile components for their protective properties. Interestingly, while unconjugated bile salts revealed strong toxic effects on *C. albicans*, taurine or glycine conjugates were well tolerated. Subsequent analyses revealed that conjugated bile salts conferred resistance against some, but not all antifungals tested. In addition, conjugated bile salts protected *C. albicans* from uptake of the fluorescent dye rhodamine 6G, indicating that drug protection occurs outside of the fungal cell. Therefore, the most likely scenarios for the protective effects will be discussed.

IBP23

Insights into the role of the transcription termination factor Rho of Staphylococcus aureus

A. Nagel1, P. Nicolas2, M. Debarbouille1, C. Guerin1, S. Michalik2, M. Depe1, T. Herzler1, A. Hiron2, A. Murr1, J. Pané-Farrie1, M. van der Kooi-Pol1, E. Gerde1, P. Besnard2, K. Öhlsens6, M. Hecker1, T. Msadek1, J. M. van Dijl3, U. Völker1, U. Mäder1*
1University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
2InrNA, Mathématiques et Informatique Appliquées du Génomé à l’Environnement, Jouy-en-Josas, France
3Institut Pasteur, Department of Microbiology, Paris, France
4University of Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
5University of Greifswald, Institute for Microbiology, Greifswald, Germany
6University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands

Question: We analyzed the transcriptome of *S. aureus* HG001, a derivative of the model strain NCTC2925, under multiple experimental conditions using strand-specific tiling arrays. These conditions cover a broad spectrum of the bacterium’s lifestyles ranging from optimal *in vitro* growth to interaction with host cells. In *silico* data analysis comprised a systematic mapping of transcription units, classification of promoters according to sigma factor dependence, identification of new potential targets for several known transcription factors and annotation of non-coding RNAs including antisense RNAs. This revealed a relatively low abundance of antisense RNAs in the *S. aureus* wild type, where they overlap only 6 % of the coding genes. Previous studies had shown that the transcription termination factor Rho plays a major role in suppressing antisense transcription in *E. coli* [1] and *B. subtilis* [2], and transcription analysis of an *S. aureus* rho deletion mutant indeed revealed a remarkable overall increase in antisense transcription in the absence of Rho. In contrast to results reported for *E. coli*, elevated antisense transcription significantly affected sense transcript levels. Based on these observations the goal of the present study was a detailed comparative analysis of *S. aureus* HG001 and its isogenic rho mutant.

Methods: *S. aureus* strains were grown in different culture media and exposed to several stress stimuli. For investigation of the proteome, cytoplasmatic and secreted proteins of cells grown to exponential and after exposure to stress stimuli revealed only minor differences between the *S. aureus* wild type and the rho mutant. However, the proteome analysis showed significant differences in the abundance of several proteins, namely increased amounts of SaeSR-dependent virulence factors like extracellular adherence protein (Eap) and fibronectin-binding proteins (Fnha and Fnhb) in the absence of Rho. Elevated expression of the regulon controlled by the SaeSR two-component system perfectly confirmed the miRNA data of the tiling array study. Remarkably, the rho mutant exhibited increased virulence in a murine bacteremia model.

Conclusion: Our data suggest that under conditions of Rho deficiency the SaeSR regulatory system of *S. aureus* is activated by a so far unknown mechanism leading to the observed induction of the SaeSR regulon which was shown to increase virulence *in vivo*. Currently, we use cell culture infection models to further explore the impact of the higher levels of SaeSR-dependent virulence factors and the reduced expression of other genes due to antisense transcription in the rho mutant.

IBP24

Novel synthetic antimicrobial peptides against Streptococcus pneumoniae

H. Jindal1, R. Devi1, S. Sekaran1
1University of Malaya, Medical Microbiology, Kuala Lumpur, Malaysia

Background: According to WHO, 1.6 million deaths are caused by pneumococcal infections every year with 0.7 to 1 million in children younger than 5 years mostly in Asia and Africa (1). Like other Gram-
positive bacteria, *Streptococcus pneumoniae* is increasingly difficult to treat due to the irrational use of antibiotics (2). Antimicrobial peptides (AMPs) represent a possible alternative for current antibiotics against drug resistant pathogens.

Materials and Methods: In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. The *in vitro* activity of these peptides was investigated using broth microdilution assay, hemolytic activity assay, time killing assay, and toxicity assay against two cell lines WRL-68 and NL-20. Mechanisms of action of peptides were assessed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), DNA binding assay, and *in silico* molecular docking against three virulent factors.

Results: Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides showed broad spectrum antibacterial activity (7.81µg/ml) against *S. aureus*, methicillin resistant *S. aureus* (MRSA), and *E. coli*. Furthermore, the time killing assay results indicated that the hybrid peptides were able to eliminate *S. pneumoniae* within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxicity was tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic activities at their MICs.

TEM and SEM results showed that these four peptides are killing the bacteria by destroying the integrity of their membranes. DNA binding assay revealed that the hybrid peptides were able to bind to DNA at 62.5 µg/ml preventing it from migration through the agarose gel.

Conclusion: In conclusion, our results indicated that hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against *S. pneumoniae*. Hence, with the growing resistance to traditional antibiotics, our peptides can offer an alternative to today’s antibiotics to protect against resistant bacteria. Currently, *in vivo* study is being carried out to investigate the toxicity and therapeutic efficacy of peptides in animal models.

IBP25

Translocation and phosphorylation of Helicobacter pylori CagA in different epithelial and non-epithelial cells

P. Tammeegger, J. Krischl, S. Weßler

University of Salzburg, Salzburg, Austria

Helicobacter pylori (*H. pylori*) is a gram-negative bacterium, which can induce gastric diseases like severe gastritis or even gastric cancer in the human stomach. *H. pylori* expresses cytotoxin-associated gene A (*cagA*) protein as an important virulence factor, which is translocated into host cells via a type IV secretion system (T4SS). In the cytoplasm, CagA is tyrosine-phosphorylated by Src and c-Abl kinases of the host cell and it deregulates key phospho targets. Inhibition of the *cagA*-encoded tyrosine phosphorylation leads to a more virulent phenotype. Infection experiments with MNK-45, SNU-1 and MEC1 cells revealed an efficient translocation and phosphorylation of CagA followed by a specific cleavage of the full-length CagA protein into two distinct fragments. The amount of these cleavage products increased whereas the intensity of the full-length protein decreased in a time-dependent manner. In the *H. pylori*-infected B cell line MEC1, the phosphorylated full-length CagA was shown, but the cleavage was stronger compared to the MNK-45 cells as reflected by the high amount of the 40 kD CagA cleavage fragment within one hour after the infection. Differences in the cellular phenotype were not obvious.

IBP26

Genome analysis of the insect-killing and humanpathogenic fungus *Conidiosporium coronatus* (Entomophthoromycota, Zygomycota)

1. Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany.
2. Leibniz Institute on Ageing –Fritz Lipmann Institute, Genome Analysis, Jena, Germany.
3. Friedrich Schiller University, Jena, Germany.
5. University Hospital Jena, Electronmicroscopic Centre, Jena, Germany.
7. University of Copenhagen, Department of Plant and Environmental Science; Copenhagen, Denmark.

Conidiosporium coronatus is a soil inhabiting and insect killing fungus, which is able to become a human pathogen in immunocompetent patients. Little is known about the way of infection and mechanisms of pathogenicity. The infection comprises local necrosis of skin and mucosal tissue. Treatment encompasses surgery and subsequent antifungal treatment. We analysed the genome, transcriptome and secretome including the hemolytic activities against human erythrocytes in order to gain insights into the pathogenicity mechanisms at the molecular level. Different fluorescence and electron microscopy methods were used to look for morphological differences and variations between the strains JMC-45/2:1, JMC-45/2:2 and JMC-45/2:3. A variety of media were used to simulate different host or environmental conditions. For example, chitin, keratin and collagen were tested for their inductive potential in virulence-related conditions. As a result, we deciphered important keyplayers at the -omics level.

In addition, the infection process were analysed at the Deutches Elektronen Synchrotron in Hamburg (DESY). We monitored the infection process *in vivo* using the µCT compartment. The aim of this study was the comparison of the colonization by the insect host with other insect killing, but non-human pathogenic, entomophthoralean fungi. This project was funded by the CRC/Transregio 124 FungiNet.

IBP27

Proteome profiling of Burkholderia pseudomallei quorum sensing mutants

K. Stoll-Ziegler, C. Kohler, D. Zühkle, I. Steinmetz, K. Riedel

1. Ernst Moritz Arndt University, Institute for Microbiology, Greifswald, Germany.
2. Ernst Moritz Arndt University, Friedrich-Löffler-Institute of Medical Microbiology, Greifswald, Germany.

Question: Burkholderia pseudomallei, the causative agent of meliodiosis is a Gram-negative soil bacterium in tropical areas. *B. pseudomallei* employs serveral acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) systems which activate specific sets of genes as a function of cell density [1,2]. The genome of *B. pseudomallei* encodes genes for three QS systems with one luxB and one luxR homologue, respectively, and additionally three orlux luxR homologues [3]. The luxR homologues encode AHL synthases, which produce specific AHP, which bind to the respective transcriptional regulator. Thus regulate expression of specific genes involved in virulence like biofilm formation, siderophore biosynthesis or swarming motility [4]. The aim of this study was to clarify the influence of the different QS systems on virulence factor expression.

Methods: We constructed single mutants of the three complete QS systems. Subproteomes of the mutant strains were subjected to mass spectrometry analysis to identify targets of the different QS systems. We used the DIA approach IMSE in combination with the H3J approach for quantification of cystolic proteins and the GeLC MS/MS approach for the analysis of extracellular and surface-associated proteins. Furthermore,
we assessed the biofilm-forming capacity as well as the motility of the different QS mutants.

Results: Our comprehensive proteome analysis of the QS mutants revealed a number of differentially expressed proteins. Among them proteins that are already described as QS-regulated in other Gram-negative opportunistic pathogens, e.g. Burkholderia cenocepacia and/or known to be involved in pathogenicity. We also observed a clear involvement of the QS systems in biofilm formation and motility of B. pseudomallei.

Conclusions: The last and last homologous influence protein expression up- and down-regulation of AHL-dependent proteins in the QS circuitry of B. pseudomallei and thus influence the pathogenicity of this bacterium.

IBP28
Lichtheimia corymbifera and its interaction and long term survival within alveolar macrophages
*K. Voigt1,2, *H. R. Park1,3, V. Schwartze1,2, B. Hanf3, T. Krüger3, S. Nitschke1, S. Schmidt1, O. Kniemeyer1, C. Skerka1, A. Brakhage3,1
Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena Microbial Resource Collection, Jena, Germany
2Friedrich Schiller University, Microbiology and Molecular Biology, Jena, Germany
3Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany
1University Hospital Jena, Elektronenmikroskopisches Zentrum, Jena, Germany

Mucormycosis, an infection caused by mucoralean fungi is one of the devastating fungal infections in humans with the mortality rate of approximately 90 %.

Lichtheimia species are the 2nd and 3rd most causative agents for the infection in Europe and USA, respectively. The main route of this infection is via the respiratory tract where alveolar macrophages (AM) belong to the immune system’s first line of defense and yet the interaction between AM and this fungus are not well known. In our study, we used two strains of L. corymbifera; JMRC:FSU:09682 (fully virulent) and JMRC:FSU:10164 (attenuated) to the pathogenesis of L. corymbifera. First, the phagocytic efficiency of murine alveolar macrophages (MH-S) was investigated.

Leaky AHL system for antibiotic target identification

Protein extract of B. subtilis was used as a proof-of-concept model for identifying antibiotic targets in cytosolic extracts of B. subtilis.

Results:成功的抗生素候选物是识别具有已知靶点的抗生素的有前途的工具。通过大规模抗生素筛选，该团队发现了一个名为TICC的有前途的新方法。TICC使用了两个抗生素库，包括已知和未知的抗生素。该方法能够识别抗生素的目标，包括已知和未知的抗生素。

Conclusion: The identification of known antibiotic targets in cytosolic protein extract of B. subtilis was successful. Rifampicin/RpoB was established as a positive control for future target identification studies on antibiotics with unknown targets.

IBP39
The effect of spore surface modification on the virulence of Lichtheimia corymbifera
*M. Abdelwahab Hassan1, M. Keller1, H.-M. Dahse1, H. R. Park1, V. U. Schwartz1, U. Binder1, C. Lass-Flörl2, K. Voigt1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena Microbial Resource Collection, Jena, Germany
2Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Tirol, Austria, Department of Hygiene, Microbiology and Social Medicine, Innsbruck, Austria

Mucoralean fungi, an order of zygomycetes, can cause mucormycosis, a life-threatening disease such as invasive aspergillosis in immunocompromised patients. In addition to different spore surface alterations on the phagocytosis of murine alveolar macrophages and on the virulence in an invertebrate infection model using larvae of the moth Galleria mellonella. Two strains were used, which was shown to be virulent and attenuated, respectively, in an avian infection model [1], were used in this study. Different physical and chemical treatments of the spore surface were performed using swelling, heat inactivation, glucanases (VinoTaste), proteases (pronase E, trypsin) and detergents (Tween 20). The highest phagocytosis was achieved with the trypsin, pronase E and opsonization treatment. When comparing the two strains, the phagocytosis indexes for resting, swollen and opsonized spore conditions were higher in the virulent strain, whereas protease E and trypsin treatment decreased phagocytosis of the virulent strain. Heat inactivation, Tween 20 and VinoTaste glucanase treatments generally increased phagocytosis of both strains regardless of their virulence behavior in the embryonated hen egg model. Therefore, spores subjected to different spore surface treatments were tested in Galleria mellonella larvae in order to confirm existing virulence data and to verify the impact of spore treatments in the virulence potential to living hosts. Furthermore, the use of Dectin-1 (b-glucan) and Dectin-2 (a-mannan) receptors was investigated by incubation of the macrophages in laminarin and mannan prior to confrontation with spore stimuli. No participation of known receptors from Aspergillus fumigatus (Dectin-1) and Candida albicans (Dectin-2) in phagocytosis was observed. The findings presented in this study will shed light into the recognition of Lichtheimia corymbifera by phagocytes of the murine innate immune system and invertebrate hosts which raise important measures to mammalian infection models.

IBP29
Identification of antibiotic targets by chromatographic co-elution
*D. Willner1, S. Langklotz1, A. Emili2, J. Bandow1
1Ruhr University Bochum, Applied Microbiology, Bochum, Germany
2University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada

Question: Due to a wide spread of bacterial resistances, development of novel antibiotics has become urgent. A prerequisite for the application of promising novel compounds is to understand their mode of action and identify the cellular target. This allows e.g. the estimation of the risk of cross-resistances or potential cytotoxicity for the host. Target identification can be time- and resource-consuming and often requires chemical modification of the compound for immobilization or labeling. Recently, a widely applicable non-denaturating, label-free method for target identification by chromatographic co-elution (TICC) was developed [1]. We set out to adapt this technique for the discovery of antibiotic targets in order to complement our existing platform for mode of action studies based on the proteomic response of model organism B. subtilis.

Methods: For TICC, the antibiotic is first incubated with cytosolic protein extract and subsequently fractionated by native mixed-bed HPLC. Due to drug target binding during incubation, the target-bound antibiotic elutes in different fractions compared to the free compound. These target-containing "shift"-fractions are identified by characterization of the antibiotic elution profile using LC-MS. Potential protein targets are subsequently identified after tryptic digest using LC-MS. Two model systems, composed of known antibiotic-target-pairs, were used to establish TICC for antibiotic research. First, a low-complexity system consisting of purified FabF and the fatty acid biosynthesis inhibitor platensimycin was used [2]. Rifampicin, which inhibits DNA-dependent RNA polymerase by binding to RpoB [3], was used as a proof-of-concept model for identifying antibiotic targets in cytosolic extracts of B. subtilis.

Results: TICC was successfully established for antibiotic target identification in cytosolic protein extracts of B. subtilis. The retention times of platensimycin and FabF were shifted during native HPLC and the target proteins were identified in the "shift"-fractions. FabF, which requires substrate binding for interacting with the antibiotic [2], revealed a limitation of TICC. Due to the used protein extraction method, metabolites were removed from the extract. As a consequence, target proteins like FabF might be inactive during drug-target incubation, which eventually prevents drug binding and target identification by chromatographic co-elution (TICC).

Conclusion: The identification of known antibiotic targets in cytosolic protein extract of B. subtilis was successful. Rifampicin/RpoB was established as positive control for future target identification studies on antibiotics with unknown targets.

IBP31
Selection of protein interaction partners for therapeutic and diagnostic applications
J. Bitten1, S. A. Funk1
1Coburg University, Coburg, Germany

Protein-protein interactions play a central role in nearly all biological processes. Interactions between food-borne pathogens and human host cells lead to invasion of the cell by the bacteria and human body infection. We investigate protein-protein interactions for therapeutic and diagnostic applications, e.g. to target Listeria monocytogenes. L. monocytogenes is a pathogenic bacterium responsible for foodborne infections and listeriosis, a disease with a high mortality rate. In spite of treatment with antibiotics, 20-30% of clinical infections result in death. Media report frequently about recalls of contaminated meat and cheese products. Hence, it is very important to detect listeria in food and to prevent the entrance in human cells. Using a technique called phage display, we develop peptides which inhibit harmful protein-protein interactions, enable diagnosis or immobilize specific proteins to surfaces. Similar molecules are used, inter alia, in many areas of modern medicine and biotechnology.

IBP32
The role of biotin in Candida glabrata – macrophage interaction and virulence
M. Sprenger1, S. Allert1, K. Graf1, L. Kasper1, B. Hube1,2,3
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Microbial Pathogenicity Mechanisms, Jena, Germany
2Friedrich Schiller University, Jena, Germany
3University Hospital Jena, Center for Sepsis Control and Care (CSCC), Jena, Germany

Question: Candida glabrata is a human opportunistic pathogen, which can cause superficial but also life-threatening systemic infections. C. glabrata has evolved strategies to resist killing by macrophages and can even replicate within these immune cells.

In a screening of a C. glabrata mutant collection for attenuated survival in human monocyte-derived macrophages (MDMs) we identified 24 mutants with a reduced intracellular fitness [1]. One of these mutants, vhrΔ, showed strongly attenuated survival in MDMs and in an in vivo systemic mouse infection model [2]. Vhr1 is a positive regulator of biotin uptake, and the orthologue in the related yeast Saccharomyces cerevisiae is known to regulate the expression of the biotin transporter gene VHT1. Thus, the aim is to elucidate the role of Vhr1, Vhr1 and biotin for intracellular survival of C. glabrata in macrophages.

Methods: We created and analyzed VHR1 and VHT1 deletion and revertant strains in MDMs and under biotin-limited conditions. To investigate the Vhr1-dependent transcriptional activation of VHT1 in C. glabrata, we performed quantitative Real-time PCR experiments in the presence of different exogenous biotin concentrations and after phagocytosis by macrophages. To determine whether biotin is important for intracellular fitness, we tested the survival of biotin-starved and biotin-fed wild type cells in MDMs through determination of CFUs. In silico and growth analysis in comparison to C. albicans and S. cerevisiae were performed to study the general biotin metabolism in C. glabrata.

Results: We confirmed a Vhr1-dependent expression of the transporter gene VHT1 in C. glabrata under low biotin conditions and demonstrate that VHT1 is required for survival in macrophages. Thus, both, VHR1 and VHT1 have crucial roles during C. glabrata – macrophage interaction. Prestarvation of C. glabrata for biotin lead to reduced intracellular survival, whereas feeding with high exogenous biotin increased intracellular fitness within macrophages. In general, pathogenic Candida spp. are auxotrophic for biotin, but some are able to synthesize biotin in the presence of biotin biosynthesis precursors. However, in contrast to C. albicans and S. cerevisiae, C. glabrata is not able to utilize these precursors due to the loss of biosynthesis genes.

Conclusion: Our data demonstrate that biotin or biotin-dependent processes are required for survival of C. glabrata within the phagosomal compartment of macrophages. The Vhr1-dependent transcriptional activation of VHT1 is crucial for intracellular fitness. However, it remains unclear whether C. glabrata can use host biotin or whether the fungus is dependent on its own intracellular biotin pool during interaction with macrophages.

IBP33
Establishment of an antibiotic signature library for Pseudomonas aeruginosa
C. Wolff1, D. Zühlke1, J. Panè-Farré1, K. Riedel1
1Institute of Microbiology, Microbial Physiology and Molecular Biology, Greifswald, Germany

Question: Worldwide spread of antibiotic resistance greatly impairs the treatment of bacterial infections. Therefore, antibacterial agents with new mechanisms of action are urgently needed as well as new innovative and cost-effective techniques for the characterization and validation of new drugs. Gel-based proteomics in combination with quantitative gel-free proteomics have emerged as valuable tools to study the physiology of microbes under antibiotic stress conditions. The presented study aims at the creation of a comprehensive antibiotic signature library for Pseudomonas aeruginosa. Protein signatures of P. aeruginosa treated with well-characterized antibiotics will then be used to identify the cellular targets and the mode of action of new compounds showing anti-microbial activity.

Methods: P. aeruginosa PA01 was exposed to various concentrations of different antibiotics with well-defined molecular targets to determine their minimal inhibitory concentrations (MIC): aztreonam 0.5 μg/mL; cefazidine 8 μg/mL; chloramphenicol 16 μg/mL; ciprofloxacin 0.03 μg/mL; colistin 2 μg/mL; gentamicin 4 μg/mL; rifaximin 8 μg/mL; tetracycline 2 μg/mL. For the proteomic analyses, multiples of the MICs were tested in growth experiments to identify antibiotic concentrations that reduced the growth rate of the bacteria but did not inhibit growth completely in order to map the specific antibiotic stress response. Different sub-cellular protein fractions of P. aeruginosa PA01, harvested 30 and 120 min after antibiotic treatment, were prepared and proteins identified using a gel-free LC-MS/MS approach in combination with the H3 method for absolute protein quantification.

Results: Although each antibiotic showed an individual protein expression profile, signature proteins specific for a common drug target were identified (e.g. cell wall, ribosome, and replication machinery). These subsets of proteins whose expression levels are characteristic for a specific antibiotic treatment have been designated as “proteomic signature”.

Conclusions: We established a workflow for a comprehensive antibiotic stress proteome signature library of P. aeruginosa. Using this pipeline, new compounds can now be evaluated to gain insight into their mode-of-action.

IBP34
Regulation of phospholipases D virulence factors in Acinetobacter baumannii
A. Siemund1, J. Stahl1, B. Averhoff1
1Goethe University Frankfurt, Molecular Microbiology and Bioenergetics, Frankfurt a. M., Germany

Question: Hospital acquired (nosocomial) infections with multiresistant bacteria are a rapidly emerging threat worldwide. Especially infections with multiresistant opportunistic pathogens Acinetobacter baumannii strains have substantially increased over the last decade. Adaptation of A. baumannii to clinical habitats is fostered by its persistence on dry surfaces. Moreover, A. baumannii is well adapted to host cells, thriving under iron- and phosphate-limitation at low pH-values and under oxidative stress. However, information with respect to molecular mechanisms of adaptation to clinical environments and the human host is scarce. Detection of three phospholipase D (PLD) genes in the genome of A. baumannii ATCC 19606 raised the question whether the PLD’s play a role in infection and whether transcription of the pld genes is modulated by different physiological conditions found in host cells.

Methods: To analyse the role of phospholipases D in pathogenicity of A. baumannii a markerless mutagenesis system was established and used to generate pld mutants. These mutants were analysed in infection studies. Transcriptional regulation of the pld genes was analysed by qRT-PCR.

Results: All three phospholipases D of A. baumannii were found to play a role as virulence factors. Different stress conditions including growth phase and temperature were identified to affect pld gene expression.

Conclusions: The three PLD’s act in a concerted manner as virulence factors and play a role in host cell invasion. In addition, the three pld genes undergo transcriptional regulation.
IBP35
Biochemical and molecular characterization of the parvulin-type PPlase PrsA2 of Clostridium difficile

*C. Unal1, M. Steinert1, M. Berges1, D. Jahn1, C. Schiene-Fischer1,2
Technical University Braunschweig, Institut für Mikrobiologie, Braunschweig, Germany
Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Halle (Saale), Germany

Introduction: Clostridium difficile is the main cause for nosocomial antibiotic associated diarrhea. Despite appropriate antibiotic treatment up to 10 % of the patients die, and in 40 % the disease relapses due to re-colonization by C. difficile. Because of this C. difficile is becoming a major burden for the health care systems of industrial countries. Two toxins are the primary virulence factors that exert their functions by glucosylating small GTPases of enterocytes. This results in the destruction of tight junctions, infiltration by immune cells followed by heavy inflammation and development of pseudomembranous colitis.

Objectives: Besides the two toxins, other virulence factors and their contribution to development and progression of disease are only insufficiently studied. Under this aspect peptidyl-prolyl-cis/trans-isomerases (PPlases) constitute an interesting class of proteins, as many bacterial PPlases have been described in the context of virulence. Further on, the parvulin type PPlases PsaA of Bacillus subtilis and its homolog in Listeria monocytogenes, PrsA2, are membrane associated lipoproteins that are involved in the secretion of proteins including virulence factors. C. difficile has two putative parvulins (CD630_15570 and CD630_35000) with predicted extracellular location. Of these, CD630_35000 has the highest sequence homology to PrsA2 of L. monocytogenes, and was chosen for detailed analysis.

Materials and Methods: CD630_35000 (CdPrsA2) was cloned into the expression vector pSSBM106. Nine highly conserved amino acids in the catalytic cleft of CdPrsA2 were replaced by alanines using site directed mutagenesis. Wild type CdPrsA2 and its mutants were recombinantly produced in E. coli and purified by Ni-NTA affinity chromatography. By biochemical analyses of both PPlases the optimum for PLC2 activity was pH 9. For cell adhesion and invasion as well as interbacterial competition (1).

Results: PrsA2 and its site directed mutants could be produced in high yields and purity, and were correctly folded as assessed by CD-spectroscopy. By this, catalytically active amino acids as well as the substrate specificity of PrsA2 could be identified. The PrsA2-deficient mutant showed differences in its motility and the composition of its secretome as well as surface layer proteins when compared to its isogenic wild type.

Conclusion: Here we present initial results on the molecular cloning and enzymatic characterization of the secretory PPlase PrsA2 of C. difficile. Future studies aim at evaluating the influence of CdPrsA2 on virulence in more detail.

IBP36
Biochemical characterization of two distinct phospholipases C of Acinetobacter baumannii

*A. Schnakenberg1, B. Averhoff2
Goethe University Frankfurt, Molecular Microbiology and Bioenergetics, Frankfurt a. M., Germany

Question: In the past decades A. baumannii became an emerging threat in hospital environments. Multidrug resistance paired with an array of different virulence factors have led to the development of epidemic lineages with growing mortality rates. Among the virulence factors of A. baumannii are phospholipases C (PLC) and phospholipases D (PLD). Recently, we have identified three PLD of A. baumannii, PrsA2, are membrane associated lipoproteins that are phospholipases C (PLC) and phospholipases D (PLD). Recently, we have identified three PLD of A. baumannii, PrsA2, are membrane associated lipoproteins that are involved in the secretion of proteins including virulence factors. A. baumannii has two putative parvulins (CD630_15570 and CD630_35000) with predicted extracellular location. Of these, CD630_35000 has the highest sequence homology to PrsA2 of L. monocytogenes, and was chosen for detailed analysis.

IBP37
Gene-expression profiling of human monocytes after stimulation with pathogens of systemic infections

*A. Häder1, M. Weber1, K. Hünnger1, T. Hess2, J. Schumacher2, O. Kurzai1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Septomics Research Centre, Research group Fungal Septomics, Jena, Germany
2Institute of Human Genetics University Hospital, Biomedical Center, Bonn, Germany

In the innate immune response against microbes that cause bloodstream infections, human monocytes are of particular importance because they are able to phagocytose, release cytokines and chemokines and trigger adaptive immune responses. Genome-wide gene expression analysis of monocytes after stimulation with a fungal pathogen, a Gram-negative and a Gram-positive bacterium were used to dissect the response of monocytes towards different pathogen classes and identify pathogen specific patterns. Monocytes of five healthy male donors were isolated from venous blood via Ficoll density centrifugation and CD14+ separation. The cells were stimulated with A. fumigatus, N. meningitidis or S. aureus for 3 h and 6 h. RNA of monocytes was used for microarray analysis. Differentially expressed genes (FDR < 0.05, Fold Change > 1.5) were determined for each pathogen.

The results showed that transcriptional patterns of monocytes are clustered Aspergillus or bacteria specific. Within the stimulated samples the expression pattern of both timepoints can be differentiated. Data revealed a comprehensive pathogen-independent core program of gene expression induced by all three pathogens. Within this group mainly genes encoding chemokines (e.g. CCL7, CXCL5), pro-inflammatory cytokines (e.g. IL6, IL8, TNF) or surface marker for activation or adhesion (CD40, CD44) were found. A. fumigatus induced a strong specific response on genes corresponding to the MAPK-signaling pathway (e.g. MAP2K1, MAP4K3, MRAS), to protein processing (e.g. HSPA7, HSPA1L) and to the TNF-receptor superfamily (e.g. TNFSF14, TNFRSF10D, TNFRSF12A). In contrast, the bacterial pathogens shared a large number of differentially expressed genes encoding chemokines (e.g., CXCL, CXCL13), cytokines (e.g. IL19, IL16) or transcription factors of the Jak-STAT signaling pathway (STAT1, STAT2).

These characteristic transcriptional differences between the pathogens can be used as a fundament for future studies to aid the diagnosis of sepsis and to characterize a pathogen specific immune response.

IBP38
Distribution of specific Glycopeptidolipids (GPLs) within subspecies of Mycobacterium avium

*P. Möbius1, J. Kolb1, D. Hillemann2, E. Richter3, H. Köhler3
1Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, NRL for Paratuberculosis, Jena, Germany
2Research Center Borstel, National Reference Center for Mycobacteria, Borstel, Germany
3MVZ Labor Dr. Limbach & Kollegen GbR, Heidelberg, Germany

Members of Mycobacterium avium (M. avium) belong to the direct and indirect human environment; they have been found in soils and waters worldwide. M. avium subsp. hominissuis (MAS) is an opportunistic pathogen responsible for infections in humans, swine and other mammals. M. avium subsp. avium (MAA) and M. avium subsp. silvaticum (MAS) are the causative agents of avian tuberculosis, M. avium subsp. paratuberculosis (MAP) causes Johne’s disease in ruminants. Cell wall glycolipids (GPLs) are discussed to contribute to the virulence of M. avium [1] Different genes involved in the synthesis of GPLs would be expected to modify therefore indirectly the interaction of the bacteria with their hosts. The aim of this study was to investigate the distribution of genes involved in the synthesis of GPLs among subspecies of M. avium and among individual strains. M. avium isolates of different origin were screened for the presence of six selected genes of the GPL cluster. All isolates had been characterized
before by MIRU-VNTR, RFLP and MLST genotyping. Altogether 76 M. avium isolates belonging to MAA (n=18), MAH (n=33), and MAP (n=25) originating from different hosts and some from the environment were investigated including the reference strains ATCC 25291 (MAA), ATCC 19606 (MAP), DSM 44175 (MAP), and additionally the ATCC 13950 (M. intracellulare). The isolates were tested for the presence of selected nonspecific (ss)GPL genes gtfA, rtfA, and mtfC as well as serotype-specific (ss)GPL genes: mdhTA, merA, mtfB by PCR using primers from Johansen et al., 2009 [2]. The selected ssGPL genes mdhTA, merA, and mtfB were detected in most examined strains with the exception of two MAH isolates and M. intracellulare. All MAH and MAA strains, the reference strains of MAS and M. intracellulare, and 16 MAP strains (comprising 15 MAP-C strains and one MAP-S strain) revealed the three ssGPL genes gtfA, rtfA, and mtfC. In 24 MAP isolates no ssGPL gene sequences could be found. One bovine MAP strain lacked only the gtfA gene sequence. There was no association between presence or absence of the three ssGPL genes in MAP and a specific MAP genotype. The presence of gtfA, rtfA, and mtfC in more than one third of the studied MAP strains and in the MAS reference strain is in contrast to previous results of Eckstein et al., 2003 [1]. In conclusion, the concept that MAP is lacking ssGPL genes has to be revised. Further investigations will have to clarify if presence of ssGPL genes is linked to specific membrane characteristics and different interactions of MAP strains with the host.

IBP39 Establishment of a long term cell culture infection experiment for the analysis of intracellular adaptation of Staphylococcus aureus.

L. M. Palma Medina, K. Surmann*, P. Hildebrandt†, S. Mekonnen†, M. Gesell Salazar1, H. Pförtner1, J. M. van Dijl2, U. Völker1

1University Medicine Greifswald, Functional genomics, Greifswald, Germany
2University of Groningen, Medical Microbiology, Groningen, Netherlands

Staphylococcus aureus is a Gram+ bacterium that causes diverse diseases ranging from mild skin infections to severe illnesses like pneumonia and sepsis. However, this bacterium is also a commensal in the anterior nares or the skin. Lately, S. aureus was accepted as an intracellular pathogen that can survive inside non-professional phagocytic host cells. This intracellular persistence, which was already recorded over weeks (Tuchscherr et al., 2015), enables hiding from the immune system and escaping antibiotic treatments. However, currently established cell culture infection assays allow proteome studies of the early adaptation phase of only few hours post infection (p.i.) (Surmann et al., 2015). Here, we established a cell culture infection experiment which allows the proteome study of intracellular S. aureus for longer time periods p. i. Internalization of GFP labeled S. aureus HG001 into 16HBE14o- epithelial cells was allowed for one hour and extracellular bacteria were subsequently killed by addition of Lysostatin. Daily, the epithelial cells were disrupted, and intracellular populations were counted and sorted via flow cytometry. Proteome analysis of sorted S. aureus was performed to follow the adaptation to the intracellular milieu. In order to investigate the behavior of intracellular bacteria further, time-lapse microscopy was carried out for 48 h p. i. Counting of infected 16HBE14o-cells and internalized S. aureus cells revealed that it was feasible to examine the intracellular bacterial population for up to six days after internalization. Sufficient amounts of intracellular bacteria could be collected until three days p.i. for proteome measurements. The intracellular bacterial titer increased during the first day p.i., a time at which it reached its maximum. Time-lapse microscopy revealed two different subpopulations of internalized S. aureus that differed in their replication rates. Thus, rapidly replicating S. aureus cells triggered lysis of the hosting epithelial cells, but a second subpopulation of cells carrying smaller numbers of S. aureus was present during the whole time course of the experiment. The workflow developed will permit the study of intracellular adaptation reactions of S. aureus until a few days p. i. The set-up will be applied for the comparison of clinical isolates, including community and hospital acquired S. aureus strains, in order to elucidate differences in adaptation strategies. Simultaneously, the host cell response to long term infection can be investigated.

IBP40 The fungal quorum sensing molecule farnesol impairs dendritic cell maturation

W. Vivas, I. Leonhardt†, O. Kurzai‡

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Septomics Research Centre, Research group Fungal Septomics, Jena, Germany

Question: The quorum sensing molecule farnesol controls filamentation of Candida albicans. The mechanisms of which farnesol blocks the C. albicans yeast to hyphae form is well known; nevertheless, the impact of farnesol on host cells is poorly understood, especially in dendritic cells (DC), which are key regulators of immunity and promote an anti-fungal Th1 immune response. For this work, we investigated the effect of farnesol in dendritic cell maturation by analyzing phenotype and transcriptional response.

Methods: Human monocytes were isolated from buffy coats of healthy volunteers and differentiated into monocyte-derived dendritic cells (moDCs) in the presence of GM-CSF and IL-4. The immunophenotype of moDCs were addressed by FACS and the transcriptional analysis of DC in response to farnesol was performed by a whole-genome expression direct hybridization assay on a bead chip array.

Results: Transcriptional analysis of farnesol-mediated DC maturation revealed a high number of differentially regulated genes involved in cytokine-cytokine receptor interaction, cell adhesion molecules and antigen processing and presentation. Farnesol significantly interfered with the differentiation process from monocytes to DC. Reduced surface expression of key markers for maturation and antigen presentation (HLA-DR, CD83, CD86, and CD80) could be observed. Furthermore, farnesol modulates the displacement of CD1 molecules. While CD1a showed almost no surface expression; CD1d, a molecule involved in invariant NKT (iNKT) cell activation, was increased on DC generated in the presence of farnesol. Interestingly, we found increased expression of PPARY-associated pathways genes, which could explain the CD1a and CD1d expression pattern and might be a potential target addressed by farnesol.

Conclusions: Farnesol is a potent regulator of moDCs phenotype and is able to induce transcriptional rewiring in these cells. Further experiments will be performed to evaluate the possible role of PPARY activation and signaling in farnesol-treated moDCs.

IBP41 Adaptation of Acinetobacter baumannii to desiccation

S. Zeidler, M. Sand†, V. Müller‡

1Goethe University Frankfurt, Molecular Microbiology & Bioenergetics, Frankfurt a. M., Germany

Question: The opportunistic pathogenic bacterium Acinetobacter baumannii is emerging in intensive care units in hospitals worldwide [1, 2] with recent outbreaks also in German hospitals. A. baumannii has the extraordinary capacity to adapt to and survive in dry environments which enable the bacterium to persist in the hospital environment [3], but the molecular basis for this trait is unknown.

Methods: Growth of A. baumannii was analyzed in media with high osmoralties. The pool of compatible solutes in the bacteria grown under different conditions was investigated via NMR analysis. In addition, we studied the survival of A. baumannii on dry surfaces.

Results: A widespread strategy for the adaptation to low water activities is the uptake or synthesis of compatible solutes, small organic solutes that do not interfere with metabolism and other important cell functions [4]. Our experiments revealed the unusual compatible solute mannitol in Acinetobacter. Mannitol is synthesized by an unusual bifunctional enzyme, the mannitol-1-phosphate dehydrogenase/phosphatase.

Conclusion: Adaptation of A. baumannii to low water environments involves the synthesis of compatible solutes such as mannitol and glutamate.

IPB42 Development of a flow cytometry based assay to determine the invasion frequency of Yersinia pseudotuberculosis into C2Bbe1 cells
*M. Böhringer1, L. D. Sprague1
Friedrich-Ludolf-Institut, Institut für bakterielle Infektionen und Zoonosen, Jena, Germany

Background: In order to determine the invasion frequency of Y. pseudotuberculosis into the adherent epithelial cell line C2Bbe1 we developed an assay, which quantitatively and qualitatively reflects invasion frequency. Previously tested protocols using the gentamicin protection assay (GPA), gave only quantitative estimates of invasion, whereas pre-staining of the bacteria with fluorescent dyes and subsequent quenching of stained extracellular bacteria did not lead to satisfactory results due to the low frequency of invasion.

Methods: Surface epitopes of bacteria were first labelled with EZ-Link Sulfo-NHS-SS-Biotin, a biotinylated NHS-ester containing a disulphide bridge. The biotin moiety was subsequently ligated with the fluorescent labelled Avidin derivative Neutravidin. After infection of the intestinal C2Bbe1 epithelial cells with labelled bacteria, cells were detached with trypsin-EDTA and subjected to reducing conditions (50 mM DTT). C2bbe1 cells were subsequently subjected to flow cytometry analysis, or counterstained with a specific antibody for immunofluorescence.

Results: Reduction of the disulphide virtually completely removed the fluorescent label from the bacteria. Treatment with DTT did not affect epithelial cell membrane integrity as assessed by propidium iodide staining.

Although labelling of bacteria with Neutravidin reduced invasion frequency to about one third of unlabelled control, the signal of intracellular bacteria could be readily detected with a flow cytometer. Quantitative estimates were made by comparing and correlating the flow cytometry and GPA results in infections with different Yersinia species; and by comparing the flow cytometry results with microscopy-based quantitation of intracellular bacteria in immunostained infected cells. Increasing invasion frequencies were observed for the low, medium and highly invasive Yersinia species Y. simila, Y. pseudotuberculosis and Y. enterocolitica in the GPA assay, the FACs based assay as well as in the immunostaining assay.

Conclusion: We developed a flow cytometric assay to quantify invasion frequency of Yersinia spec. in intestinal epithelial cells.

IPB43 Effect of itaconate on Salmonella Typhimurium
*J. Sasikaran1, L. Maier2, B. Periaswamy2, M. Barthel2, W.-D. Hardt2, I. A. Berg1
1University of Freiburg, Microbiology, Freiburg, Germany
2ETH Zürich, Microbiology, Zürich, Switzerland

Iaconate (methylessuccinate) has recently been identified as one of the antimicrobial compounds produced by macrophages upon activation (1, 2). This compound is a potent inhibitor of the key enzyme of the glyoxylate cycle, isocitrate lyase, which is important for survival of many pathogens within macrophages (2-4). Recently, we found that pathogens like Yersinia pestis possess an icatone degradation pathway (5). The rip (required for intracellular proliferation) genes involved in icatone degradation can be found in a number of pathogens including Salmonella Typhimurium (strain SL1344). The ripA, ripB and ripC deletion mutants were severely attenuated in cyb+ nos22 mice, confirming the importance of rip operon for the pathogenesis. Furthermore, the corresponding enzyme activities were detected in cell extracts of S. Typhimurium grown in the presence of icatone. Surprisingly, the growth on acetate and icatone was possible only if the medium contained traces of CaC2 compounds like aspartate, glutamate, or citrate. The reason for that was down-regulation of enzymes involved in anaerobic reactions responsible for the synthesis of C2 dicarboxylic acids from acetyl-CoA. Indeed, we found that icatone not only inhibits icatone lyase activity, but also represses the synthesis of the enzyme of the glyoxylate cycle. The glyoxylate cycle operon ace contains malate synthase (aceC), isocitrate lyase (aceA) and isocitrate dehydrogenase kinase/phosphatase (aceK), and is under transcriptional control of the repressor icrR. Interestingly, ΔicrR strain was capable to grow on minimal medium containing acetate and icatone only. Note that the icrR deletion strain resembles Y. pestis natural phenotype, as Y. pestis icrR appears to be a pseudogene due to a frame shift (6). To explain the effect of itaconate on ace transcription, we studied binding kinetics of different metabolites to recombinant IcrR; the working model will be discussed. To conclude, our study shows the dual effect of itaconate on the metabolism of S. Typhimurium and the relevance of icatone degradation pathway during infection.

2. A. Micheliuchi et al., PNAS 110, 7282-7285 (2013).
activation is accompanied by an increase of alpha helical structures in the foldase indicating notable dynamics upon the formation of the foldase-lipase complex.

Here, we aimed to study the role of foldase for activation and secretion of LipA. In vivo and in vitro by combining biochemical, mutational, structural, single molecule fluorescence and computational methods. Mutational studies revealed foldase residues essential for lipase activation located at the lipase-foldase interface. Single molecule fluorescence resonance energy transfer (smFRET) experiments indicated that roughly 30% of the foldase exists in a binding-competent state even in the absence of the lipase. Additionally, we have observed hinge-movements in the foldase related to helix α8 and bending of helix α9 both presumably relevant for the release of the lipase by a postulated "push-out" mechanism. NMR data revealed possible interactions of the folding domain with the peptide which links the foldase to the bacterial inner membrane. These intramolecular interactions may play an important role for in vivo secretion and activation of lipase.

1BP46
Proteome-wide thiol redox profiling in Clostridium difficile during diamide and bile acids stress
*D. Zühle*1, T. Jordi1, S. Dittmann1, A. Otto1, F. Hochgräfe1, M. Hecker1, K. Riedel1, S. Sievers1
1University of Greifswald, Institute of Microbiology, Greifswald, Germany

Question: The spore-forming, Gram-positive human pathogen C. difficile has become the most frequent cause of hospital acquired diarrhea and serious intestinal inflammation. An increasing antibiotic resistance of the bacterium and a very high relapse rate call for new antimicrobial strategies. During infection, C. difficile is challenged with locally high concentrations of bile acids which have been assumed to cause sulfide stress in bacteria (Cremer et al. 2014). Alterations in the thiol proteome could have dramatic cellular consequences since cysteine residues play an important role in enzymatic reactions and can serve as regulatory switches. We pursue to establish an assay to comprehensively track changes in the thiol redox state of cysteines in order to investigate the suggested action of bile acids as instigators of sulfide formation in C. difficile 630Aerm.

Methods: A differential cysteine labeling protocol based on cysteine alkylation with metabolically labelled iodoacetamide was developed, and its feasibility demonstrated in C. difficile by stressing the cells with diamide which is well-known to provoke disulfide stress. Subsequently, the assay was applied to cells stressed with a cocktail of bile acids. Proteins were separated via SDS-PAGE, in-gel trypticized and analyzed by LC-MS/MS. MaxQuant software was employed to evaluate the redox status of cysteines.

Results: Bioinformatics inspection of the C. difficile proteome reveals an extraordinarily high content of the amino acid cysteine. The established differential cysteine labeling assay not only allows to determine redox-responsive proteins, but also enables to pinpoint the exact cysteine residues within protein sequences that are prone to oxidation. While diamide induces a massive and global oxidation in the proteome of C. difficile, bile acids could not be fixed as general instigators of sulfide stress.

Conclusion: The established method allowed for the first time a global view on the redox status of the cysteine proteome of C. difficile, but also supported a comprehensive protein quantification. It can serve as a basis to understand adaptational mechanisms of the bacterium in the intestinal tract, e.g. during the challenge with reactive oxygen and nitrogen species produced by the host.

1BP47

nagA and *nagB* are important for growth of Streptococcus pneumoniae in the presence of N-acetylcglucosamine
M. Afsal2, S. Shafeeq, O. Kuipers2
1Government College University, Bioinformatics and Biotechnology, Faisalabad, Pakistan
2University of Groningen, Molecular Genetics, Groningen, Netherlands

We have explored the transcriptomic response of Streptococcus pneumoniae D39 to N-acetylgulcosamine, an important carbon source for its colonization in the nasopharynx and pathogenesis. Transcriptome comparison of D39 wild-type grown in chemically defined medium (CDM) in the presence of N-acetylgulcosamine to that grown in the presence of glucose revealed elevated expression of putative N-acytylgulcosamine transport and utilization genes. The genes involved in the utilization of N-acetylgulcosamine, nagA, nagB and glmS, are among the ones upregulated in the presence of N-acetylgulcosamine. nagA, nagB and glmS are putatively regulated by a transcriptional regulator NagR. We predict the putative operator site of NagR in PnagA, PnagB and PglmS, which is further confirmed through promoter truncation experiments. Growth comparison of ΔnagA, ΔnagB and ΔglmS with the wild-type demonstrates that nagA and nagB are essential for growth in the presence of N-acetylgulcosamine. Role of CepA in the regulation of N-acetylgulcosamine is also elucidated through microarray studies.

1BP48
Role of interaction between IncA protein of Chlamydia trachomatis and host protein G3BP1 in the increase of c-Myc protein concentration during infection of HeLa cells
L. Hein1, N. Lincke1, S. Monajembashi2, H. P. Saluz2,3, *F. Hänel1
1Leibniz Institute for Natural Product Research and Infection Biology –Hans Knöll Institute, Department Cell and Molecular Biology, Jena, Germany
2Leibniz Institute on Aging–Fritz Lipmann Institute, Jena, Germany
3Friedrich Schiller University, Jena, Germany

Question: The obligate intracellular bacterium Chlamydia (C.) trachomatis is one of the most common sexually transmitted pathogens and frequently found in association with neoplastic changes in cervical epithelium. Chlamydiae are characterized by a unique biphasic developmental cycle which proceeds in a vacuolar compartment termed inclusion. Through the delivery of effector proteins either into the chlamydial inclusion membrane or into the cytoplasm of the host cell this microorganisms directly manipulate eukaryotic pathways via protein interactions. The interaction between type III-secreted protein IncA of C. trachomatis and human G3BP1 was found by ourselves in a yeast two-hybrid screen. The aim of this work was to investigate the functional significance of this protein-protein interaction.

Methods: The interaction between IncA and G3BP1 was verified by GST pull down and co-localization experiments. HeLa cells were infected with C. trachomatis or transfected with expression vectors encoding IncA. Reactions of the cells were investigated by Western blot, immunofluorescence and qPCR experiments.

Results: The interaction between IncA of C. trachomatis and human G3BP1 was confirmed by GST pull down experiments in vitro using HeLa cell lysates. Moreover, using an immunofluorescence approach, we could show, that G3BP1 co-localized with IncA at the periphery of chlamydial inclusions. G3BP1 harbors a phosphorylation dependent RNase activity and acts as postranscriptional regulator of c-myc mRNAs [1]. Infection of HeLa cells with C. trachomatis led to an increase of oncoprotein c-Myc concentration. To see whether interaction of IncA with G3BP1 yields a blockade of cMye mRNA degradation we performed qPCR experiments. To our surprise cMye mRNA concentration remained unchanged during course of infection. C. trachomatis is known to stimulate the IL-6, IL-6 receptor, STAT3 pathway - a further possible cause of the activation of the c-myc gene. Performing experiments with the STAT3 specific inhibitor Stattic we could exclude this reason for cMyc increase. However, it is undisputable that IncA somehow influences the cMye protein concentration, as the sole overexpression of IncA in HeLa and HEK293 cells led to an increase of the oncoprotein concentration.

Conclusion: The increase of cMyc protein concentration during infection of HeLa cells with C. trachomatis is in terms of a possible involvement of the pathogen in formation of cervical cancer. The role of IncA and interacting G3BP1 in this process probably seems to be related to the regulation of cMyc protein stability as there are no changes in cMye mRNA concentration.

IBP49

Monitoring global protein thiol-oxidation and protein-S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress.

M. Hillion1, M. Rossius1, J. Bernhardt2, T. Busche1, J. Kalinowski3, S. Maab2, D. Becher2, M. Wirtz2, R. Hell4, H. Antelmann1
1Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy – Institut für Biologie-Mikrobiologie, Berlin, Germany
2Ernst Moritz Arndt University Greifswald, Institute for Microbiology, Greifswald, Germany
3Bielefeld University, Center for Biotechnology, Bielefeld, Germany
4University of Heidelberg, Plant Molecular Biology, Centre for Organisal Studies, Heidelberg, Germany

Question: Mycothiol (AcCys-GlcN-Ins, MSH) is the major thiol-redox buffer in Actinomycetes, including Mycobacterium and Corynebacterium species. MSH contributes to protection against reactive oxygen species (ROS). We have previously shown that S-mycothiolation occurs in C. glutamicum under NaOCl stress (1). Protein S-mycothiolation controls the activities of several redox enzymes that function in detoxification of ROS and methionine sulfones, including the thiol peroxidase Tpx, the mycothiol peroxidase Mpx and the methionine sulfoxide reductase MarA (2-4). Here we investigated the level of protein S-mycothiolation in Mycobacterium smegmatis under oxidative stress as well as its NaOCl stress response.

Methods: Fluorescent-label and MS-based thiol-redox proteomics methods (shotgun-LC-MS/MS and OxICAT) were applied for quantification of S-mycothiolated proteins in M. smegmatis under NaOCl stress. Thiol-metabolomics was used to quantify the level of MSH. The changes in gene expression during NaOCl stress were analyzed using RNA-Seq transcriptomics.

Results: MSH-deficient M. smegmatis mutants displayed an increased sensitivity to NaOCl stress. Protein S-mycothiolation was strongly increased in the wild type under NaOCl stress as shown by non-reducing sensitivity to NaOCl stress. Thiol-metabolomics was used to quantify the level of MSH. The changes in gene expression during NaOCl stress were analyzed using RNA-Seq transcriptomics.

Conclusion: Our results demonstrate that protein S-mycothiolation is a widespread redox modification in M. smegmatis under oxidative stress which serves as thiol-protection mechanism and may also regulates protein function which remains to be elucidated in future studies.

IBP50

Structural basis for the inhibition of α-carbonic anhydrase by sulfonamides

J. Modik1,2, C. Sapuran3, *A. Roujénikova1,2,4
1Monash University, Department of Microbiology, Clayton, Australia
2Monash Biomedical Discovery Institute, Infection and Immunity Program, Clayton, Australia
3Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Firenze, Italy
4Monash University, Department of Biochemistry and Molecular Biology, Clayton, Australia

Question: Periplasmic α-carbonic anhydrase of Helicobacter pylori (HpaCA), an oxygenic bacterium in the human stomach, is essential for its acclimation to low pH. It catalyses the conversion of carbon dioxide to bicarbonate using zinc as the cofactor. In H. pylori, Neisseria spp., Brucella suis and Streptococcus pneumoniae this enzyme is the target for sulfonamide antibacterial agents. We have performed structural and functional studies of HpaCA to understand the mechanisms of H. pylori pathogenesis and enable its assessment as a target for drug design.

Methods: HpaCA has been purified and crystallized. Diffraction data sets for HpaCA complex with acetazolamide and methazolamide have been collected to 2.0 Â and 2.2 Â, respectively, using the MX1 & MX2 beamlines of the Australian Synchrotron.

Results: We present structural analyses correlated with inhibition data, on the complexes of HpaCA with sulfonamides acetazolamide and methazolamide which reveal that two sulfonamide oxygen atoms of the inhibitors are positioned proximal to the putative location of the oxygens of the substrate in the Michaelis complex, whilst the zine-coordinating sulfonamide nitrogen occupies the position of the catalytic water. The structures are consistent with acetazolamide acting as site-directed, nanomolar inhibitors of the enzyme by mimicking its reaction transition state. Additionally, inhibitor binding provides insights into the channel for substrate entry and product exit.

Conclusions: This analysis has implications for the structure-based design of inhibitors of bacterial carbonic anhydrases.

IBP51

The Aspergillus fumigatus genome-wide deletion library

J. Macheleidt1, T. Heinemann1, V. Valiante1, F. Horn2, R. Guthke2, P. Carr2, J. Gilsenan2, I. Mouyna3, J.-P. Latgé4, M. Bromley5, A. A. Brakhage1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany
2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Systems Biology and Bioinformatics, Jena, Germany
3University of Manchester, Institute of Inflammation and Repair, Manchester, Great Britain
4Institut Pasteur, Aspergillus Unit, Paris, France

The opportunistic human pathogenic mould Aspergillus fumigatus is able to cause severe invasive infections in immunocompromised patients. The most powerful tool to study the involvement of certain genes and proteins in virulence of this fungus is to generate targeted gene knock outs and to analyze the loss of function mutants for their phenotypes and virulence-associated traits. Up to now, these deletion strains were generated individually for each gene of interest which is often a time consuming process. To facilitate and accelerate research on A. fumigatus, we started to build up a library of deletion mutants for all of the approximately 10,000 genes of A. fumigatus. Prerequisite for a knock-out library are accurately annotated genes. Therefore, the genome of the A. fumigatus A1163 derivative AkaB was re-sequenced and RNAseq data were used for re-annotation. Based on that, gene deletion primers were generated in an automated process and a streamlined workflow combining generation of deletion cassettes by a two-step PCR reaction, protoplast-based transformation, isolation of genomic DNA, and verification of the successful deletion by PCR was developed in 96-well plate format for high throughput application. This process proved to be successful for around 70% of all genes in the first run. Furthermore, each mutant carries a unique barcode allowing identification of specific strains when pools of mutants are tested. As a first subset, we deleted 132 glycosylphosphatidylinositol (GPI) anchored protein encoding genes and started phenotypic analysis of the resulting mutant strains. Once completed, the A. fumigatus knock out library will provide access to all feasible loss-of-function mutants. Characterization of larger groups of mutants will be possible instead of investigating individual deletion strains that is costly in terms of time and labor.

IBP52

CRASPI from Aspergillus fumigatus recruits Factor II, FHL-1 and C4BP and inhibits C3b deposition on the fungal surface

*P. Dasari1, I. Shopova1, P. Hortschansky1, A. Brakhage1, P. F. Zipfel1, C. Skerka1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Infection Biology, Jena, Germany

Question: The opportunistic human-pathogenic fungus Aspergillus fumigatus is responsible for a wide spectrum of diseases in humans such as hypersensitivity pneumonitis, allergic asthma (AA), allergic bronchopulmonary aspergillosis (ABPA) as well as invasive aspergillosis in immunocompromised patients. A. fumigatus conidia activate the alternative pathway of complement and mark the fungal pathogen for opsonophagocytosis by human neutrophils. Conidia are the first fungal cells which invade the human host and which are immediately confronted by the host innate immune system. Evasion from complement attack is crucial for the survival of the pathogen and the onset of the infection. A. fumigatus acquires Factor H, Factor H-like protein 1 (FHL-1), Factor H-related protein 1 (CFHR1), and C4BP from the host1, however, the fungal...
complement regulator acquiring proteins (CRASP) remained unknown. Here we identify the first CRASP from *A. fumigatus* (CRASP1).

Methods: To identify factor H acquiring proteins from *A. fumigatus* ELISA and combined ELISA based western blot analysis (CEWA) was used. The binding affinity of *Aspergillus* CRASP1 to Factor H, FHL1 and C4BP, cofactor activity of recruited Factor H, FHL-1 and C4BP, C3b deposition on conidia surface, and phagocytosis of conidia by human neutrophils was studied.

Results: CRASP1 binds FHL-1 via SCR6-7 and Factor H via SCR domains 6-7 and SCR 19-20. CRASP1 bound purified FHL-1 and Factor H retains its cofactor activity and inhibits complement activation. *A. fumigatus* CRASP1 wild type conidia bind 30 % more purified Factor H and also recruit 25 % more Factor H from human serum to the surface than conidia of the CRASP1 knockout strain. Fungal surface recruited factor H results in reduced opsonophagocytosis by human neutrophils.

Conclusion: CRASP1 is the first fungal factor H and FHL-1 binding immune evasion protein from *A. fumigatus*. CRASP1 contributes to immune evasion of *A. fumigatus* by inactivation of human complement and reduced phagocytosis.

IBP53

Beneficial infections: *Bacillus cereus sensu lato* isolates from root microbe fight phytopathogenic *Verticillium* species

J. Hollensteiner, 1 A. Kolarzyk1, R. Harting1, F. Wemheuer1, E. Bruszikiewicz2, K. Nesemann3, S. Braus-Strohmeyer4, G. Braus5, R. Daniel1, H. Liesegang1

1 Georg-August-Universität, Genomische und Angewandte Mikrobiologie, Göttingen, Germany
2 Georg-August-Universität, Molekulele Mikrobiologie und Genetik, Göttingen, Germany

The rhizosphere of plants consists an extremely diverse microbial community including bacteria, fungi and viruses. It has been observed that some bacterial members of the community show an antagonistic effect towards some bacterial and fungal plant pathogens. These organisms play a crucial role in plant health and thus on crop productivity. Soil-borne fungi, like the broad host range tomato pathogen *Verticillium dahliae* and the Brassicaceae-associated oil seed rape pathogen *Verticillium longisporum*, can cause vascular wilt diseases. To determine the effect of plant associated *Bacilli* against these important phytopathogens, 267 *Bacillus* strains have been isolated from the rhizospheres of tomato plants using a *B. thuringiensis* enrichment protocol. Twenty strains of the isolates were picked randomly, genome sequenced and phenotypically characterized. All strains have been taxonomically analyzed by multilocus sequence typing (MLST) (1). Thirteen isolates could be identified as *Bacillus weihenstephanensis* (BW) strains and seven isolates as *Bacillus thuringiensis* (BT) strains. All isolates have been investigated for growth inhibition on *V. dahliae* and *V. longisporum*. Ten strains were found to inhibit *V. dahliae* J22 growth, strikingly all *B. thuringiensis* strains exhibited this phenotype. From the thirteen BW isolates, exclusively three strains exhibited a mycoid colony morphology and modified the growth. An antagonistic effect on *V. longisporum* 43 was only observed for the three BW but not for the BT strains. However, there were non-inhibiting effects observed. Both fungi formed a ring of white melanization surrounding all bacterial strains was found in *V. longisporum* 43. Both observed effects have been found to be depend on media interactions in the culture media. The regulation of the regulation of *V. longisporum* 43. The regulation of complement factor C3b and reduced phagocytosis.

Questions: Time-lapse microscopy is an important technique to study the dynamics of various biological processes. Imaging of biological systems combined with the analysis for functional, dynamical, and morphological aspects is required to increase our understanding of complex processes. In the context of interactions between human innate immune cells and pathogens, algorithms are required for automated high-throughput analysis of time-lapse microscopy videos of confrontation assays.

Methods: We present an automated segmentation and tracking framework for analyzing phagocytosis assays of polymorphonuclear neutrophils (PMNs) confronting *C. glabrata*. The framework is based on our previously developed framework for tracking of non-rigid cells in brightfield microscopy [1] and was extended by (i) a segmentation approach for fluorescently-labeled pathogens and (ii) a state-transition-model and a cross-linking procedure for track interactions between PMNs and fungal cells.

Results: The PMN segmentation approach yields a sensitivity of 99 % and a precision of 95 % in object detection and the segmentation approach for fluorescently-labeled fungal cells yields a sensitivity of 84 % and a precision of 93 %. The phagocytic activity of PMNs is quantified in terms of percentage of phagocytically active PMNs, number of phagocytes events per PMN, frequency of phagocytosis events, and killing rate of phagocytosed fungal cells. The findings of our automated analysis approach are directly compared with manual and experimental analyses [2,3] and yield high consistency.

Conclusion: AMIT comprises an automated segmentation and tracking framework and paves the way towards quantitative high-throughput analysis of time-lapse microscopy videos of confrontation assays.

IBP54

AMIT – a novel algorithm for migration and interaction tracking for high-throughput analysis of phagocytosis assays

S. Brandes, S. Dietrich*, K. Hünniger*, O. Kurzai1,2, M. T. Figg1

1 Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Applied Systems Biology, Jena, Germany
2 Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Septomics Research Center, Jena, Germany

University Hospital, Center for Sepsis Control and Care, Jena, Germany

Questions: Time-lapse microscopy is an important technique to study the dynamics of various biological processes. Imaging of biological systems combined with the analysis for functional, dynamical, and morphological aspects is required to increase our understanding of complex processes. In the context of interactions between human innate immune cells and pathogens, algorithms are required for automated high-throughput analysis of time-lapse microscopy videos of confrontation assays.

Methods: We present an automated segmentation and tracking framework for analyzing phagocytosis assays of polymorphonuclear neutrophils (PMNs) confronted with *C. glabrata*. The framework is based on our previously developed framework for tracking of non-rigid cells in brightfield microscopy [1] and was extended by (i) a segmentation approach for fluorescently-labeled pathogens and (ii) a state-transition-model and a cross-linking procedure for track interactions between PMNs and fungal cells.

Results: The PMN segmentation approach yields a sensitivity of 99 % and a precision of 95 % in object detection and the segmentation approach for fluorescently-labeled fungal cells yields a sensitivity of 84 % and a precision of 93 %. The phagocytic activity of PMNs is quantified in terms of percentage of phagocytically active PMNs, number of phagocytes events per PMN, frequency of phagocytosis events, and killing rate of phagocytosed fungal cells. The findings of our automated analysis approach are directly compared with manual and experimental analyses [2,3] and yield high consistency.

Conclusion: AMIT comprises an automated segmentation and tracking framework and paves the way towards quantitative high-throughput analysis of time-lapse microscopy videos of confrontation assays.

fucose, LecB is detected after incubation with an anti-LecB antibody and a peroxidase-linked secondary antibody. We have optimized the expression conditions and succeeded to quantify the extracellular LecB in a concentration range of 50 ng - 5 μg/ml. Using this method, we attempt to identify genes possibly involved in the regulation of lecb expression and secretion of the protein. To this end, a transposon library of P. aeruginosa PA01 ΔlecbΔropF was constructed using the vector-based transposition system pUTminiTn5-hsCDABE. The success of transposition was confirmed by measuring the luminescence of clones as the luxCDABE genes are active when the transposon integrates behind an active promoter. So far, the amount of extracellular LecB in several hundred transposon mutant clones was quantified using the modified enzyme-linked lectin assay. Several strains showing significantly affected LecB secretion are currently analyzed using inverse PCR and sequencing to identify transposon insertion sites.

IBP56
The calcium-binding protein Frq1 is involved in the early pathogenic development of U. maydis
K. Bösch, M. Feldbrügge, V. Göhre
Heinrich Heine University, Microbiology, Düsseldorf, Germany
Calcium is an important second messenger in fungi, plants and animals. It is involved e.g. in proliferation, cytoskeletal organization, secretion, apoptosis and pathogenesis. Little is known about calcium signalling in the pathogenic development of the maize smut fungus Ustilago maydis. To infect compatible haploid cells have to mate and subsequently form a dikaryotic filament which infects maize. Upon proliferation of U. maydis inside the plant the host forms tumours in which the teliospores are developed. During pathogenic development, especially calcium-binding proteins such as calmodulin are of interest, because they are the first proteins in decoding calcium transients. Therefore, we are analysing small proteins that contain one or several calcium-binding EF-hand domains. Frq1 contains only EF-hands, but no other predicted domains in its 190 amino acid sequence. Deletion strains show reduced efficiency of mating and filamentous growth as well as less severe maize infections. Thus, Frq1 may play a role in establishing the infectious filament and in the early pathogenic development of U. maydis. Analysis of calcium signalling will contribute to the understanding of pathogenic development of U. maydis.

IBP57
Redox regulation of hypoxic adaptation in Aspergillus fumigatus
E. Shekhova1, T. Krüger1, J. Macheleidt1, O. Kruemeyer1, A. A. Brakhage2
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany
The mould Aspergillus fumigatus can cause life-threatening invasive infections in immunocompromised patients. In the site of infection the fungus faces many environmental stresses such as a dramatic drop in oxygen concentration. The ability to tolerate severely hypoxic environments represents an important virulence trait of A. fumigatus. Currently, many reports suggest that adaptation to hypoxia may be regulated by elevated production of ROS. In this project we aim to gain more insights into the mechanisms of how A. fumigatus maintains redox homeostasis during exposure to low oxygen levels. In particular, we want to reveal proteins that are specifically modified and thus can be responsible for hypoxic adaptation. Our results confirmed increased amounts of intracellular reactive oxygen intermediates in A. fumigatus exposed to low oxygen levels. Moreover, by applying gel-free redox proteomic approach we could identify proteins, which get reversibly oxidized by ROS after shifting oxygen content in the culture from 20 % to 0.2 %. For instance, proteins with a putative role in cellular copper ion homeostasis, assembly of respiratory chain complex IV and oxidative stress regulation were modified in one hour of hypoxic cultivation. Further investigation of biological functions of reversibly oxidized proteins will help us to elucidate essential pathways involved in sensing hypoxia by A. fumigatus.

MTP01
Conformational dynamics of the sodium/proline transporter PutP:
Controlling access to the ligand binding sites
S. Bracher1, S. Dittmer1, C. Schmidt1, H. Jung1
1LMU Munich, Biologel, Microbiology, Martinsried, Germany
Question: PutP of Escherichia coli is a membrane-integrated transport protein mediating the uptake of L-proline energized by the co-transport of sodium [1]. PutP is crucial for various bacteria-host interactions such as the virulence of Helicobacter pylori and Staphylococcus aureus [2,3]. Transports work according to the alternating access mechanism, which implies an alternate opening of the transporter to either side of the membrane thereby exposing the central ligand binding sites to the periplasm or the cytoplasm [4]. Here, we explore the molecular details of the alternate opening and closing process.
Methods: A homology model of PutP [5] proposed domains of the transporter potentially involved in opening and closing of cavities. Cysteine accessibility studies were used to identify cavities in the protein as well as to observe ligand-induced conformational changes. Amino acid substitutions were introduced to identify positions crucial for PutP function, which was tested with transport and binding assays.
Results: Transmembrane domain 6’ was found to be part of the inner cavity of PutP and harbors multiple residues important for proline binding at the inner end of this cavity. A ligand-induced closure of this cavity was observed. Furthermore, we showed that external loop 4 (eL4) controls the periplasmic entrance to ligand binding sites [6], and interactions between Glu311 at the tip of eL4 and the backbone at the end of TM10’ are crucial for closure of the periplasmic gate thereby stabilizing an inward-open conformation.
Conclusion: The results support the idea that PutP is in vitro most stable in its inward facing conformation. Proline binding induces an occluded conformation. External loop 4 acts as periplasmic gate controlling access to the ligand binding sites on the outside.

MTP02
Zinc trafficking in Cupriavidus metallidurans
L. Bauer1, M. Herzberg1, S. Helm1, D. Dobritzsch1, D. H. Nies1
1Martin-Luther-Universität Halle-Wittenberg, Institut für Mikrobiologie/molekulare Mikrobiologie, Halle (Saale), Germany
Cupriavidus metallidurans can accumulate up to 79 μmol Zn per g of dry weight in the presence of 400 μM zinc chloride. The heavy metal resistant organism Cupriavidus metallidurans CH34 accumulates under in non-amended mineral salts medium 63.000 zinc atoms/cell. Chelation of divalent cations with 100 μM EDTA results in a similar number. In contrast, the cells accumulate 125.000 zinc atoms/cell when 100 μM zinc chloride were provided, which can’t be raised by adding higher concentrations (1). To avoid toxic effects of high zinc concentrations a strict regulation of uptake, efflux, storage and allocation to client proteins is necessary. In C. metallidurans, the zinc uptake regulator Zut represses genes for zinc import and distribution systems at high zinc concentrations (2). Zut interacts with the promotor of zupT for the main zinc importer and of cobW, encoding a zinc chaperon. CobW is part of the COG0653-family of P-loop GTPases. Two other members of this family (CobW2, CobW3) are annotated in the genome of C. metallidurans. Their genes are in a cluster with cobW1 for another putative transcription regulator. Expression of the genes of this cluster increases with zinc deficiency but the proteins are already present in the cell when grown in non-amended mineral salts medium. In contrast, the genes in the cobW cluster are expressed only under zinc starvation conditions. Common features of the three CobWs are a GTPase domain with a typical Walker A- and Walker B-motif, a metal recognition site and a base recognition motif. The C-terminal region of these proteins is variable and harbors different numbers of metal binding amino acids. The proteins were purified and their metal content determined by ICP-MS. CobW1 binds in vitro 5 mol zinc and CobW2, 1 mol zinc per mol protein. The different binding capacities and the different expression patterns leads to the hypothesis, that CobW1 is involved in zinc allocation under starvation conditions and the other two CobWs in zinc storage. With
pulldown experiments this hypothesis was verified and zinc depended proteins, as well as transport proteins could be found.

MTP03
Relative quantitation of Escherichia coli phospholipids by MALDI TOF/TOF mass spectrometry in one step
*R. Scheffer1, S. Walter1, G. Decker-Hebestreit1
1University of Osnabrück, Microbiology, Osnabrück, Germany

The inner membrane of E. coli consists of roughly 70-75 % phosphatidylethanolamine (PE), 20-25 % phosphatidylglycerol (PG) and 5-10 % cardiolipin (CL) with mainly three different fatty acid chains, C16:0, C16:1 and C18:1 (de Mendoza & Cronan, 1983). Using MALDI TOF/TOF mass spectrometry, a semiautomatic set-up was designed that allows a relative quantitation of E. coli glycerophospholipids, extracted from intact cells, in a single step and enables a detailed analysis of the distribution of head groups, fatty acids as well as a comparison of the fatty acid composition of individual phospholipids.

First, lipid standards of some phospholipids naturally occurring in E. coli were used to determine the parameters essential for mass spectrometry (MALDI target plate, matrix, laser intensity, peak resolution, etc.) and to analyze the properties of the different phospholipid species. For quantification of phospholipid standards, the phosphate content was determined after incineration of the organic material. Whereas the fatty acid composition of a phospholipid has no influence, the variation in head groups has a high impact on the detection level within the MALDI TOF. As reason for this behaviour varying charges of the different phospholipid species (PE: zwitterionic; PG: one negative charge; CL: two negative charges) are discussed. To compensate the different characteristics “flight factors” were defined. Second, the identification of all phospholipids naturally occurring in E. coli was performed additionally to the accuracy of the molecular weight by fragmentation of molecules by post source decay (PSD). Choosing the optimized conditions, the m/z of fragments for the individual fatty acids, the separated head group and corresponding intermediates were analyzed. Based on these results, a lipid identification “filter” was created to allow a semi-automatic analysis of individual lipid extracts.

To verify the method, the phospholipid, head group and fatty acid composition of E. coli K-12 cells were determined at different growth phases and different growth temperatures. In addition, E. coli mutant strains carrying defects in the phospholipid head group biosynthesis were analyzed to confirm lipid classification. Interestingly, some of the mutant lipid extracts showed an enrichment in precursors, which were also identified.

In summary, after extraction of E. coli phospholipids with organic solvents, all lipid species were identified by MALDI TOF/TOF mass spectrometry in a single step. Determination of phospholipid concentrations and head group “flight factors” combined with the generation of a lipid identification “filter” now allows a rapid, detailed and comprehensive lipidome analysis for E. coli.

MTP04
Super-resolution microscopy reveals bacterial cell-biological traits among Planctomyctes
*C. Boedeker1, G. Reintjes2, M. Schüler3, M. Kucklick4, M. Jogler1
1University of Osnabrück, Microbiology, Osnabrück, Germany

In 1924 Planctomyctes were first mistakenly described as fungi. However, soon their bacterial origin was acknowledged but ever since it was generally accepted that Planctomyctes -other than proposed- do not possess an additional membrane system that divides the cytoplasm into two compartments, but that they comprise an unusual dynamically enlarged periplasm. Using immunofluorescencce this hypothesis was further supported by the localization of the ATPases in the middle of the Cell in planctomyctes. Furthermore, we applied different proteomic approaches to analyze the membrane composition of P. limnophila.

To analyze the uptake of proteins and other macromolecules we used SIM and d-STORM to visualize their localization at super resolution (up to 50 nm). Applying these techniques we revealed, other than proposed, a non-vesicular dependent uptake of GFP and fluorescent labeled dextran into the periplasmic space.

Our findings point towards a more Gram-negative like cell plan of P. limnophila, that lacks an eukaryote-like compartmentalization. However, the periplasm seems to be dynamic and is able to store polysaccharides that are likely to be transferred through the outer membrane via an unseen fiber mediated uptake mechanism.

MTP05
Substrate specificity of the Tat systems in Bacillus subtilis
*M. Pape1, T. Brüser1, J. M. van Dijl2
1Leibniz Universität Hannover, Institut für Mikrobiologie, Hannover, Germany
2University Medical Center Groningen, Department of Medical Microbiology, Groningen, Netherlands

The twin-arginc translocation (Tat) system translocates folded and often cofactor-containing proteins across the cytoplasmic membrane. In Bacillus subtilis, two Tat systems exist that lack TatB components and are therefore regarded as minimal Tat systems with bi-functional TatA. Both systems are described to function only for specific substrates. However, when recombantly produced in Escherichia coli, these Tat systems are able to translocate also other Tat substrates. Here we report the examination of their Tat substrate specificity in B. subtilis itself. We used a model Tat substrate that is efficiently translocated in proteobacterial TatABC systems and tested its transport in B. subtilis. Strains deficient in one or both Tat systems served to examine the exact pathway by which the proteobacterial Tat substrate can be exported out of the B. subtilis cell.

MTP06
Structural and functional analysis of KDEL receptors
*A. Blum1, M. Schmitt1, B. Becker1
1Universität des Saarlandes, Molecular and Cell Biology, Saarbrücken, Germany

KDEL receptors (KDELRs) are responsible for the retrieval of soluble ER-resident proteins and have an important signalling role in maintaining Golgi homeostasis. Thereby KDELRs act as G-protein-coupled receptors and activate G-proteins (Gs and Gq) according to KDEL receptor binding in the Golgi. Stimulation of Gq leads to an activation of Src family kinases resulting in tyrosine phosphorylation cascades and control of active plasma membrane trafficking. Gs stimulation on the other hand leads to an activation of PKA and retrograde membrane transport (Cancino et al., 2014). Recent studies have shown that KDEL1 regulates the integrated stress response (ISR) in T-cells by controlling PP1, a key phosphatase involved in eIF2α control. Our group and others have recently shown that a minor fraction of KDELRs is also located at the plasma membrane where it enables binding of the neuroprotective factor MANF (Mesencephalic Astrocyte-derived Neurotrophic Factor) which is secreted after
thapsigargin-induced ER stress (Henderson et al., 2013). The presence of KDELRs in the plasma membrane is also increased after thapsigargin treatment, pointing towards a cargo-oriented KDELR distribution. Three highly conserved endocytotic motifs within the receptor sequence additionally indicate an important KDELR function at the plasma membrane.

To analyze KDELR function at the plasma membrane in more detail, the project focuses on KDELR signaling, especially in response to cell surface binding of MANF. Through RNAseq analysis it should be possible to reveal MANF-dependent changes in nuclear gene expression. To examine if these changes are likewise KDELR-dependent, specific KDELR knockdown experiments will be performed in the next step. With the results of these experiments it should be possible to propose a model for KDELR signaling from the plasma membrane and to clarify by FRET microscopy if KDELR signaling involves receptor dimerization.

MTP07
A molecular chaperone dedicated to folding and translocation of reductive dehalogenases
C. Grob1, J. Maillard1
EPFL, Laboratory for Environmental Biotechnology, Lausanne, Switzerland

Reductive dehalogenases (rdhA, RDases) are key enzymes involved in anaerobic organohalide respiration (OHR), during which bacteria are able to use chlorinated compounds as terminal electron acceptors. RDases are redox enzymes containing FeS clusters and a corrinoid as cofactors, and are translocated across the cytoplasmic membrane by the Twin-arginine translocation (Tat) system. In members of Dehalobacter and Desulfotobacterium spp., the product of an accompanying gene, generally named rdhT, was recently proposed to play a role as molecular chaperone in the folding of the reductive dehalogenase (1,2). Recently, this finding was applied to heterologously produce active RDases (3). However, the mechanism by which the molecular chaperone acts on the maturation of RDases is not yet solved.

In this study, we investigate the diversity of RdhT chaperones in Dehalobacter restrictus and their interaction with the Tat signal peptide of their cognate redox component, as well as their specificity or cross-reactivity towards alternative signal peptides. To this respect, both in vivo and in vitro experimental approaches are conducted and will be presented.

MTP08
The membrane proteome of Escherichia coli in response to high rate Tat-mediated protein secretion
*K. Dolata1, K. Riedel1, S. Sievers1
1University of Freiburg, Institute for Microbiology, Greifswald, Germany

Escherichia coli is one of the most extensively used prokaryotic organisms for the industrial production of recombinant proteins. There are two major pathways of protein secretion in bacteria, the general secretion pathway (Sec-pathway) and the twin arginine translocation pathway (Tat-pathway)[1]. Although recombinant substrates are preferably exported to the periplasm via the Sec-pathway and their interaction with the Tat signal peptide of their cognate redox component, as well as their specificity or cross-reactivity towards alternative signal peptides. To this respect, both in vivo and in vitro experimental approaches are conducted and will be presented.

MTP09
Characterization of the Tat-system in Pseudomonas fluorescens
*M. Ringel1, T. Brüser1
Leibniz Universität Hannover, Institut für Mikrobiologie, Hannover, Germany

Twin-arginine translocation (Tat) systems transport folded proteins across the cytoplasmic membrane of most prokaryotes [1]. These systems are well-known to play crucial roles for pathogenic bacteria and their deletion results in markedly lowered virulence in almost all tested cases. However, their impact on the functional role for beneficial bacteria has not been studied to significant extent. We addressed this aspect in the plant growth promoting rhizobacterium (PGPR) Pseudomonas fluorescens. PGPR are thought to contribute to stress control of plants and improve plant growth by three major pathways: 1) Direct or indirect antagonism against phytopathogens (Biocontrol) 2) Enhancement of plant nutritional status (Biofertilitizers) 3) Regulation of plant hormones contributing to the reduction of plant stress (Phytohormones as antagonists) Using a mutagenesis and complementation approach, we generated mutant strains that are affected in Tat transport components and tested the impact of such mutations on biological functions of P. fluorescens. The data revealed that key pathways of P. fluorescens strongly rely on the functional transport of Tat substrates.

MTP10
Functional characterization of DASS member CitT, an obligate exchanger
*A. Salisowski1, K. M. Pos1
Goethe University Frankfurt, Institute of Biochemistry, Frankfurt a. M., Germany

The citrate carrier CitT from E. coli is expressed under anaerobic conditions and together with a fermentable cosubstrate confers the ability to grow on citrate. It belongs to the Divalent Anion Sodium Symporter (DASS) family, which includes dicarboxylate transporters from bacteria, plants and mammals. Human members of this family (SLC13) play key roles in the regulation of fatty acid synthesis, adiposity and insulin resistance [1].

CitT was shown to be a citrate transporter which also recognizes succinate and tartrate [2]. The natural transport reaction is thought to be the exchange of citrate (nutrient) for succinate (final product of citrate fermentation). CitT was overexpressed in E. coli, purified and reconstituted into liposomes. Different transport assays using radioactively labeled substrates were performed to elucidate the transport mechanism. Counterflow measurements revealed that CitT is an obligate exchanger which can transport citrate, succinate and fumarate. Intermediates of the citrate fermentation pathway (fumarate, malate and oxaloacetate) are not transported. CitT catalyzes homo- and heteroexchange. In contrast to most members of the family, it does not catalyze unidirectional transport coupled to a sodium (or proton) gradient. The only predicted charged residue in the transmembrane domain, Asp170 is well-conserved among CitT homologs and is essential for catalysis.

MTP11
Unfolding the mechanism of spore wall biosynthesis in Myxococcus xanthus
*R. Kummeriya1, P. I. Higgs2, C. van der Does1
1University of Freiburg, Institute of Biology II, Freiburg, Germany
2Wayne State University, Department of Biological Sciences, Detroit, USA

Question: Myxococcus xanthus is a Gram-negative bacterium that differentiates into environmentally resistant spores. During this differentiation process, the entire rod-shaped cell is rearranged into a spherical spore. The vegetative cell peptidoglycan is degraded and functionally replaced by de novo synthesis of and assembly of a novel
*J. D. te Winkel1, J. N. Bach1, M. Bramkamp1
opportunistic pathogen which is colonizing the lung of patients suffering
situation in the cystic fibrosis lung. To date no biological function for
secretion, signal transduction, transport and cell wall metabolism.

Methods: ExoE was cloned, expressed, solubilized from isolated membranes and purified. Purified ExoE was incubated with UDP-[14C]-GalNAc and E. coli membranes enriched in the undecaprenyl-phosphate (C5-P) lipid carrier. After incubation, the lipid-associated material was extracted, resolved by thin-layer chromatography and detected by Phosphorimaging.

Results: C5P-P-GalNAc was detected after incubation of ExoE with UDP-[14C]-GalNAc and E. coli membranes enriched in the undecaprenyl-phosphate (C5-P) lipid carrier, demonstrating that ExoE functions in the transfer of GalNAc to the undecaprenyl-phosphate. Here, we present a further characterization of ExoE:

Conclusion: M. xanthus ExoE plays an essential role in spore wall synthesis by linking GalNAc to the undecaprenyl-phosphate lipid carrier.

MTP12

Time resolved stability of flotillin domains in vivo in *B. subtilis*

J. D. te Winkel1, J. N. Bach1, M. Bramkamp1

Ludwig Maximilians University Munich, Department 1, Microbiology, Munich, Germany

Flotillins are associated with functional membrane domains (FMMs), or lipid rafts in pro- and eukaryotes. FMMs are physically and functionally separated parts of the plasma membrane. Due to the different lipid and protein composition of these domains they contribute in supplying a suitable environment for vital cellular processes including protein secretion, signal transduction, transport and cell wall metabolism.

FMMs are known to be highly dynamic and are known to interact, but the molecular details of how prokaryotic flotillins interact with each other are unknown. The question if these domains interact by the exchange of protein, or are stable long lived bodies on a flotillin protein level was addressed. Therefore, two flotillins, FloT and FloA, from *Bacillus subtilis* were tagged with the photo-convertible fluorescent protein Dendra2. Single FMMs were photo-converted and growing cells were imaged over time. Interaction or subunit exchange between the different FMMs was determined by measuring change in Pearson Correlation Coefficient (PCC). PCC is used to determine co-localization of photo-converted and not photo-converted FMMs, a gain in co-localization indicating an exchange of protein between different domains.

The time resolved PCC value does not change for both of the flotillins and for extended periods of time, indicating FMM associated flotillins are not photo-converted FMMs, a gain in co-localization indicating an exchange of protein between different domains.

The method established for correlated co-localization after photo-conversion (CCAP) could be used to address protein complex dynamics in general and on multi- and single cellular levels.

MTP13

Towards the function of the lipid binding protein PA3911 from *Pseudomonas aeruginosa*

M. Groenewold1, M. Massimg2, A.-K. Wolf2, L. Jänsch3, D. Heinz3, I. Moser2

1 Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, Braunschweig, Germany
2 Technical University Braunschweig, Institute for Microbiology, Braunschweig, Germany
3 Helmholtz Centre for Infection Research, Department of Cellular Proteome Research, Braunschweig, Germany
4 Helmholtz Centre for Infection Research, Braunschweig, Germany

The Gram-negative bacterium *Pseudomonas aeruginosa* is an opportunistic pathogen which is colonizing the lungs of patients suffering from the genetic disorder cystic fibrosis. In the chronic state of infection, *P. aeruginosa* grows as a biofilm in the Airways of cystic fibrosis patients showing high resistance to antibiotics [1]. A proteomic approach revealed that protein PA3911 from *P. aeruginosa* PAO1 is one of the most up-regulated proteins under anaerobic biofilm conditions which mimics the situation in the cystic fibrosis lung. To date no biological function for PA3911 is described in the literature. From theoretical analysis a potential function as a lipid carrier protein was proposed.

Phosphatidic acid was demonstrated as a ligand of purified PA3911 protein using commercially available membrane lipid strips™ (Echelon Biosciences Incorporated). Furthermore a theoretical protein structure model [2] was used to identify residues of the putative lipid binding pocket of PA3911. Site-directed mutagenesis and subsequent lipid binding experiments allowed to partially characterize the proposed lipid binding pocket.

The physiological relevance of PA3911 was analyzed with several motility assays (twitching, swimming, swarming). The PA3911 transposon mutant PW7609 [3] showed increased twitching motility when compared to the wild type strain, whereas the swimming and swarming motility were not altered. Besides, it was demonstrated that strain PW7609 is also impaired in biofilm formation using a standard 96 well microtiter plate biofilm assay. These findings underscore the physiological relevance of PA3911 protein under biofilm conditions.

MTP14

Marine phages as excellent tracers for reactive colloid transport in porous media

N. Ghanem1, A. Chatzinotas1, H. Harms1, L. Y. Wick1

1 Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Leipzig, Germany

Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth’s critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiv, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? (2) Which phage properties are relevant drivers for the transport of marine phages in porous media?

Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CAs). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high-throughput plaque assay and a culture-independent particle counting method approach.

Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile.

Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and availability.

MTP15

Characterization of proteins involved in DNA processing and transfer encoded within the GGI of *Neisseria gonorrhoeae*

J.-H. Heilers1, E.-M. Heller1, J. Koch1, C. van der Does1

1 Albert-Ludwigs-Universität Freiburg, Institut für Biologie II - Mikrobiologie, Freiburg im Breisgau, Germany
Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

Question: *Neisseria gonorrhoeae* is a Gram-negative β-proteobacterium that belongs to the genus *Neisseria*. The genus comprises 11 species of which only *N. gonorrhoeae* and *Neisseria meningitidis* are human pathogens, causing diseases like gonorrhoea and meningitis, respectively. A main feature of *N. gonorrhoeae* is its natural competence, where the DNA provided for uptake is either released by autolysis or by a unique Type-IV-Secretion System (T4SS). This T4SS is encoded on a 57-kb large likely horizontally acquired genetic island (GGI), which is present in about 80% of all clinical isolates of *N. gonorrhoeae*. This T4SS belongs to the small
group of contact-independent T4SSs and is the only known system that
secrets DNA directly into the extracellular milieu. Next to its role in DNA
transfer, the secreted DNA also plays an important role in attachment to
surfaces and biofilm formation.

Conjugal T4SSs consist of proteins which form the transport channel
(also called mating pair formation (MPF) complex) and of DNA
processing and transfer proteins (Dtr). The MPF complex of the T4SS
encoded on the GGI resembles the MPF of the F-plasmid. The putative Dtr
proteins are encoded within an operon that encodes, next to the relaxase
TraL and the coupling protein TraD, the small membrane protein Yaa and
the putative accessory protein Yaf. These proteins resemble proteins often
found together with relaxases of the large Mob family. In contrast to
relaxases of other Mob families, no members of the MobH relaxases have
currently been characterized. Here we will present an initial characteriza-
tion of the role of these proteins in the secretion of the ssDNA.

Methods and results: Analysis of deletion mutants of yaf, traL, traD and
yaa revealed that TraL and TraD are important for DNA secretion, but that
no effects could be observed for the deletion of yaa [1, 2]. Remarkably
deletion of yaa resulted in a strong increase of DNA release [2]. Here we
will present our initial attempts to further characterize these proteins.

Conclusion: Relaxases of the MobH family form one of the largest
families of relaxases. Currently the mechanism by which MobH relaxases
process DNA and how the DNA is further targeted is unknown. Charac-
terization of the relaxase and other proteins involved in DNA
processing and transfer encoded within the GGI of N. gonorrhoeae, helps
to understand the mechanism of DNA secretion by the T4SSs of N.
gonorrhoeae and helps to understand DNA transport facilitated by other
members of the Mob family.

MCP02
Extracellular matrix structure governs invasion resistance in bacterial
biofilms

*C. Nadell1, K. Drescher1, N. Wingreen2, B. Bassler2
1MPI Marburg, Terrestrial Microbiology, Marburg, Germany
2Princeton University, Molecular Biology, Princeton, NJ, USA

Many bacteria are highly adapted for life in communities, or biofilms. A
defining feature of biofilms is the production of extracellular matrix that
binds cells together. The biofilm matrix provides numerous fitness
benefits, including protection from environmental stresses and enhanced
nutrient availability. Here we investigate defense against biofilm invasion
using the model bacterium *Vibrio cholerae*. We demonstrate that immotile
cells, including those identical to the biofilm resident strain, are
completely excluded from entry into resident biofilms. Motile cells can
colonize and grow on the biofilm exterior, but are readily removed by
shear forces. Protection from invasion into the biofilm interior is mediated
by the secreted protein RbmA, which binds mother-daughter cell pairs to
each other and to polysaccharide components of the matrix. RbmA,
and the invasion protection it confers, strongly localize to the cell lineages
that produce it.

MCP03
Cell-cell communications in *Bacillus subtilis* mixed-species biofilms

*R. Gallegos-Monterrosa1, S. Kankel1, S. Götze2, P. Stallforth2, A. T. Kovács1
1Friedrich Schiller University of Jena, Institute of Microbiology, Department of Microbial Communications, Jena, Germany
2Leibniz Institute for Natural Product Research and Infection Biology ~ Hans Knöll Institute, Junior Research Group Chemistry of Microbial Communication, Jena, Germany

Biofilm development in diverse bacteria has been shown to respond to
multiple environmental signals like small molecules secreted by
microorganisms. These signals have been usually considered to be self-
generated, i.e. quorum-sensing, but can also be produced by other
organisms living in the vicinity, thus creating an interspecies
communication network. *Bacillus subtilis* is a Gram-positive model
bacterium for studying biofilm formation. It differentiates into several
subpopulations of specialized cell types in response to different
environmental cues thus making it an ideal model for studying complex
signaling networks. Multiple soil bacteria can produce small signaling
molecules that influence biofilm formation by *B. subtilis*. We aim to
identify such organisms and to characterize the chemical nature and
signaling pathway of novel signaling molecules that are able to modify the
architecture of *B. subtilis* biofilms. Bacteria isolated from soil samples
were screened for their ability to produce signaling molecules able to
modify the structure of *B. subtilis* biofilms. Five soil isolates were selected
for further characterization due to their ability to modify *B. subtilis*
complex colony structures. These bacteria were identified through 16S
rDNA sequencing. Four of the isolates were identified as either
Lysinibacillus sp. or *Bacillus pumilus*, which are closely related to
B. subtilis and thus may share similar signaling mechanisms. However, one
bacterium was identified as Acinotobacter sp. which is a Gram-negative
organism and thus likely to affect *B. subtilis* biofilm development via a
distinct mechanism. The culture supernatants of selected bacteria were
submitted to chromatography, enzymatic, and biochemical analysis to
discern the nature of the signaling molecules. The purine derivative
hypoxanthine was identified as a signaling molecule produced by one of
the *Lysinibacillus* sp. isolates. *B. subtilis* is able to recognize and respond
to several signaling molecules produced mainly by members of closely
related genus but also from non-related organisms that may share the same
ecological niche. Hypoxanthine is one such molecule that has shown to
increase wrinkle formation in complex colony biofilms of *B. subtilis*. The
signalling pathway of hypoxanthine on *B. subtilis* is being studied through
the use of knock-out mutants and fluorescent gene-expression reporter
fusions.

The role of the phosphodiesterase NbdA in NO-induced biofilm dispersal of *Pseudomonas aeruginosa*

*M. Rüger1, N. Frankenberger-Dinkel1,2, S. Heine2, M. Entian2, K. Sauer1, V. H. L1,2
1Technical University Kaiserslautern, Biology, Kaiserslautern, Germany 2Ruhr-University Bochum, Physiology of Microorganisms, Bochum, Germany

Pseudomonas aeruginosa is an important opportunistic human pathogen causing a variety of nosocomial infections including pneumonia, sepsis, catheter and urinary tract infections. The bacterium has become a model system for biofilm research because of its resistance to conventional antibiotics, host antimicrobial effector mechanisms and its ability to form biofilms. Dispersal is considered as the last step of the biofilm life cycle being a process used by bacteria to transfer from sessil to motile lifestyle. Changes in c-di-GMP levels have been shown to be associated with biofilm detachment in a number of different bacteria. The signalling molecule nitric oxide (NO) induces biofilm dispersal through stimulation of c-di-GMP (bis-(3′-5′)-cyclic di-adenosine monophosphate) degrading phosphodiesterase (PDE) activity. We previously characterised the membrane-bound proteins MucR and NbdA (NO-induced biofilm dispersion locus A) which both share an identical domain organisation consisting of MHYT-GGDEF-EAL regarding their role in NO-induced dispersal. Inactivation of nbdA impaired biofilm dispersal in response to glutamate and NO while deletion of nbdA only negatively affected biofilm detachment upon exposure to NO. The relevance of NbdA in NO-induced dispersal was further supported by increased PDE activity but reduced c-di-GMP levels upon exposure to NO in wild type biofilms in comparison to biofilms of nbdA mutant. Moreover, we demonstrated nbdA to be transcriptionally activated after addition of NO. Biochemical analyses of recombinant protein variants lacking the membrane-anchored MHYT domain revealed NbdA being an active PDE. In contrast, MucR showed diguanylate cyclase and PDE activity in vitro [1]. *P. aeruginosa* strains lacking nbdA and mucR were phenotypically characterised to further elucidate the specific role of MucR and NbdA.

Characterization of ExeM, an active extracellular nuclease required for biofilm formation of *Shewanella oneidensis* MR-1

*M. Kreienbaum1, L. Binnenkade1, K. Thormann1
1Justus Liebig University Gießen, Institute for Microbiology and Molecular Biology, Gießen, Germany

Biofilms are the predominant lifestyle among all bacteria. While providing cells with an increased ability to withstand physical stress as well as antibiotics and starving conditions it may also increase virulence of many pathogenic species. Extracellular DNA (eDNA) is a ubiquitous component of bacterial biofilms serving as an important structural part of the matrix. How eDNA is produced, modulated and degraded (e.g. to release cells from the biofilm) is still sought to be understood. It has been shown that extracellular nucleases are able to degrade eDNA in both planktonic cultures and bacterial biofilms to induce biofilm dispersal, for structural modulation of the biofilm matrix, utilization of DNA as nutrient source, control of horizontal gene transfer, and escape from neutrophil extracellular traps. We have previously demonstrated that the extracellular nuclease ExeM (SO_1066) is a major contributor for biofilm formation of *Shewanella oneidensis* MR-1, as the deletion of exeM resulted in large amounts of accumulated eDNA under biofilm conditions. Furthermore, addition of purified MBP-ExeM resulted in inhibition of biofilm formation.

Here, we further explore the characteristics of ExeM with respect to function and ability to influence biofilm formation in *S. oneidensis* MR-1. We performed *in vivo* and *in vitro* studies on various mutant versions of the protein and determined activity and co-factor requirements. In addition, the results strongly indicate that at least a significant amount of the protein locates to the inner membrane due to a C-terminal membrane anchor which may require further processing by a homobromosorase for effective further transport and release. The study provides first more in-depth insights into the activity and transport of this well-conserved nuclease.

Local c-di-GMP signaling by a network of interacting GGDEF/EAL domain proteins involved in *E. coli* biofilm control

*O. Sarenko1, R. Hengge2
1Humboldt-Universität zu Berlin, Institut für Biologie / Mikrobiologie, AG Hengge, Berlin, Germany 2Hamburg University, Department of Biological Sciences, Binghamton, USA

c-di-GMP is a ubiquitous bacterial second messenger that in general promotes biofilm formation. *E. coli* K-12 has 29 proteins with GGDEF/EAL domains, which include 12 producers of c-di-GMP (diguanylate cyclases or DGC) and 13 degraders (phosphodiesterases or PDE). The multiplicity and sometimes high target specificity of these enzymes has led to the idea of ‘local’ signaling involving direct protein-protein interactions (1). With the PdeR/DgcM/MlrA module having been demonstrated as a prototypical example of a locally acting c-di-GMP control, in which a DGC and a PDE directly interact with each other and with a target protein (2), the question arose whether other DGCs and PDEs are involved in similar local actions.

Using the BacterioMatch-Two- Hybrid system, we systematically investigated interactions among all 29 GGDEF/EAL domain proteins of *E. coli* K-12. Surprisingly, we did not find additional specific DGC/PDE pairs involved in single complexes, but rather observed that a subset of the GGDEF/EAL domain proteins has even multiple interaction partners. Interestingly, in all these interactions, at least one of the partners belongs to the central switch module (DgcE/PdeR/DgcM/MlrA) known to play a key role in the control of the biofilm regulator CsgD and therefore the production of the biofilm matrix components curli and cellulose. Among other GGDEF/EAL domain proteins, however, no interactions were observed.

We conclude that with respect to direct protein-protein interactions, the complement of GGDEF/EAL domain proteins fall into three classes: (i) core components of the central c-di-GMP switch module that control biofilm matrix synthesis (PdeH, DgcG, PdeR, DgcM), (ii) accessory components that may conditionally modulate the output of this switch by direct interactions with the core switch proteins, and (iii) DGCs and PDEs that have enzymatic activities only that act independently of other GGDEF/EAL domain proteins to affect the cellular c-di-GMP level which is sensed by PdeR as a key component of central switch module.

Investigation of the biofilm development regarding the EPS formation of *gfp*-expressing *Halobacterium salinarum* R1

*J. Born1, F. Pfeifer1, S. Fröls1
1Technical University Darmstadt, Microbiology and Archaea, Darmstadt, Germany

Introduction: Biofilms are sessile communities of microorganisms within a matrix of extracellular polymeric substances (EPS). Based on a lot of advantages like the resistance against environmental influences, the biofilm formation is the dominant mode of life. The EPS formed by bacteria consists of different substances such as carbohydrates, proteins, lipids, or extracellular DNA (eDNA) [1]. In contrast the formation of archaeal biofilms as well as the single constituents of EPS compounds are not yet known. One method to visualization of biofilms and EPS by confocal laser scanning microscopy (CLSM) is the tagging of cells with a fluorescent reporter gene (*gfp*) and the staining of different EPS components with fluorescent dyes.

Objective: The aim of this study was to investigate biofilm formation with regard to the EPS development of *gfp*-expressing *Hbt. salinarum* R1.

Methods: The *E. coli / Hfx. volcanii* shuttle plasmid pP2JB87 containing a gene encoding a high salt tolerant GFP [2] was used to transform *Hbt. salinarum* R1. The sessile cells were grown to different stages and EPS compounds were stained with different fluorescent dyes. The biofilm structures formed by the *gfp*-expressing *Hbt. salinarum* R1 cells were visualized by CLSM.

Results: The biofilm development investigated by CLSM showed a primary attachment of different substances such as carbohydrates, proteins, lipids, or extracellular DNA (eDNA) [1]. In contrast the formation of archaeal biofilms as well as the single constituents of EPS compounds are not yet known. One method to visualization of biofilms and EPS by confocal laser scanning microscopy (CLSM) is the tagging of cells with a fluorescent reporter gene (*gfp*) and the staining of different EPS components with fluorescent dyes.

Conclusion: *gfp*-expressing *Hbt. salinarum* R1 cells in combination with EPS specific fluorescent dyes can be used to investigate the biofilm formation.
structures and the EPS composition by CLSM. It is possible to observe biofilm physiology on a global scale is an important prerequisite to fight C. difficile infections.

Methods: A comprehensive label-free proteomics analyses (Gel-C-MSPMS) comparing the whole-cell proteome of planktonic and biofilm-grown cells was employed to identify proteins differentially expressed during biofilm formation and to define biofilm-associated regulatory networks of the C. difficile reference strain 630Δerm. Biofilms were either grown as colony-biofilms on membrane filters or as aggregated cells in liquid medium.

Results: According to our comparative proteome analysis of C. difficile 630Δerm grown planktonically or in two biofilm-setups, the majority of the proteins involved in biofilm formation are regulated by alternative sigma factors, i.e. SigH, Spo0A, CodY, and CcpA. In both biofilm models various proteins involved in sporulation, fermentation and toxin production were strongly expressed compared to planktonic cells. The biofilm expression profiles are strongly dependent on the biofilm setup. In aggregated cells proteins involved in motility, alteration of the cell surface (i.e. CapD, MshA, SunS), drug-efflux (i.e. GlnQ, YbhF and DrrA) were found to be highly abundant, whilst in colony biofilms proteins involved in anaerobic sulfite reduction (AsrABC) and lactate utilization were found to be strongly expressed when compared to their planktonic counterparts. We suggest colony biofilms as an ideal model to investigate starvation processes, whilst aggregated cells are better suited to investigate cell-to-cell interactions and signaling in dense populations.

Conclusion: The results indicate (I) a significant difference in the physiology of the biofilms grown in two model-systems and (II) that biofilm formation is a complex process, in which sporulation, toxin-production and motility can be massively effected by the sessile lifestyle.
was analysed in a 96-well plate set up using confocal laser scanning microscopy and an in-house cell-count algorithm for analysis of 3D biofilm images.

Results: The checkerboard testing revealed that in 3 out of 19 *E. faecium* strains (16 %) ampicillin and ceftaroline showed synergetic effects, but above of therapeutically achievable concentrations. In contrast, in 14 out of 19 *E. faecalis* strains (74 %) synergy at therapeutic concentrations could be observed. Preliminary data on *E. faecalis* biofilms treated with ampicillin/ceftaroline for 24h indicated a matrix destabilizing effect of the combination leading to loose biofilm structures.

Conclusion: The combination ampicillin/ceftaroline might be an alternative option for treatment of *E. faecalis* infections, the most clinically abundant species among enterococci. In contrast, this combination remains ineffective in *E. faecium* infections. As both antibiotics are b-lactams and target the cell wall synthesis, it might be more effective to combine ceftaroline with an antibiotic targeting other cell processes, e.g. aminoglycosides targeting protein synthesis. A possible synergism has to be analysed.

MCP12

Panoramic view on *Staphylococcus aureus* biofilm physiology

A. Graf, D. Becher*, C. Hentschker*, A. Leonard3, M. Lalk5, K. Riedel1,4

1Institute of Microbiology, Microbial Proteomics, Greifswald, Germany

2Institute of Microbiology, Microbial Proteomics, Greifswald, Germany

3Institute of Biochemistry, Metabolomics, Greifswald, Germany

4Helmholtz Centre for Infection Research, Braunschweig, Germany

Question: *Staphylococcus aureus* represents a dangerous opportunistic bacterial pathogen, which is able to cause a wide range of diseases like skin abscesses, bacteremia and sepsis. In contrast to a planktonic lifestyle associated with these infections, *S. aureus* is also able to form biofilms on host tissues and implants leading to chronic infections found in osteomyelitis, endocarditis and cystic fibrosis (CF) patients. Despite the facts that up to 80 % of human bacterial infections are biofilm-associated and Staphylococci are recognized as the most frequent causes of biofilm-associated infections, biofilm physiology of *S. aureus* is still largely unexplored. Furthermore, co-infecting bacterial pathogens affect *S. aureus* biofilm physiology, but so far interactions during poly-microbial infections, e.g. in CF, are poorly characterized.

Methods: In order to shed light on *S. aureus* biofilm physiology, we compared protein and metabolic profiles of planktonic and biofilm-associated *S. aureus* cells using state-of-the-art omics technologies. Additionally, we analysed mixed-species biofilms composed of *S. aureus* and *Pseudomonas aeruginosa* representing a prominent pathogen in CF patients, which tends to outcompete *S. aureus* during infection.

Results: As a starting point we have established a flow-through system suited for the cultivation of high amounts of biomass needed for proteomic and metabolic analyses. Biofilm cultivation using this system allowed us to subsequently analyse the proteome of different subcellular fractions and to determine the utilized and secreted metabolites during biofilm growth. Our proteome analyses revealed significant differences in protein expression profiles of planktonic and biofilm-grown *S. aureus* as well as mono- and mixed-species *S. aureus* biofilms.

Conclusion: We have used two complementary omics technologies to elucidate *S. aureus* biofilm physiology and to unravel molecular interactions during polymicrobial infections. Our data contribute to a better understanding of biofilm-associated *S. aureus* infections, an essential prerequisite for the development of novel antimicrobial therapies.

MCP13

Redox regulation of PdeC, a c-di-GMP-specific phosphodiesterase with an N-terminal periplasmic CSS domain in *Escherichia coli*

S. Herbst, T. Jaenicke*, R. Henge1

1Humboldt Universität zu Berlin, Institut für Biologie/Mikrobiologie, Berlin, Germany

Background: Bacterial macrocolony biofilms contain matrix-producing and matrix-free cells in distinct zones which is a prerequisite for the colonies buckling up into high ridges and intertwined wrinkles (1, 2). In *E. coli* K-12 strains the production of matrix components such as amyloid curli fibres and cellulose is promoted by the second messenger c-di-GMP, which is synthesized by 12 diguanylate cyclases (DGC) and degraded by 13 phosphodiesterases (PDE) (3, 4). A central c-di-GMP-driven switch module (DgcE/PdeR/DgcM) increases the cellular c-di-GMP level in slowly growing and stationary phase zones of macrocolony biofilms and thereby turns on the expression of the biofilm regulator CsgD. CsgD then activates the curli genes as well as dgcC, which encodes a DGC specifically required for cellulose synthesis (4, 5).

In addition, most of the other DGCs and PDEs are expressed but do not contribute to this scenario under standard lab conditions, suggesting that these enzymes are present in an inactive form ready to be activated by specific signals perceived by their various N-terminal sensor domains. PdeC is one of six members in *E. coli* of a novel subfamily of transmembrane PDEs characterized by an N-terminal CSS domain linked to an EAL domain. Two highly conserved Cys residues (one in the CSS-motif) in the periplasmic domain are involved in disulfide bond formation promoted by the DsbA/DsbB system under standard growth conditions. This oxidized form of PdeC is enzymatically inactive. Mutations that eliminate disulfide bond formation or treating cells with reducing agents result in strong activation of PdeC, which is accompanied by proteolytic processing. As a result, matrix production is down-regulated and macrocolony biofilms lose their intricate 3D morphology. In summary, our results indicate that CSS-PDEs perceive redox signals via the cytoplasmic side of the inner membrane. In addition, we identified PdeC as a novel DsbA/DsbB substrate.

MCP14

Reproducible biofilm cultivation of chemostat-grown *Escherichia coli* and investigation of bacterial adhesion kinetics on biomaterials using a non-constant-depth film fermenter

C. Lüdecke-Beyer, M. Roth2, J. Bossert2

1Otto Schott Institute of Materials Research, Chair of Materials Science, Jena, Germany

2Jena School for Microbial Communication, Jena, Germany

Background: Biomaterials-associated infections are primarily initiated by the adhesion of microorganisms on the biomaterial surfaces and subsequent biofilm formation. Understanding the fundamental microbial adhesion mechanisms and biofilm development is crucial for the development of strategies to prevent such infections. Suitable *in vitro* systems for biofilm cultivation and bacterial adhesion at controllable, constant and reproducible conditions are indispensable.

Aims: This study aimed (i) to develop an *in vitro* system for the reproducible long-term cultivation of biofilms at constant and low shear conditions using a non-constant-depth film fermenter and (ii) to use this system to elucidate bacterial adhesion kinetics on different biomaterials, focusing on biomaterials surface nanoroughness and hydrophobicity.

Methods: Chemostat-grown *Escherichia coli* were used for biofilm cultivation (up to 9d) on titanium and investigating bacterial adhesion as function of time (1h to 38h) on titanium, poly(styrene), poly(tetrafluoroethylene) and glass.

Results: The biofilms showed a typical four-stages-development including bacterial adhesion, microcolony formation and early and late maturation. Using chemostat-grown microbial cells (single-species continuous culture) minimized variations between the biofilms cultivated during different experimental runs. Bacterial adhesion on biomaterials included an initial lag-phase I followed by a fast adhesion phase II and a phase of saturation III. With increasing biomaterials surface nanoroughness and increasing hydrophobicity, adhesion rates increased during phases I and II. The influence of materials surface hydrophobicity seemed to exceed that of nanoroughness during the lag-phase I, whereas it was vice versa during adhesion phase II.

Conclusion: This study introduces the non-constant-depth film fermenter in combination with a chemostat culture to allow for a controlled approach to reproducibly cultivate biofilms and to investigate bacterial adhesion kinetics at constant and low shear conditions. The findings will support adequate testing of biomaterials surface modifications eventually preventing biomaterial-associated infections.
MCP15 Sediments and epithelial biofilms in surface waters are reservoirs for coliphages

1M. Mackowiak1, M. Leifels2, L. Jurzik2, J. Wingender1
2University of Duisburg-Essen, Biophiel Centre - Aquatic Microbiology, Essen, Germany
3Ruhr University Bochum, Department of Hygiene, Social- and Environmental Medicine, Bochum, Germany

Biofilms are ubiquitous in aqueous environments and may act as reservoirs for pathogenic microorganisms. Accumulation of hygienically relevant bacteria in aquatic biofilms has been studied in detail before. However, little is known about the occurrence of viruses in biofilms. The aim of this study was to elucidate the distribution of somatic coliphages as potential surrogates for human enteric viruses between water, sediment and epithelial biofilms in a river environment. Moreover, the occurrence of Escherichia coli as a commonly used faecal indicator and host for coliphages was assessed. Samples of water, sediment and epithelial biofilms were collected weekly in the period from July to September 2015 at three different sampling sites along the river Ruhr in Essen, Germany. E. coli was assessed using the Collilert-18/Quanti-Tray/2000 system in a most probable number (MPN) format. Somatic coliphages were quantified by a plaque assay according to DIN EN ISO 10705-2. Detection of coliphages and human enteric viruses via quantitative real-time PCR is still in progress. E. coli was detected in all water samples with a mean concentration of 1.6 MPN/ml, while the mean concentration in sediment and epithelial biofilms was 1.9×10^2 MPN/g and 5.2×10^1 MPN/g, respectively. For coliphages, preliminary results show mean concentrations of 1.0×10^-2 pfu (plaque-forming units)/ml in water, and 8.2×10^2 pfu/g and 4.9×10^2 pfu/g in sediment and epithelial biofilms, respectively, using the plaque assay. In conclusion, the results show that not only faecally-derived E. coli, but also some somatic coliphages accumulate in river biofilms compared to the bulk water. This indicates that surface water sediments and epithelial biofilms may play an important role as a reservoir for bacteriophages of faecal origin and thus possibly also for human enteric viruses in surface water environments.

MCP16 Antibiotics-loaded blue fluorescent polymeric particles for tracking in LIVE/DEAD stained pathogenic biofilms

1M. Klinger-Strobel1, J. Ernst2, C. Lautenschlaeger3, M. W. Pletz1, *M. Klinger-Strobel1, J. Ernst2, C. Lautenschlaeger3, M. W. Pletz1, Luef3
2Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany
3Helmholtz Zentrum München, Neuherberg, Germany

Objectives: In recent years, antibiotic resistance has become a serious problem among pathogenic biofilms. One promising strategy to treat biofilm-embedded microorganisms might be the encapsulation of antibiotics into microparticles (MPs) and nanoparticles (NPs). To visualize such particles in bacterial biofilms live/dead-stained by SYTO9 (green) and propidium iodide (red), we might be suitable to encapsulate antibiotics like Tb to improve their deposition and efficacy in deeper biofilm layers. AMCA represents an excellent potential for this. We therefore aimed at introducing new NPs and MPs for advanced biofilm research.

Methods: AMCA-PLGA demonstrated a high and stable fluorescence over a time range of 72 h at 4 °C, 20 °C and 37 °C. The particles were clearly visible in confocal-laser-scanning-microscopy. In this study, we addressed the following research questions: (i) Does the composition of the community and the matrix correlate? (ii) Can we observe a stratification of the community composition and matrix characteristics?

Results: AMCA-PLGA demonstrated a high and stable fluorescence over a time range of 72 h at 4 °C, 20 °C and 37 °C. The particles were clearly visible in confocal-laser-scanning-microscopy.

Conclusions: Biodegradable polymers such as PEG-PLGA exhibit a great potential as micro and nano-carrier systems for therapeutics and therefore might be suitable to encapsulate antibiotics like Tb to improve their deposition and efficacy in deeper biofilm layers. AMCA represents an excellent fluorescent labelling for visualization of PEG-PLGA-based NPs and MPs.

MCP17 Anti-biofilm activity of novel nano-silver against Bacillus subtilis

1D. Raie1, E. Mhautre2, M. Thiele3, A. Labena4, G. Al-Ghamman5, L. Farahat6, T. Youssel6, W. Fritzsche6, 7I. M. Kovacs6
2Egyptian Petroleum Research Institute, Process Design and Development, Cairo, Egypt
3Friedrich Schiller University Jena, Institute of Microbiology, Terrestrial Bioguess Group, Jena, Germany
4Leibniz Institute of Photonic Technology, Nanobiophotonics, Jena, Germany
5National Institute of Laser Enhanced Sciences, Cairo University, Department of Laser Applications in Metrology, Photochemistry and Agriculture, Giza, Egypt

Question: Are silver nanoparticles prepared through different chemical reduction method using two different stabilizers performing anti-biofilm activity against Bacillus subtilis? Methods: Glass slides were covered by novel nano-silver as anti-adhesive surface against bacteria as a route for preventing bacterial-surface attachment (biofilm). Nano-silvers were successfully synthesized by standard citrate chemical method and novel bio-chemical method in a range of 20-30 nm as examined by Dynamic Light Scattering Spectroscopy. Cleaned glass slides were covered by epoxy then coated by the synthesized nanoparticles, separately, and characterized by Atomic Force Microscope. The anti-adhesive activity was tested against fluoro-cytosylated labeled Bacillus subtilis bacteria using Confocal Laser Scanning Microscopy.

Results: Results approved the ability of the synthesized nanoparticles to reduce biofilm development (as an anti-adhesive agent) with different degrees.

Conclusion: Stabilizing agent has a significant effect on the anti-adhesive of silver nanoparticles.

Acknowledgement: European Science Foundation (ESF) for Exchange Grant.

MCP18 Matrix composition and community structure analysis of natural cave biofilms

1C. Karwautz1, T. Neu2, T. Lueders1
2Helmholtz Zentrum München, Neuberg, Germany
3Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany

Bacterial biofilms secrete extracellular poly saccharides, which can serve as a scaffold for additional biogenic substances (carbohydrates, proteins, lipids and nucleic acids) and inorganic particles that form the matrix of biofilms. The bacterial community defines the composition and structure of the secreted extracellular polymeric substances (EPS). In return, the structure of the matrix determines fluxes and gradients in the immediate proximity of the embedded cells. Therefore the production and distribution of extracellular polymeric substances affects the interactions and dynamics of natural microbial assemblages.

In this study, we addressed the following research questions: (i) Does the composition of the community and the matrix correlate? (ii) Can we observe a stratification of the community composition and matrix characteristics?

We describe a natural microbial community forming a massive cave biofilm composed of secreted and accumulated substances. The subcavern biofilms received inputs of low levels of dissolved organic carbon (DOC) from seepage water and methane released into the cave. The bacterial community composition was analyzed using amplicon sequencing combined with Fluorescence In Situ Hybridization (FISH) to reveal spatial patterns within the biofilms. In addition, cryosections of the samples were prepared and different depth layers were examined. A lectin-binding assay was used to characterize the composition of glycoconjugates.

Our results uncover a diverse bacterial community composed of several methanotrophic lineages such as Methyloccoccus but also a high abundance of Pseudomonadaceae and Planctomycetaceae. FISH probes targeting the abundant subgroups of the Proteobacteria and methanotrophic Gammaproteobacteria revealed distinct patterns within the biofilms. Glycoconjugates were predominantly stained by the Fucose-specific lectin Alcea aurantiac (AAL). We visualized a unique network of bacterial cells sheathed with thick layers of carbohydrates.

The ecology of biofilms is determined by the interrelation of the taxonomic composition and the extracellular matrix. The EPS provides a
physical and chemical barrier, which creates microenvironments shaped by the exudation of metabolic products as well as the influx of new substances. We provide first evidence for a highly diverse community forming snottites at near neutral pH, by accumulating great amounts of carbohydrates.

MCP19
The role of c-di-GMP in biofilm formation of the filamentous cyanobacterium *Nostoc punctiforme*

J. Joepel, R. Breitenbach, J. Vandrich

Federal Institute for Materials Research and Testing, 4.0, Berlin, Germany

In cyanobacteria various second messengers are described, from cyclic nucleotides to gases [1]. The signaling molecule c-di-GMP is a ubiquitous second messenger in bacterial species including cyanobacteria. C-di-GMP is produced by diguanylate cyclases (DGCs) with GGDEF domains and degraded by phosphodiesterases (PDEs) with EAL domains. It binds to a large range of effector components and impacts several processes, including biofilm formation and EPS production [1, 2]. C-di-GMP stimulates the biosynthesis of extracellular polymeric substances (EPS) in biofilms and regulates the transition between a motile and a sessile life style in many bacteria [2]. In cyanobacteria many proteins containing regulatory domains for synthesis or degradation of c-di-GMP are associated with light-responsive domains. It was shown, that this secondary messenger can be directly involved in the regulation of cyanobacterial phototaxis in the unicellular non-diazotrophic cyanobacterium of the genus *Synechocystis* [3]. In our study we focus on c-di-GMP function and EPS production associated with biofilm formation in *Nostoc punctiforme*, which is known to produce EPS in biofilms and liquid culture. By cloning a part of the phb gene (5-6) from cyanobacterium *Synechocystis* sp., that carries the GGDEF domain for production of c-di-GMP, a c-di-GMP overproducing *N. punctiforme* strain was constructed. The role of this second messenger in EPS production, heterocyst differentiation and biofilm formation was demonstrated. Furthermore the photoreceptor activity was analyzed and the results were compared to results in *Synechocystis*. Additional functions of c-di-GMP in filamentous nitrogen-fixing cyanobacteria e.g. of the genus *Nostoc* are unknown, though c-di-GMP-related genes were identified in the genome sequence of *Nostoc punctiforme* and will be investigated.

MCP20
Bacterial life in biofilm-like habitats at the top of the oceans

C. Stolle, V. C. Thau2, P. T. Thu, X. Mari, O. Wur1

1Carl von Ossietzky University Oldenburg, ICBM - AG Sea Surfaces, Wilhelmshaven, Germany
2Institute of Marine Environment and Resources, Haiphong City, Vietnam
3Aix-Marseille University, Marseille, France

The uppermost top of any oceanic water body is defined as the sea-surface microlayer (SML). It forms the interfacial boundary layer between the ocean and the atmosphere. Thus, it has a profound function for marine biogeochemistry and climate regulation, such as the air-sea exchange of climate-relevant gases, heat, and particles. The SML is a very dynamic habitat due to the influence of wind, but extremely smothered sea surfaces (i.e. slicks) are observed frequently. Organisms in the SML experience strong physical and chemical forcing, e.g. UV radiation and accumulation of pollutants, compared to their planktonic counterparts in the overlying bulk water (ULW). Consequently, it is known that bacterial communities in the SML can differ strongly from the ULW. There is evidence that under calm meteorological conditions (low wind speed) bacterial communities in the SML are especially distinct from the ULW. Organisms in the SML can be considered as biofilm-like habitats. However, systematic studies on slicks are scarce. To study the biofilm-like nature of the SML, we investigated slick and non-slick sea surfaces in the Pacific Ocean, the South China Sea and the Baltic Sea and compared these to samples taken from the ULW. We analyzed TEP as a proxy for extracellular polymeric substances. The bacterial communities were analyzed by flow cytometry and 16S rRNA gene fingerprints to determine their abundance and community composition, respectively. Moreover, bacterial activity was studied by measuring the uptake of different carbon substrates. We found that the SML was generally enriched in TEP compared to the ULW and that highest enrichments were always found in slick samples. Similarly, bacterial numbers and activities were highest in slicks. Compared to non-slick samples, the bacterial community composition in slicks was increasingly different from bulk water communities. This differentiation was generally well related to the enrichment of TEP in the SML. Overall our results indicate, that the enrichment of TEP most likely resembles a biofilm-like matrix at the sea surface. This TEP-matrix creates a specific environment for its bacterial inhabitants, enhancing bacterial growth and activity, which is comparable to other known biofilm habitats. Therefore, we conclude that slicks feature biofilm-like properties with the excessive accumulation of particles and microorganisms embedded in a TEP matrix.

MCP21
Biofilm stability is affected by environmentally relevant low concentrations of silver nanoparticles

H. Schmidt, M. Madzgalla, S. Gerbersdorf, W. Manz

1University Koblenz-Landau, Koblenz, Germany
2University Stuttgart, Germany

Silver nanoparticles (AgNP) are widely used as antimicrobial agent in numerous forms of products used in daily life (e.g. in various textiles, cosmetics and sanitary products). Although antimicrobial effects of AgNP are supposed in general, there still is a significant lack of knowledge about their actual fate in the environment and potentially adverse effects upon aquatic habitats [1]. In the context of the DFG research group INTERNANO, project BIOFILM performed a series of experiments to investigate the effects of exposure to environmentally relevant low concentrations of citrate stabilized AgNP upon freshwater biofilms. This presentation will focus on one essential biofilm driven ecosystem function described as biofilm adhesion: during biofilm development, microbes produce extracellular polymeric substances (EPS) that glue cells to the underlying surface as well sediment grains to each other, increasing their resistance towards erosion. This process has been recently described as biostabilization [2] providing an important ecosystem service in sediments. Thus, biofilm adhesiveness has great ecological significance as a sink for pollutants and contaminants with increased resistance versus remobilization into the free water column and connected aquifers. Monosomes biofilms of *Aquabacterium citratophilum* were cultivated on glass slides and treated with AgNP (diameter 40nm, citrate stabilized). In doing so, an environmentally relevant, sub lethal concentration was applied as well as one with lethal effects upon bacteria. Three controls were established: untreated, treatment with AgNO₃ and CuSO₄. To investigate the different levels of impairment, biofilm productivity was determined measuring EPS carbohydrates and protein contents. Furthermore, biomass and biofilm structure were analysed as well as biofilm functionality, in this case stability, using a non-destructive adhesion measurement method with high temporal and spatial resolution (MagPI²). We report here for the first time the statistically significant effect of low-dose exposure of AgNP on biofilm cohesiveness, and simultaneously determined EPS carbohydrate composition and biofilm protein content. Alteration of biofilm stability as shown by MagPI will finally be discussed against the recently elucidated reduction of biofilm stability and viscosity by microgravimetry and microrhology, respectively.

MCP22
In vitro assessment of industrial biofilms in metal working fluid systems

J. E. Langbein, N. Steiner, K. Huth-Herms, S. L. Riedel

1Technische Universität Berlin, Institut für Werkzeugmaschinen und Fahrzeugbetrieb, Berlin, Germany
2Fraunhofer Institut für Produktionsanlagen und Konstruktionstechnik, Berlin, Germany

Water miscible metalworking fluids (MWFs) are commonly used in several industries during processing of metal work pieces. Despite, the addition of biocides to MWFs some microorganisms (MO) are able to survive and are even able to form biofilms in the MWF tanks and machine pipelines.
Then, these biofilms are the source of contamination, after the MWF got changed. Through the metabolization of MWF compounds the working conditions are changing, which influences the metalworking process. Also, microbial contamination is a potential health risk of the machine operator. A longer using time of MWF would safe running costs of the metalworking machine. The aim of this work was to develop an *in vitro* model in analogy to real machine systems, which allows the generation of realistic biofilms to test the impact of a number of physico-chemical parameters on the biofilm formation. Interacting parameters as, metal specification, operating temperature, mixing, nutritional addition and time on the biofilm formation have been analyzed by fluorescence- and atomic force microscopy. Therefore, stripes with a defined size, consisting of glass, elemental copper, alloyed aluminum as well as alloyed stainless steel have been placed into small chambers. The chambers were filled with MWF, which was inoculated beforehand with a defined bacteria consortium. Apart from the influence of the parameters on the biofilm formation, a possible correlation between the percentage of viable MO in the biofilm and the colony forming units in the MWF was investigated. Within this work, for the first time, realistic *in vitro* biofilms in MWF could be generated. Furthermore, parameters were defined that influence biofilm formation in MWF systems.

MCP23

Application of low pH sulfidogenic bioreactors to selectively recover metals from acidic process waters

S. Hedrich, A. Schippers, B. Johnson

Federal Institute for Geosciences and Natural Resources, Resource Geochemistry, Hannover, Germany

Bangor University, School of Biological Sciences, Bangor, Great Britain

Acidic, sulfate- and metal-rich waters are generated by different industrial processes, including mining of metals and mineral processing. A novel technique that promotes both, selective recovery of potentially valuable metals and removal of sulfate from acidic liquors, has shown great potential [1]. The system uses versatile and robust consortia of novel, acidophilic sulfate-reducing bacteria (SRB) to produce H$_2$S which reacts with chalcophilic metals (e.g. Cu, Zn) to form insoluble metal sulfides. While this has previously successfully been applied to precipitate CuS and ZnS, present in relatively low concentrations in iron-rich mine waters [1,2], here we describe results obtained with highly metal-rich, acidic solutions produced from bioleaching a copper concentrate in order to selectively precipitate different metal sulfides. The pregnant leach solution (PLS) was characterized by very low pH and high concentrations of some metals (Fe$^{3+}$, Cu$^{2+}$, Zn$^{2+}$) and sulfate, and significant amounts of Ni. To recover the chalcophilic metals as sulfides via controlled biomineralization, a pH-controlled, continuous flow bioreactor, housing novel acidophilic SRB, was set up. The 2L bioreactor was operated effectively at pH 2.5 - 4 fed with synthetic PLS supplemented with glycerol and yeast extract. By moderating the pH, it was possible to control which metal(s) precipitated and those which remained in solution, as the metal sulfides concerned have different solubility products. Sulfate and metal concentrations in the feed solution were gradually increased and pH and glycerol concentration adjusted. Flow rates and metal concentrations were used to determine the efficiency of the process, and the microbial community was monitored using molecular techniques. Soluble Fe$^{3+}$ was initially precipitated as the mineral schwertmannite by controlled addition of alkali. The SRB system was adapted to the increased sulfate concentrations in the PLS which resulted in osmotolerant species becoming increasingly dominant. ZnS was precipitated within the bioreactor by adjusting the system pH, and CuS and NiS were selectively recovered in separate, offline vessels flushed with excess H$_2$S from the sulfidogenic bioreactor. The rate of glycerol oxidation thereby influenced the hydraulic retention time of the system and the feed glycerol concentration determined the amount of excess H$_2$S being produced. This study broadens the applicability of the described sulfidogenic systems to more complex mine and process waters for a selective recovery of valuable, chalcophilic metals and removal of sulfate.

MCP24

Groundwater microbial communities response to simulated spills of hydraulic fracturing-related fluids

N. Sinnence, M. Krüger

BGR, Hannover, Germany

The exploitation of shale gas requires hydraulic stimulation (fracking), i.e. the injection of fluids at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock. Up to 40 % of these fluids flows back to the surface, together with reservoir waters. To assess the response of groundwater microbial communities to a potential spill and their resilience, laboratory experiments under *in situ* conditions were conducted using groundwater samples. Microcosms containing R2 broth medium or groundwater spiked with either single frac chemicals, frac fluids, artificial reservoir water, NaCl, oil, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Classical microbiological methods and molecular analyses were used to assess the effects in the microbial abundance and community structure. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides or frac fluids. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride were used as substrates, while others like triethanolamine or light oil distillate hydrogenated prevented microbial growth in groundwater. Ongoing work will provide information on potential transformations of frac or geogenic chemicals by groundwater microbiota and their lifetime.

MCP25

Heavy metal release by fungal induced black slate degradation

J. Kirtzel, K. Krause, M. Gube, E. Kohle

Friedrich Schiller University, Microbial Communication, Jena, Germany

Georg August University, Soil Science of Temperate Ecosystems, Göttingen, Germany

Microorganisms are important factors in the degradation of rocks. Especially fungi promote the biological decomposition of lithic substrates. These processes are of high ecological relevance because they increase carbon dioxide concentration in the atmosphere and cause damages at historical buildings. Other major difficulties are waste dumps. Once the rock material has been lifted to the earth’s surface, microbial activity may release embedded heavy metals from rocks. The filamentous fungus *Schizophyllum commune* is a widespread basidiomycete and has the ability to degrade wood. In doing so, it secretes many enzymes like unspecific oxidas like laccases, which are responsible for lignin degradation. Many enzymes involved in wood decomposition are assumed to be implicated in organic carbon release from rocks like slates. In this study, the connection between fungal caused rock degradation and heavy metal release is investigated. Furthermore, a laccase overexpressing strain and a control are compared to verify the contribution of laccases on black slate decomposition. For these experiments, the fungal strains were grown in liquid medium with and without grounded black slate for up to 14 days. Afterwards, metals in the medium were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results show a significant involvement of *S. commune* on the release of e.g. Fe, Pb, and U. However, in some cases the metal concentration in the medium is higher in the absence of the fungus. This indicates that these metals are bioavailable, possibly essential for the fungus, and so taken up by it. Considering the role of laccases, the overexpressing strain sometimes shows higher release of metals compared to the control and *vice versa*. The results suggest a high ecological importance of *S. commune* as a rock-degrading fungus. It decomposes the slate to use containing organic carbon and nutrients for its energy generation and nutrition. During the process of biological weathering, it could be shown, that metals are released to the surrounding. In nature, this could cause serious problems in matters of soil and water contamination. Further experiments will be performed to test the bioavailability of released metals.
MCP26
Sequestration and drift of heavy metals and radionuclides under influence of ectomycorrhiza
*S. Formann1
1Friedrich Schiller University Jena, Microbial Communication, Jena, Germany

Ectomycorrhiza (ECM) as mutualistic interaction can easily colonize dense mineral-organic soil formations. Due to their capabilities to accumulate elements, ECM fungi can act as biological filters and therewith provide scavenger functions for ECM tree partners and surrounding organisms. So ECM fungal fruiting body tissues show high biocatalytic factor concentrations: *Pavillard involutus* 66 for Cs, *Sporispirillum tinctovol* 40 for Pb and 28 for U. In microcosms with ECM clear reductions of Al, Cs and Pb concentrations were measurable in the soil mineral substrate, depending on soil substrate composition and pH. Additionally intracellular immobilization of toxic elements by cystolic Glutathione S-transferase (GST) activity appeared. So mycelium showed higher GST activity under influence of high elemental values of Ni, Sr and Pb. Furthermore increased Pb values with up to 18 mg/g Pb occurred in guttation fluids of ECM fungi, even more from co-cultures. Aquaporines (AQP) are potential drivers. So AQP inhibitors acetylamolin and silver affected an inhibition of AQP transported water resulting in decreased exudation of guttation fluids by fungal mycelium. Therewith areas as secondary mineral enriched fields, like post-mining areas, are interesting for extraction processes of solvable minerals ensured by microorganisms such as fungi.

MCP27
Inhibition of acidophilic microbes in model systems for decommissioning of in situ bioleaching of sulfide copper ores
*M. Warneke1, A. Schippers1
Bundesanstalt für Geowissenschaften und Rohstoffe - Geomikrobiologie, Hannover, Germany

Deeply buried complex ore bodies in the European Earth crust are expected to feed the growing hunger for base metals by industry, because easily minable deposits became rare. Conventional mining would include removal of overburden, hauling of the ore to the surface and grinding it to processable powders meaning high capital demands and potentially high environmental burdens. The European EU Horizon 2020 project BioM2ore aims to avoid costs and hazards of open-pit mining by development of a new combination of in situ leach mining technology and a ferric iron lixiviant generated in bioreactors with acidophilic iron-oxidizers. The general principal of the new technology will be tested in a block leaching pilot in situ in the Rudna Mine (KGHM, Poland). Indirect ferrie ferric iron bioleaching of fractured deposits will be subsequent to an initial leaching with a mineral acid solution to dissolve e.g. carbonates and acid-extractable metal sulfides. The injected lixiviant from the injection wells percolates through the fractured ore, catalyzing the oxidative dissolution of metal-containing minerals under oxygen-limiting or anoxic conditions, and the metaliferous solution generated is pumped to the land surface and processed via hydromeltallurgy. Autotrophic iron oxidizers from the bioreactors present in the lixiviant can colonize the deep buried geological formations. Inhibition of these allochthonous microbial populations subsequent to the depletion of the deposits is one of the challenges for the decommissioning phase of the BioM2ore-project. Shake flask and percolator experiments inoculated with a ferric iron-generating bioreactor adapted to black shale and sandstone ore from Rudna Mine (Poland) have been established at 35°C and pH 1.4, and were fed with 50 mM ferrous sulfate. The inhibition efficiency of chloride, formate, acetate, SDS and benzoic acid was examined in different set-ups. T-RFLP, qPCR, FISH, microcalorimetry and ATP-measurements were used to monitor the effects on members of the acidophilic mixed culture in combination with chemical determinations. T-RFLP results corroborated the predominance of *Leptospirillum* and *Acidithiobacillus* species in the bioreactor culture. The high efficiency of metal sulfate oxidation by biologically generated ferric iron has been proven as high metal concentrations have been determined in the circulating leach-solution of the percolator systems. Inhibition of metabolic activity of iron-oxidizing acidophiles was achieved in the presence of 300 μM formate and 400 mM chloride. The bacteriostatic effects of SDS and benzoic acid have also been confirmed. Contrary to expectations, acetate revealed very low inhibition effects with concentrations higher than 10 mM. The results show the feasibility of inhibition of in situ bioleaching activity relevant for decommissioning subsequent to the metal depletion of deposits.

MCP28
Applied electrochemistry in biohydrometallurgy
*C. Tanne1, A. Schippers1
1Federal Institute for Geosciences and Natural Resources (BGR), Resource Geochemistry, Hannover, Germany

Bioleaching is the extraction of metals from ores by the use of microorganisms acting as biocatalysts in the mineral dissolution process. Applied bioleaching (biomining) is of great economic importance for the recovery of high value metals such as Cu, Au, U, Ni, Co and Zn. However, some minerals such as primary copper sulfides are difficult to leach. This is most probably due to the formation of a passivating layer (consisting of elementary sulfur, sulfides and/or hardly soluble iron precipitates) which covers the mineral surface. In this context electrochemistry is an important tool of mineral and metallurgy research. And electrochemical techniques become increasingly established to understand and to control the mineral dissolution during bioleaching [1, 2]. Thus, our aim is to combine bioleaching with analytical electrochemistry to investigate changes in the electrochemical properties of the mineral-liquid-phase. Further we aim at the application of preparative electrochemical techniques to improve the bioleaching process for the recovery of valuable and rare metals. A three electrode arrangement was used to investigate mineral dissolution of leached and not leached material. Two types of working electrodes were fabricated to study their electrochemical behavior by various electrochemical techniques.

We observed mineral passivation with massive mineral electrodes as same as with mineral carbon paste electrodes made from a copper sulfide mineral. These electrode systems are suitable to investigate, for instance how mineral passivation can be avoided and how to improve bioleaching by galvanic effects between different minerals.

Electrochemical methods are feasible tools to shed more light on mineral dissolution and on the interaction between leaching bacteria and the mineral surface. However, we are still in progress to establish electrochemical methods into the bioleaching process for an improved metal recovery.

of the participating microorganisms is essential. The influence of geogenic microbial associated processes, knowledge of the abundance and diversity effect on these locations as well as show adaptations. To understand the extreme habitats. Presumably, microbial activity will have a noticeable effect on the activity of the bioremediation. We isolated actinomycetes from a heavy metal contaminated site situated in a local ecosystem are widely unknown, but along with the implementation of carbon capture and storage and its potential of leakage, mofettes present a natural site. The high CO2 concentrations result in mostly hypoxic, extreme habitats. Presumably, microbial activity will have a noticeable effect on these locations as well as show adaptations. To understand the microbial associated processes, knowledge of the abundance and diversity of the participating microorganisms is essential. The influence of geogenic CO2 release in the shallow lacustrine and terrestrial environment on microbial communities was tested with a focus on methanogenic archaea and methylotrophic bacteria. To describe the bacterial diversity and abundance, 16S rDNA gene sequencing was used to perform phylogenetic analyses. Sediment samples from a terrestrial and a lacustrine gas vent as well as control sites with not enhanced CO2 concentrations in soil at the eastern part of the Laacher See were used. The structure of the bacterial communities and predominant genera are affected by CO2 vents. We observed methanotrophic bacterial genera indicating the presence of methanogens as well. We assume that noticeable amounts of methane should be produced, but will be immediately consumed by methanotrophic bacteria because of the low methane concentration in the vent.

MCP30
Impact of mofette activity on microbial communities in soil and in the lacustrine bottom of the Laacher See, Germany
S. Pietschmann, E. Köthe
Friedrich Schiller University Jena, Institute of Microbiology, Microbial Communication, Jena, Germany

Mofettes are cold, geogenic exhalations with extremely high CO2 concentrations and occur in the surface near tectonic faults, where the gas ascends from the earth’s lower crust or upper mantle. Their effects on the local ecosystem are widely unknown, but along with the implementation of carbon capture and storage and its potential of leakage, mofettes present a natural site. The high CO2 concentrations result in mostly hypoxic, extreme habitats. Presumably, microbial activity will have a noticeable effect on these locations as well as show adaptations. To understand the microbial associated processes, knowledge of the abundance and diversity of the participating microorganisms is essential. The influence of geogenic CO2 release in the shallow lacustrine and terrestrial environment on microbial communities was tested with a focus on methanogenic archaea and methylotrophic bacteria. To describe the bacterial diversity and abundance, 16S rDNA gene sequencing was used to perform phylogenetic analyses. Sediment samples from a terrestrial and a lacustrine gas vent as well as control sites with not enhanced CO2 concentrations in soil at the eastern part of the Laacher See were used. The structure of the bacterial communities and predominant genera are affected by CO2 vents. We observed methanotrophic bacterial genera indicating the presence of methanogens as well. We assume that noticeable amounts of methane should be produced, but will be immediately consumed by methanotrophic bacteria because of the low methane concentration in the vent.

MCP31
Actinomycetes from a heavy metal contaminated site
B. Funai, K. Martin, M. Roth, E. Köthe
Friedrich Schiller University, Institute of Microbiology, Microbial Communication, Jena, Germany

We isolated actinomycetes from a metal contaminated site situated in a former uranium mining area. The substrate of the test site Gessenswiese near Ronneburg, Germany, represents an extreme habitat with low pH, high salt concentrations and free heavy metal ions that lead to adaptations to cope with these harsh conditions. Actinomycetes are well known for their ability to produce a broad range of bioactive secondary metabolites. In our actinomycete isolates from the extreme habitat, we see the potential to apply in a wide concentration range for adding stress factors like heavy metal treatment. The transfer to a microfluidic system at nanoliter scale would enable a faster screening and evaluation of the compounds only visible under metal treatment. The transfer to a microfluidic system at nanoliter scale would enable a faster screening and evaluation of the compounds only visible under metal treatment.

MCP32
Olivine dissolution by a model biofilm: biological impact and analytical methodology considerations
R. Gerrits, R. Pukhare, F. von Blanckenburg, A. Gorbushina
Friedrich Schiller University Berlin, Department of Biology, Chemistry & Pharmacy, Berlin, Germany
Bundesanstalt für Materialforschung und Prüfung, 4.0 Materials & Environment, Berlin, Germany
German Research Centre for Geosciences, 3.4 Earth Surface Geosciences, Potsdam, Germany
Friedrich Schiller University Berlin, Department of Geosciences, Berlin, Germany

Subaerial biofilms (SAB) on rocks are ubiquitous in nature and actively participate in weathering of exposed terrestrial surfaces and soil formation (Gorbushina 2007). Due to the enormous amounts of variables that belong to a biological process, the quantification of biogenic influence is only possible by using well-controlled and simplified laboratory models. A recently developed in vitro system to study colonisation of rocks models a complex SAB community through two key participants - a symbiotic cyanobacterium and a rock-inhabiting fungus. With the aim of gaining more insight on the impact of rock-inhabiting biofilms on mineral weathering we studied the impact of this model biofilm on olivine dissolution rates. Forsterricht olivine was incubated in batch reactor flasks with and without a model biofilm consisting of the cyanobacterium Nostoc punctiforme and the rock-inhabiting ascomycete Knufia petricola, and submerged in a growth solution (pH 6). The flasks were incubated for 30 days under 25 °C, 90 μmol photons/m²s and were shaken at 150 rpm. qPCR was performed to quantify the cell growth of both organisms, BET to gather the specific surface area of the olivine and ICP-OES to follow up the change of concentration of the leached out metals. Our results show that our model consortium -especially K. petricola- does increase the dissolution rate of olivine. The pH increased from the initial 6 to around 7.2 for all setups. Initially Mg was preferentially released over Si (Mg/Si of 3.5), until after two days the ratio starts equilibrating around stoichiometric dissolution. During this timeframe the dissolution rate drops by nearly two orders of magnitude, just as observed by Daival et al., (2011). The difference in dissolution rates between the biologically influenced and abiotic setups is initially non-existent, but increases over time. After 30 days the setup with K. petricola gives a dissolution rate of 1.08×10⁻⁵ moles/cm²s, compared to 9.23×10⁻⁶ moles/cm²s for the abiotic setup. We expect this study to increase awareness on the impact of microbiology on mineral weathering. Additionally it is a starting point for other, more sophisticated experiments using for instance flow through or drip flow reactors or other minerals. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n° [608069].

Most sulphate reducing prokaryotes (SRP) which have been described so far were isolated from neutral-pH environments and were determined to be neutrophilic. However, in recent years the presence and activity of SRP were also found in low-pH environments -especially those generated by sulfuric acid. Though many strains obtained from these acidic habitats showed no growth below pH 5, to date three validly described moderately acidophilic sulphate reducing bacteria exist: i) Thermosulfobium naragense Na82 [1], ii) Desulfosporosinus acidiphilus SH4 [2], and iii) Desulfosporosinus acidubarum M1 [3]. The sulphate reducing bacterium isolated in this study, strain 3baa, was isolated from acidic sediments (pH 2.6) of pit mine lake 111 US 3 applied, H2 and CO2 served as pH-independent electron donor

MCP33
Thermosulfobium sp. strain 3baa – acidophilic sulphate reducing bacterium isolated from a mine pit lake
V. Rüffel, M. Dammbrück, K. Haas, T. R. Neu, J. Meier
University of Koblenz-Landau, Institute for Integrated Natural Sciences, Koblenz, Germany
Helmholz Centre of Environmental Research – UFZ, Department of River Ecology, Magdeburg, Germany

Most sulphate reducing prokaryotes (SRP) which have been described so far were isolated from neutral-pH environments and were determined to be neutrophilic. However, in recent years the presence and activity of SRP were also found in low-pH environments – especially those generated by sulfuric acid. Though many strains obtained from these acidic habitats showed no growth below pH 5, to date three validly described moderately acidophilic sulphate reducing bacteria exist: i) Thermosulfobium naragense Na82 [1], ii) Desulfosporosinus acidiphilus SH4 [2], and iii) Desulfosporosinus acidubarum M1 [3]. The sulphate reducing bacterium isolated in this study, strain 3baa, was isolated from acidic sediments (pH 2.6) of pit mine lake 111 US 3 applied, H2 and CO2 served as pH-independent electron donor.
and carbon source, respectively. 16S rRNA gene analysis indicated 98 % sequence similarity to Thermoanaerobacterium narugense NaB2* isolated from a pH-neutral hot spring (pH 6.9, 58 °C) in Japan. Like the type strain, strain 3baa is rod-shaped (0.3-2 - 3 μm) and exhibits a Gram-negative cell wall structure. Similarly, strain 3baa appears to be a chemolithoautotrophic in respect to the electron donors/carbon sources tested. As one of the major questions was whether we deal with an acidophilic or rather acidotolerant organism, we performed batch growth experiments in the range of pH 2 - 7 at approximately 0.5-unit intervals. Sulfate concentrations and pH were monitored over time and cell numbers were determined by epifluorescence microscopy using nucleic acid stain SYBRGreen I. Growth occurred in the range of pH 2.6 - 6.6, while no growth was observed at an initial pH of 2.0 or 6.9. Sulfate reducing activity increased with decreasing initial pH with the highest rate of 1.4 umol ml-1 d-1 at pH 2.6. In contrast, cell counts of the culture liquid demonstrated highest yields in the intermediate range of pH 4.2 - 5.6 and lowest yields at pH 2.6 and 3.1. At low pH, we observed precipitate formation at the solid-liquid interface. Investigation of subsurface glass and polycarbonate carriers by confocal laser scanning microscopy revealed a densely populated surface with numerous microcolonies and larger mineral aggregates covered with cells. From these results we conclude that strain 3baa is an acidophilic sulfate reducer. High sulfate reduction rates may present a mechanism of pH homeostasis in an acidic environment. This as well as the role of biofilm formation and mineral precipitation for growth at low pH needs further investigation and will be addressed in the near future.

MCP34
Growing at the solid-liquid interface: biofilm formation of a sulfate reducing bacterium in an acidic and metal rich medium – an ultrastructural investigation

PM Maurer, B. Hafner1, J. Meier1
1University of Koblenz-Landau, Institute for Integrated Natural Sciences, Koblenz, Germany
2Central Institute of the Federal Armed Forces Medical Service, Electron Microscopy; Koblenz, Germany

Sulfate reducing bacteria are promising candidates for the remediation of acidic metal rich waste waters. They produce alkaliinity and hydrogen sulfide which reacts readily with certain metal cations to form insoluble sulfide minerals. Chemolithoautotrophic Thermoanaerobacterium sp. strain 3baa was recently isolated from mining of an acidic mine pit lake. When it was grown in artificial pore water medium (APWM) [1] posed to low pH (pH 2.5 - 3.5), the formation of precipitates strongly adhering to solid surfaces was observed. The overall aim of this study was to visualize and analyze the structure of this layer at high resolution applying scanning (SEM) and transmission electron microscopy (TEM) accompanied by EDX micro-analysis. We wanted to address the following questions: i) At what point do bacterial cells colonize the solid surface and do they produce an extracellular polymeric matrix? ii) What kinds of inorganic precipitates are formed and in which chronological order do they appear? iii) How are cells and precipitates localized in relation to each other? Strain 3baa was grown in batch cultures containing APWM posed to pH 3 and H2/CO2 in the headspace. A polycarbonate carrier was introduced to support biofilm growth. In 7-day intervals, the carrier were removed and the culture liquid was analysed for pH, sulfate (IC), dissolved AI, Fe and Mg (AAS), and cell counts (SYBRGreen I). For SEM, biofilms were fixed, dehydrated and coated with 20 nm Au. For TEM and ultra-thin sectioning, samples were embedded in Spurr resin. Carriers removed during or at the end of exponential growth phase of planktonic cells exhibited only few randomly dispersed cells. The carrier surfaces were coated by a thin Al-rich layer. Additionally, Al-rich spherical structures of different sizes were observed increasing in number and large aggregates with time. These were also found on cell surfaces with some cells completely covered. Only after planktonic cells had long reached stationary phase, the carriers became more densely populated and minerals rich in Fe and S appeared. Three different types of Fe- and S-rich minerals were observed depending on their specific location to the gas-liquid interface. Cells were found within as well as on top of mineral aggregates. Extracellular polymeric substances were not observed. TEM revealed Al-rich spheres to be closely associated with cell surfaces, however, no intracellular precipitates were detected. From our observations we can conclude that cells only have a strong affinity to the solid surface when Al- and/or sulfide precipitates are present. The production of an extracellular polymeric matrix does not seem a prerequisite to form an adhesive biofilm. It may be suggested that Al-rich precipitates take over this role. There was no indication that mineral precipitation has an inhibitory effect on cell growth or activity.

MCP35
Forest strata drive spatial structure of archaeal and bacterial communities and microbial CH4 cycling in neotropical broomelid wetlands

*G. Martinson1, F. Brandt1
1Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

Question: Several thousand of tank bromelids per hectare of neotropical forest create a unique wetland ecosystem that harbors diverse communities of archaea and bacteria and emit substantial amounts of methane. Since there is only little information about the microbiology within bromelid wetlands, we studied the spatial distribution and potential functions of microbial communities and methane (CH4) cycling and their drivers in tank bromelid wetlands.

Methods: We selected tank bromelids of six different species and two functional types (terrestrial and canopy) in a neotropical montane forest of Southern Ecuador and sampled their organic tank slurry. Bacterial and archaeal communities were characterized using terminal-restriction fragment length polymorphism (T-RFLP) and Illumina MiSeq sequencing, respectively, and linked with physico-chemical tank-slurry properties. Additionally, we performed tank-slurry incubations to measure CH4 production, stable carbon isotope fractionation and pathway of CH4 formation.

Results: Archaeal and bacterial community composition in broomelid wetlands were dominated by methanogens and by Alphaproteobacteria and Bacteroidetes, respectively, and did not differ between species but between functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens among all bromelids but also characteristic for canopy bromelids. Aceticlastic Methanosarcinaeaceae were characteristic for terrestrial bromelids. Complementary, hydrogenotrophic methanogenesis was the dominant pathway of CH4 formation. The relative contribution of aceticlastic to total produced CH4 increased in terrestrial bromelids and led to a concomitant increase in total CH4 production. Rhodospirillales and Clostridiales were characteristic for canopy bromelids. Planctomycetaceales and Actinomycetaceales were characteristic for terrestrial bromelids. While nitrogen concentration and pH explained 32 % of the archaeal community variability, 29 % of the bacterial community variability was explained by concentrations of nitrogen, acetate and propionate.

Conclusion: Bromelid functional types, associated with different forest strata, and their constrained environmental characteristics, e.g. light availability and tank organic matter quality and quantity, may be most important drivers for spatial distribution of archaeal and bacterial communities and microbial CH4 cycling in neotropical forest canopies.

MCP36
Gastric bypass surgery markedly perturbs the community structure and the functional composition of the intestinal microbiota

*S.-B. Haag1, N. Jehmlich1, C. Hintschich1, M. Hank1, F. Seyfried1, W. Fenske2, M. von Bergen3,4
1Helmholtz Centre for Environmental Research – UFZ, Proteomics, Leipzig, Germany
2IFB Adiposity Diseases, Neuroendocrine Regulation of Energy Homeostasis Group, Leipzig, Germany
3University of Würzburg, Department of General, Visceral, Vascular and Pediatric Surgery, Würzburg, Germany
4University of Leipzig, Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig, Germany

Roux-en-Y gastric bypass surgery (RYGB) is performed to help reduce body weight to less harmful levels in severely obese patients. Following RYGB, patients only eat small amounts of food and nutrients are not efficiently digested in the small intestine, both leading to a reduction in overall caloric intake. Globally this operation is performed over 150,000 times each year. Since the impact of this surgical rearrangement of the gastro-intestinal tract on the intestinal microbiota has only been investigated to a small degree, our research question was: How does RYGB affect the community structure and the functional composition of the intestinal microbiota? In this study we investigated in a rat model the effect of RYGB on the microbiota from the ileum as well as the colon and compared these to body weight matched animals with sham surgery. From the two gut communities and microbial CH4 cycling in neotropical forest canopies.
locally, we investigated the microbiota inhabiting the mucus layer and the intestinal lumen separately. To resolve the community structure in regard to taxonomy and enzymatic functionalities 16S rRNA gene sequencing and metatranscriptomics was performed.

The results revealed profound changes in the taxa distribution and the enzymatic functional capacity of the microbiome in the ileum as well as the colon after RYGB. For example, for taxa distribution we observed in the ileum and colon greater prevalence of Actinobacteria especially Bifidobacteria after RYGB with Firmicutes at lower abundances. Enterobacteriaceae was also more prevalent in the colon of RYGB than in the control. An example for changes on a functional level in the ileum was that the relative numbers of Actinobacteria proteins involved in amino acid metabolism or carbohydrate metabolism were higher in RYGB. In the colon proteins from Clostridia belonging to the function of carbohydrate metabolism or the function energy production were seen at lower levels in RYGB whereas proteins from Actinobacteria which are involved in carbohydrate metabolism or cell motility were observed at higher relative numbers.

With these results and further research it may be possible to design specific diets or medical interventions to limit the perturbation in the microbiota following RYGB or to remove specific pathogenic taxa in the gastrointestinal tract.

Results: Replicates of the same diet showed a high microbial composition variability. The average similarity within replicates was 30-82 % in crop, 18-49 % in ileum and, 16-37 % in caeca. At genus level, a cumulative effect of each diet on each section was observed on mucosa samples (p<0.003). The same effect was not occurring in the content samples, nevertheless diets showed a statistical difference in the crop and caeca (p<0.02). Particularly, the content of the crop showed that diet with calcium was dominated by Lactobacillus taiwanensis, with an average abundance of 80 %. This species was also present in the diet with added phosphorus, calcium and phytase (65 %). In case of ileum mucosa, an unculturedRalstonia showed higher abundance (30 %) in diets without any supplementation, with phytase or with calcium, when compared with diets with phosphorus and phytase, and with phosphorus and calcium (13 %). Uncultured Clostridium were present on diets with phosphorus. Also it was found that diets with phosphorus and calcium increased the abundance of Parvimonas. The caeca was the most diverse section, and showed differences between content and mucosa. Diet with phytase and no calcium and phosphorus addition decreased the abundance of Anaeroplasmataceae. Species such as Faecalibacterium prausnitzii and Pseudoflavonifractor capillosus, known as butyrate producers, were found in content and Paenibacillus thailandensis, a species with xylanase activity was detected in mucosa.

Conclusion: Diets had relatively minor effects on changes in microbial community, this might be because of the high variability observed among birds analyzed for each diet and section. With this, it was found that Lactobacillaceae dominated crop and ileum sections while caecum showed to be more diverse.

MCP37
Accurate microbiota profiling: defining a core lung microbiome in mice

*M. Kostric1, K. Milger2, A. Schöler2, S. Krauss-Etschmann2, M. Schöler2
Helmholtz Zentrum München, Neuherberg, Germany

Comprehensive Pneumology Center, Großhadern, Germany

Leibniz-Zentrum für Medizin und Biowissenschaften, Forschungszentrum Borstel, Borstel, Germany

The compositional variation of microbial communities in the lungs of healthy individuals is not completely described so far nor is it known how microbial communities in the lungs establish during development. Therefore, the objective of this study is to investigate the development of a healthy lung microbiome and potential impacts of slight environmental changes. We hypothesise that (i) changes in microbial composition over time are highly dynamic and substantial diverse in healthy individuals, (ii) with time the lung environment imposes selection pressure on microbes, which leads to a stabilized core microbiota, and (iii) even small environmental changes have a clear impact on the lung microbiome.

To address these questions we used a mouse model and studied the development of the lung microbiome over time from birth to the adult stadium (Fig. 1). Genetically identical female animals (Balb/c) were either switched methanogenic key players in anaerobic digestion

B. Wintsche1, H. Sträuber1, F. Centler1, *S. Kleinsteuber1
Helmholtz Centre for Environmental Research – UFZ, Dept. Environmental Microbiology, Leipzig, Germany

Trace elements play an essential role in all organisms due to their functions in enzyme complexes. In biogas reactors, control and supplementation of trace elements lead to stable and efficient methane production processes while trace element deficits cause process imbalances. The biogas process involves diverse bacterial communities with stillage and supplemented with trace elements and a commercial iron additive were operated in parallel for 72 weeks to gain two comparable systems. Then the feeding regime for R2 was changed by omitting trace element supplements and reducing the iron additive. For the whole experimental time of 93 weeks, various process parameters (methane yield, concentrations of trace elements, organic acids and ammonia nitrogen, pH) and the composition and activity of the microbial communities were monitored. Hydrogen sulfide, ammonia nitrogen, and acetate concentrations increased in the trace element depleted reactor R2 compared to the control reactor R1, whereas specific methane production did not significantly change. T-RELP fingerprinting of mcrA genes and their transcripts revealed that Methanosarcina and Methanoculleus dominated the methanogenic communities in both reactors. However, the activity ratio of these two genera was shown to depend on trace element supplementation. Methanosarcina dominated the well supplied anaerobic digester, pointing at acetoclastic methanogenesis as the dominant methanogenic pathway. Under trace element deprivation, Methanoculleus and thus hydrogenotrophic methanogenesis favored whereas Methanosarcina was not overgrown by Methanoculleus. Multivariate statistics revealed that the decline of Co and Ni as well as Mn, Mo and W most strongly influenced the shifting proportions of mcrA transcripts originating from both genera. Deprivation of Co might lead to shortage of

MCP38
Impact of the presence or absence of calcium, phosphorus and phytase in chicken gut microbiota

*D. Borda-Molina1, M. Vital2, V. Sommerfeld2, M. Rodehutschord1, A. Camarina-Silva1
Universität Hohenheim, Stuttgart, Germany

Helmholtz Centre for Infection Research, Braunschweig, Germany

Question: Gut microbiota affects the host’s individual development due to its role in assimilation and nutrient uptake. The aim of this study was to elucidate the effect of supplementing diets with calcium, phosphorus and microbial phytase in the microbial community of the gastrointestinal tract.

Methods: 1064 chickens allocated in 56 pens were fed with a commercial diet until day 14. From day 15 to 26, pens were randomly assigned to 8 dietary treatments, consisting of a maize-soybean basal diet supplemented with: calcium (0 or 3g/kg), phosphorus (0 or 2g/kg) and E. coli-derived phytase (0 or 1500 FTU/kg). Mucosa and content samples from 57 individual birds, were taken on day 26, from crop, ileum and caeca. Total nucleic acids were extracted and subjected to 16S Illumina amplicon sequencing.

Results: Replicates of the same diet showed a high microbial composition variability. The average similarity within replicates was 30-82 % in crop, 18-49 % in ileum and, 16-37 % in caeca. At genus level, a cumulative effect of each diet on each section was observed on mucosa samples (p<0.003). The same effect was not occurring in the content samples, nevertheless diets showed a statistical difference in the crop and caeca (p<0.02). Particularly, the content of the crop showed that diet with calcium was dominated by Lactobacillus taiwanensis, with an average abundance of 80 %. This species was also present in the diet with added phosphorus, calcium and phytase (65 %). In case of ileum mucosa, an uncultured Ralstonia showed higher abundance (30 %) in diets without any supplementation, with phytase or with calcium, when compared with diets with phosphorus and phytase, and with phosphorus and calcium (13 %). Uncultured Clostridium were present on diets with phosphorus. Also it was found that diets with phosphorus and calcium increased the abundance of Parvimonas. The caeca was the most diverse section, and showed differences between content and mucosa. Diet with phytase and no calcium and phosphorus addition decreased the abundance of Anaeroplasmataceae. Species such as Faecalibacterium prausnitzii and Pseudoflavonifractor capillosus, known as butyrate producers, were found in content and Paenibacillus thailandensis, a species with xylanase activity was detected in mucosa.

Conclusion: Diets had relatively minor effects on changes in microbial community, this might be because of the high variability observed among birds analyzed for each diet and section. With this, it was found that Lactobacillaceae dominated crop and ileum sections while caecum showed to be more diverse.

MCP39
The trustworthy and the misprized – trace element deprivation switches methanogenic key players in anaerobic digestion

B. Wintsche1, H. Sträuber1, F. Centler1, *S. Kleinsteuber1
Helmholtz Centre for Environmental Research – UFZ, Dept. Environmental Microbiology, Leipzig, Germany

Trace elements play an essential role in all organisms due to their functions in enzyme complexes. In biogas reactors, control and supplementation of trace elements lead to stable and efficient methane production processes while trace element deficits cause process imbalances. The biogas process involves diverse bacterial communities
corrinoid cofactors required for acetylatic and methylotrophic methanogenesis, thus favoring the hydrogenotrophic pathway. Moreover, Methanosarcina relies on [NiFe] hydrogenases while the ‘misprized’ Methanoculleus uses Ni-free hydrogenases and has a lower hydrogen threshold. Therefore, Methanoculleus takes the lead under trace element deprivation.

Conclusion: With this study on dietary effects on porcine gut microbiota we found a change in fecal bacterial communities as adaptation to environmental change in porcine gut. Composition of bacterial communities in porcine caecum is rather shaped by level of dietary calcium-phosphorus than fermentable substrate. Deeper insights into phylogenetic structure and functional activities of active bacterial communities contributing to the observed shift in bacterial community may be gained by illumina amplicon sequencing and metaproteomic analysis.

MCP40

Unique islands – microbial community composition and the potential of methane oxidation in tank bromeliad substrate of Werauhia gladilisfora

*G. Martinson1, F. Brandt1
1Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

Question: The densely arranged leaves of tank bromeliads create water bodies, distinct from the environment, collecting rainwater and leaf litter which is decomposed by a diverse community of aquatic organisms. Several thousand of tank bromeliad individuals per hectare of tropical forest create a unique canopy wetland ecosystem which significance for the neotropical methane cycle has been recently recognized. Methane (CH4) formation, the final step in anaerobic degradation of organic material, is mediated in tank bromeliads by methanogenic archaea. Nevertheless, only little is known about the microbial diversity and community composition in tank bromeliads. We hypothesized that each individual bromeliad harbors its own microbial community being affected by environmental parameters creating unique chemical tank-slurry properties. We further hypothesized that methanotrophic bacteria inhabit tank bromeliad substrates, potentially able to oxidize produced CH4.

Methods: Therefore, we investigated chemical tank-slurry properties (pH, carbon, nitrogen, oxygen and fatty acid concentrations) as well as the microbial community composition in eight individual tank bromeliads of the species Werauhia gladilisfora collected in a Costa Rican tropical forest. Microbial community profiling (terminal-restriction fragment length polymorphism) and quantitative analyses (qPCR) were conducted for bacterial and archaeal 16S rRNA genes as well as for the functional groups of methanotrophs and methanogens, using pmoA and mcrA marker genes. The potential of CH4 oxidation was monitored during incubation experiments.

Results & Conclusion: We observed significant differences in the microbial community composition between individual plants. Every bromeliad tank seem to be an unique island with respect to its resident microbial community that is affected by chemical tank-slurry properties. The decrease of CH4 concentration during the incubation of tank-slurry under aerobic conditions further indicated that not only CH4 is formed but can be oxidized in bromeliad tanks as well.

MCP41

Effects of different dietary calcium-phosphorus and protein sources on bacterial community composition in the gastrointestinal tract of growing pigs

*K. Burbach1, C. M. E. Heyer1, R. Mosenthal1, L. E. Hoezlè1, V. Stefanski1, J. Seifert1
1University of Hohenheim, Institute of Animal Science, Stuttgart, Germany

Question: During the last decade, there has been a growing interest in feeding strategies stimulating a balanced gut microbiota which has an essential impact on animal health. A modulating effect on gut microbiota has been proven for certain dietary macro-elements. In this study, we investigated in a two factorial approach the influence of two dietary calcium-phosphorus levels and two protein sources on the bacterial composition of porcine gut.

Methods: Each experimental diet (soybean meal or pea based diet, supplemented with either a low or high calcium-phosphorus level) was fed to six pigs for six weeks. Feces were collected once per week. Digesta samples from ileum, jejunum, caecum and colon were taken at the end of the experiment. DNA was extracted and the structure of bacterial communities was characterized by terminal restriction fragment length polymorphism (T-RFLP). To give phylogenetic assignment to single TRFs clone libraries of 16S rRNA gene from fecal and ileum digesta samples were constructed.

Results: Bacterial communities from fecal samples clustered into three main similarity groups and showed significant differences (P = 0.001) during course of the experiment. The microbiota from digesta samples clustered closely to small or large intestine origin. In caecum we found significantly (P = 0.001) different community structures in respect to the dietary calcium-phosphorus content, but not to protein source (P = 0.028).

Individual TRFs contributing to these differences were identified and their phylogenetic identity assigned to clone library entries.

Conclusion: Diet is one of the major environmental factors shaping the gut microbiota composition and activity. Nowadays, modulation of the dietary protein and carbohydrate composition together with pre- and probiotic supplementation are the most promising strategies to promote a healthy pig’s gut microbiota. However, it is still being discussed how and how long the microbiota adaptation process lasts, which is of a great importance for all nutritional studies.

In this study, terminal restriction fragment length polymorphism (T-RFLP) analysis together with a metaproteomic approach were used to determine the length of the adaptation period for the microbiota to restore its structural balance after the change from a basal diet to an experimental diet. In addition, the microbial response to diets with two different levels of CaP and two protein sources was investigated.

Methods: Pigs were randomly grouped and kept at four different diets varying in the level of supplemented CaP and the protein source (pea and soy bean). Fecal samples from three animals per diet were collected at seven different time points during the whole experiment. Changes on the microbial community structure were investigated via 16S rDNA using T-RFLP approach. One dimensional-nanoLC-ESI-MS/MS approach was also used to analyze the pig’s fecal metaproteome. The MS/MS data were analyzed through a two-step database search strategy, using both Proteome Discoverer and MaxQuant software for a qualitative and quantitative metaproteome characterization.

Results: T-RFLP measurements of the pig’s fecal microbiota showed significant shifts (p prior to the feeding of the experimental diets was different (p <0.05) from the community structure assessed after the experimental diets were fed. Here, a further distinction was observed between the microbial composition defined in the early points of time of the experiment and the fecal microbiota composition of the late time points (i.e. after the metabolic adaptation).

Conclusion: We report insights on the temporal changes of the gut microbiota after a dietary change. The results highlight the strong effect of the diet composition on the structure and activities of the fecal microbiota.

MCP42

Adaptation of the pig’s fecal microbiota in response to different diets

* B. Tiloca1, K. Burbach1, C. M. E. Heyer1, L. E. Hoezlè1, R. Mosenthal1, V. Stefanski1, J. Seifert1
University of Hohenheim, Animal Science (460), Stuttgart, Germany

Question: Diet is one of the major environmental factors shaping the gut microbiota composition and activity. Nowadays, modulation of the dietary protein and carbohydrate composition together with pre- and probiotic supplementation are the most promising strategies to promote a healthy pig’s gut microbiota. However, it is still being discussed how and how long the microbiota adaptation process lasts, which is of a great importance for all nutritional studies.

In this study, terminal restriction fragment length polymorphism (T-RFLP) analysis together with a metaproteomic approach were used to determine the length of the adaptation period for the microbiota to restore its structural balance after the change from a basal diet to an experimental diet. In addition, the microbial response to diets with two different levels of CaP and two protein sources was investigated.

Methods: Pigs were randomly grouped and kept at four different diets varying in the level of supplemented CaP and the protein source (pea and soy bean). Fecal samples from three animals per diet were collected at seven different time points during the whole experiment. Changes on the microbial community structure were investigated via 16S rDNA using T-RFLP approach. One dimensional-nanoLC-ESI-MS/MS approach was also used to analyze the pig’s fecal metaproteome. The MS/MS data were analyzed through a two-step database search strategy, using both Proteome Discoverer and MaxQuant software for a qualitative and quantitative metaproteome characterization.

Results: T-RFLP measurements of the pig’s fecal microbiota showed significant shifts (p prior to the feeding of the experimental diets was different (p <0.05) from the community structure assessed after the experimental diets were fed. Here, a further distinction was observed between the microbial composition defined in the early points of time of the experiment and the fecal microbiota composition of the late time points (i.e. after the metabolic adaptation).

Conclusion: We report insights on the temporal changes of the gut microbiota after a dietary change. The results highlight the strong effect of the diet composition on the structure and activities of the fecal microbiota.
TOF-MS method also is used to build a database which will enable a fast identification of these microorganisms. Practical investigations have shown that wrongly designed hydrolysis and acidogenesis process steps are quite common. In combination with the results from the project partners which perform kinetic experiments in lab scale, compilation of process data and the elaboration of design recommendations, the urgently needed basic information for the reliable design and efficient operation of hydrolysis- and acidogenesis process steps will be determined.

MCP44
Quorum sensing controls phenotypic heterogeneous expression of the autoinducer synthase gene traI via copy number control of pNGR234a in the plant symbiont S. fredii NGR234

1) J. Grote1, K. Petersen1, D. Krysvska1, C. Schmeisser1, K. Förster2, H. Krishnan3, W. Streit1
2) Universität Göttingen, Laboratorium für Genomanalyse, Göttingen, Germany
3) University of Missouri, Plant Genetics Research Unit, Columbia, USA

Sinorhizobium fredii NGR234 is a plant symbiont that is able to nodulate over 112 different plant genera. Its genome encodes for two autoinducer (AI) systems regulating genes involved in the cell envelope biosynthesis, motility, cofactor metabolism and secretion related genes. The NGR234 6.9 Mb genome consists of three replicons, a chromosone, a megaplasmid pNGR234b and a symbiotic plasmid pNGR234c. The pNGR234a is a repABC-like plasmid and the region flanking oriV is highly similar to the A. tumefaciens Ti plasmid for which number copy regulation has been reported in response to altered AI concentrations6. qPCR analyses of copy numbers of pNGR234a of single AI deletion mutants S. fredii NGR234ΔtraI and ΔrepI and the corresponding double AI-synthase deletion mutant indicate that the partial or complete lack of AI molecules affects the copy number of the pNGR234a replicon. Similarly, mutations in the anti-activator protein TraM and/or the LuxR regulatory proteins Ngr and TraR result in an altered copy number of pNGR234a.

In general, the copy number was altered in response to mutations affecting the AI regulons and by the addition of external AI molecules. The increased copy number basically eliminates the previously described phenotypic heterogeneous expression of the traI gene6. Using RNAseq we now provide first evidence that links the copy number control of pNGR234a and the phenotypic heterogeneity with two novel ORFs identified on the symbiotic replicon. We have designated these ORFs cncA and cncB and both have previously not been reported. The cncB gene encodes for a 51 aa protein and cncB for a 143 aa protein. Both proteins are unique to broad host range rhizobia and not present in A. tumefaciens or closely related bacteria affiliated with the rhizobiales. Altogether these data indicate that S. fredii has evolved a different regulatory mechanism for copy number control of its symbiotic plasmid compared to other rhizobial and agrobacterial species.

MCP45
First evidence linking alpha-hydroxy-ketone-like quorum sensing in Janthinobacterium and Duganella with Faucarium graminearum growth suppression

F. S. Haack1, A. Poehlein2, C. Kröger3, R. Daniel1, C. Voigt1, W. Schäfer1, W. R. Streit1
1) Universität Hamburg, Mikrobiologie und Biotechnologie, Hamburg, Germany
2) Universität Würzburg, Core Unit Systems Medicine, Würzburg, Germany
3) The German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig, Leipzig, Germany
4) Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Jena, Germany
5) The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

Janthinobacterium and Duganella isolates in combination with phylogenetic and genomic analyses of publicly available genome data sets showed that only three out of 22 investigated strains harbor genes for the N-acetyl-homoserine lactone synthesis and no strain for the AI-2 synthesis. Instead, all but one strain carry a single gene cluster involved in the biosynthesis of an alpha-hydroxy-ketone-like autoinducer molecule. This signal molecule was previously designated janthinobacterial autoinducer-1 (JAI-1) (1), in analogy to the CAI-1 and LAI-1 autoinducer of Vibrio and Legionella (2). The JAI-1 synthase gene, jqsA, was identified in a highly conserved gene cluster together with the cognate receiver and sensor protein jqsR and the response regulator jqsS. Genome wide RNA-seq studies using jqsA deletion mutants of each of Duganella and Janthinobacterium representative identified up to 41 genes controlling gene expression in a QS-dependent way. Among the most strongly regulated genes were two work genes involved in the violacein and cell wall biosynthesis. Interestingly, most regulated genes carried a highly conserved palindromic JAI-1 motif within the putative promoter regions. Further tests indicated that all strains are capable to suppress growth of the plant pathogen Fusarium graminearum in laboratory growth assays, regardless of the violacein biosynthesis capacity. Most striking, co-inoculation studies of the Janthinobacterium isolate HH102 and its jqsA deletion mutant together with the plant pathogen F. graminearum provided first evidence for a QS-dependent interaction with this pathogen.

10.1371/journal.pone.0055045

MCP46
Mapping of the allelochemical-induced cell aggregation of key bacteria found in pelagic iron-rich aggregates

1) J. Mor1, N. Uebeschaer2, S. Li3, R. Cooper3, G. Pohner3, K. Küsel3
2) Friedrich Schiller University Jena, Institute for Ecology, Jena, Germany
3) Friedrich Schiller University Jena, Institute of Inorganic and Analytical Chemistry, Jena, Germany

Small groups of iron oxidizing bacteria (FeOB) and iron reducing bacteria (FeRB) dominate pelagic iron-rich aggregates (‘iron snow’) formed below the redoxcline in an acidic lignite mine lake. We isolated Acidithiobacillus, the dominant FeOB, and Acidiphilium, the dominant heterotrophic FeRB, from iron snow aggregates and investigated interspecies chemical cross talk through cell-free supernatant experiment analyses and metabolomics profiling to elucidate potential allelochemicals mediating their interaction. Supernatant exchange experiments revealed supplementation with Acidiphilium cell-free supernatants resulted in faster rates of Fe(II) consumption (from 3.39 mM day−1 to 5.72 mM day−1) as well as precipitation of brownish, insoluble iron (III) species in Acidithiobacillus incubations. In addition, macroscopic cell aggregates of Acidiphilium were observed after 5 days following supplementation with Acidithiobacillus cell-free supernatant. GC/MS analysis of bacterial extracellular products and metabolomics profiling suggested that 2-phenylethylamine (PEA) produced by Acidithiobacillus is the chemical that triggers aggregation of Acidiphilium cells. Acidiphilium cultures supplemented with PEA triggered faster growth and cell aggregation, suggesting PEA produced by Acidithiobacillus functions as the allelochemical which signals Acidiphilium to associate with iron snow. These results indicate interspecies chemical interactions between key organisms in pelagic iron snow aggregates can help the organisms to colonize, shape and transform the distinct spatial network they inhabit within the redoxcline.

MCP47
Interplay of global regulators of Staphylococcus aureus during the chronic osteomyelitis

1) L. Tschescher1, V. Hörr1, M. Hauchmeister2, C. Kreis1, B. Löfler1
2) University Hospital Jena, Institute for Medical Microbiology, Jena, Germany
3) University Hospital Münster, Institute for Medical Microbiology, Münster, Germany
4) University Hospital Münster, Clinic of Trauma-, Hand-, and Reconstructive Surgery, Münster, Germany

Staphylococcus aureus is a major human pathogen that can cause chronic and difficult-to-treat infections. S. aureus persistence in host tissue is linked to the bacterial ability to change to small colony variants (SCVs), which are adapted phenotypes for long-term intracellular persistence. The switching process between the aggressive wild-type phenotypes and persisting SCVs is very dynamic, but the underlying mechanisms are largely unknown. Our recent data from cell culture experiments indicated that regulatory mechanisms are involved in this dynamic switching process that involve downregulation of the quorum-sensing system agr and upregulation of the stress-related transcription factor SigB during bacterial persistence [1, 2]. In this work we investigated, whether these dynamic adaptation processes can be measured in vivo, as well. We have established a hematogenous murine osteomyelitis model with the S.
 aureus strain 6850 that develops to chronicity over the course of 2 month and closely resembles the human disease [3]. Firstly, we tested 6 other S. aureus strains in this model and identified two clinical isolates that caused chronic osteomyelitis with bone deformation such as strain 6850, whereas the other strains tested also persisted in bone tissue without causing deformation processes. During persistence all tested S. aureus strains developed SCVs. Further on, we analysed the role of the global S. aureus regulators Agr and SigB in bacteria recovered from bone tissues of mice during the infection process. With all strains tested we found that agr is silenced and that the SigB-system is highly upregulated during persistence. These results could be reproduced with S. aureus isolates recovered from patients’ specimens of chronic osteomyelitis. Our findings clearly demonstrate that silencing of agr and high sigB expression is a common feature of chronic infection processes.

MCP48
Staphylococcus aureus requires less virulence to establish an infection in diabetic organisms

*“L. Tuchscherr1, E. Korps2, H. van de Vyver1, C. Findeisen3, S. Kerckheulinde1, O. Bach4, M. Rindert5, C. SunderKötter1, G. Peters1, L. Sorekin1, B. Löffler1
1University Hospital Jena, Institute of Medical Microbiology, Jena, Germany
2University Hospital Münster, Institute of Physiological Chemistry and Pathobiology, Münster, Germany
3University Hospital Münster, Institute of Medical Microbiology, Münster, Germany
4Sophien- und Hufeland-Klinikum Weimar, Clinic of Trauma, Orthopedic and Surgery, Weimar, Germany
5University Hospital Münster, Department of Dermatology, Münster, Germany

S. aureus is the most frequent pathogen responsible for diabetic foot infections that can develop to chronicity and are extremely difficult to treat. In this study, we define the bacterial degree of virulence that is required to establish and invasive tissue infection in diabetic organisms [1, 2]. To this end, we collected staphylococcal isolates from diabetic and non-diabetic foot ulcer and characterized the virulent capacity by functional assays, e.g. host cell invasion and cytotoxicity. In general, isolates from diabetic patients exhibited less virulence than isolates from non-diabetic patients, but nevertheless were able to establish severe infections. Even we detected non-invasive isolates in deep diabetic tissue, although the strains were measured as almost a-pathogenic in cell culture. Despite this, the bacterial tissue load was not different, low-virulent strains induced less inflammation and swelling than strains with a high virulent capacity. Taken together, our results demonstrate that in diabetic hosts not only high- but also low-virulent staphylococcal strains can cause persisting tissue infections that are characterized by less inflammation, but a higher bacterial tissue load.

MCP49
Discovery of small molecule inhibitors of multicellular development in social amoeba

*R. Barnett1, P. Stallforth1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Chemistry of Microbial Communication, Jena, Germany

The social amoeba Dictyostelium discoideum represents one of the earliest branches of the common ancestor of all eukaryotes. It is thus an ideal model organism to study general eukaryotic communication and cellular mechanisms. Since it can exist both in a single-cell and a multicellular state, D. discoideum serves as a paradigm in understanding the onset of multicellularity. Differentiation and multicellularity in this protist have evolved in a setting where they are surrounded by food sources (e.g. bacteria), as well as predators. As a result of this, interactions between these ecologically-connected organisms are undoubtedly orchestrated by signaling molecules, and the study of these interactions can provide a platform for the discovery of new natural products.

The social amoeba D. discoideum typically preys on bacteria, yet it can also serve as a food source for the related dictyostelid D. caseae. This feature was first described 30 years ago and has since been subject to further investigations. Importantly, D. caseaevum can only feed on D. discoideum if the latter is present in a pre-culminating state. Previous studies have shown that D. caseaevum secretes a factor that effectively freezes D. discoideum in a pre-culminating state, inhibiting the formation of the multicellular fruiting body and allowing D. caseaevum to phagocytose its prey.

While preliminary experiments clearly show that a small diffusible molecule is the responsible morphogenesis inhibitor, its structure, biosynthesis, and mode of action remain elusive. We utilize bioassay-guided fractionation to attempt to isolate and elucidate the structure of the small molecule(s) responsible for the inhibition of multicellular development in D. discoideum.

In the light of this ecological interaction, a deep understanding of the fundamental molecular communication and signaling processes can be gained. Understanding how small molecules selectively interfere with the early eukaryote D. discoideum’s association machinery will provide us with insight for deciphering and modulating basic cellular mechanisms.

MCP50
Functional and chemical analysis of fungal symbionts and antagonists of fungus-growing termites

*H. Guo1, N. Kreuzenbeck2, S. Otam2, C. Weigel3, M. Poulsen4, C. Beemelmanns1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Chemistry of Microbe-Host Interactions, Jena, Germany
2University of Copenhagen, Department of Biology, Section for Ecology and Evolution, Copenhagen, Denmark

Question (working hypothesis): Termites of the genus Macrotermes cultivate a specific and mutualistic food fungus (Termitomyces sp.) for nourishment in so called “fungus gardens”. [1] These nutrient-rich environment is prone to invasion by parasitic and pathogenic fungi. We hypothesize that the symbiotic food fungus Termitomyces sp. contributes to the defense of system by e.g. secretion of antimicrobial small molecules, which selectively target garden parasites and other invading species. Furthermore, we hypothesize that garden parasites can successfully counteract and invade the system once the garden homeostasis is unbalanced.

Methods: We started with the isolation of a broad range of symbiotic and associated fungi isolated from different termite nests of the genus Macrotermes. Then, we performed challenging assays pairing fungal symbionts and garden parasites to investigate the production of the respective antifungal compounds. Subsequently, the produced antimicrobial secondary metabolites were analyzed using HPLC/LC-HRMS/NMR. In future, we will investigate the expression levels of the respective compounds using different transcriptomic and metabolomic methodologies.

Results: 1. Genome-mining of the fungal symbiont Termitomyces sp. revealed PKS and NRPS cluster encoding for potential secondary metabolites. [2] The expression of the respective compounds is now investigated. 2. Metabolomic studies of the fungal antagonist (Pseudo)eyaria sp. revealed also a broad spectrum of new secondary metabolites

Conclusion: We explore specific and well-described microbial interactions in combination with other multidisciplinary dereplication processes to find new chemical entities and to study many important aspects of the ecology and evolution of symbiotic associations.

MCP51

Eat or be eaten – predator-prey interactions of D. discoideum and amoeba-pathogenic bacteria

M. Klapper, S. Götte, M. Roth, P. Stallforth

Leibniz Institute for Natural Product Research and Infection Biology
Hans Knöll Institute, Junior Research Group Chemistry of Microbial Communication, Jena, Germany

Leibniz Institute for Natural Product Research and Infection Biology
Hans Knöll Institute, Bio Pilot Plant, Jena, Germany

Bacteria are constantly exposed to a multitude of threats: bacteriophages can infect and kill bacteria; amoebae, nematodes, insects, and plants can prey on prokaryotes, and competitor strains fight for the same resources. In order to survive in this battlefield, bacteria have evolved highly effective defense mechanisms. Because killing and deterring the antagonists are powerful ways to thrive in this environment, bacteria display a great diversity of toxins and antibiotics that selectively act on their enemies. Amoebae are voracious and ubiquitous predators to bacteria that cause constant depletion of huge bacterial reservoirs. This puts both strains under strong evolutionary selection pressure: the bacteria have evolved mechanisms to prevent grazing and the amoebae must counteract or surmount these mechanisms in order to survive.

We focus on the interactions between the eukaryotic soil amoeba Dictostelium discoideum and amoeba-pathogenic soil bacteria. In particular, general defense strategies of D. discoideum against pathogenic bacteria are investigated that rely on the degradation of both bacterial amoebicides and communication signals. The chemical warfare in this predator-prey relationship is examined using molecular biology approaches, various bioassays (killing assay, plaque assay), and by chemical analysis of culture extracts, both from the amoeba and the bacteria, as well as from co-cultivation experiments. Subsequent bioassay-guided fractionation of bioactive extracts from amoebal or bacterial cultures eventually allows identifying natural products with antibacterial, amoebocidal or cytotoxic properties that orchestrate the coexistence of the competitors in nature.

MCP52

Two ways of Pseudomonas quinolone signal degradation in clinical isolates of the emerging pathogen *Mycobacterium abscessus*

F. S. Birnes, F.-C. Bange, S. Fetzner

University of Münster, Institute for Molecular Microbiology and Biotechnology, Münster, Germany

Hanover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany

Question: The opportunistic pathogen Pseudomonas aeruginosa, which colonizes the lung of patients suffering from cystic fibrosis, regulates its virulence via complex quorum sensing (QS) systems. One of them utilizes the alkylquinolones (AQS) 2-heptyl-3-hydroxy-4(1H)quinoline (Pseudomonas quinolone signal, PQS) and 2-heptyl-4(1H)quinoline (HHQ) as signal molecules [1]. M. abscessus is an emerging pathogen causing pseudotuberculous lung disease in patients with cystic fibrosis. To analyze the potential of different M. abscessus strains to interfere with P. aeruginosa QS, ten clinical isolates, six of which harbor aqg-genes homologous to the genes for AQS degradation of Rhodococcus erythropolis BG43 [2], were tested for their ability to convert HHQ and PQS.

Methods: AQS concentrations in organic extracts of culture samples were analyzed by HPLC and LC/MS.

Results: Cell suspensions (OD 3.5) of clinical M. abscessus isolates which have a specific gene cluster homologous to the aqg-genes of R. erythropolis BG43 [2] convert 20 μM HHQ or PQS within 2h (OD 3.5). HHQ is hydroxylated to PQS, followed by cleavage of the heterocyclic ring to N-octanoylanthranilic acid which subsequently is hydrolyzed to aromatic acid. Clinical isolates not harboring the aqg-cluster can degrade PQS albeit much more slowly (at OD 3.5: degradation incomplete after 72h). Intermediates which have the same UV/vis spectrum as PQS, but different retention times in HPLC separations are transiently formed. So this way of degradation might proceed via reactions involving modification of the alkyl chain.

Conclusion: The emerging pathogen M. abscessus possesses two pathways for degrading the P. aeruginosa QS signals PQS and HHQ. One corresponds to the way R. erythropolis BG43 degrades PQS and HHQ, while the other one presumably occurs via formation of other intermediates, which let us suggest, that the alkyl chain is modified. M. abscessus may have the potential to interfere with P. aeruginosa QS by inactivating the AQS signals HHQ and PQS and hence reduce the virulence. It will be very interesting to analyze the interactions between P. aeruginosa and M. abscessus and investigate whether the ability to inactivate P. aeruginosa quorum sensing signals contributes to co-competition.

MCP53

Evaluating specific interaction between the fungus Aspergillus nidulans and Streptomyces

T. Netzke1,2, M. Krespach1, V. Schroech1, K. Scherlach1, C. Hertweck2, A. A. Brakhage2

Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Molecular and Applied Microbiology, Jena, Germany

Friedrich Schiller University, Jena, Germany

Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Biomolecular Chemistry, Jena, Germany

Streptomyces, a species-rich group of actinobacteria, are well-known producers of a plethora of secondary metabolites. Of particular interest are the two species Streptomyces rapamycinicus (NRRL 5491, 1) and Streptomyces iranensis HM35 (DSM 41954, 2, 3), which (i) exhibit a high similarity at the genomic level, (ii) produce the immunosuppressant rapamycin and (iii) specifically induce secondary metabolite formation in filamentous fungi, e.g. in the important model fungus Aspergillus nidulans the orsellinic acid (ors) gene cluster (4) and in the human pathogenic fungus Aspergillus fumigatus the fumigacine gene cluster (5). The latter feature provides an excellent model system to elucidate the underlying molecular mechanisms for the fungus-fungal secondary metabolism gene cluster can be activated by a bacterium. To identify the primary bacterial signal we generated a random Tnp(a) transposon insertion mutant library of S. iranensis. For this purpose the transposon vector pTNM (6) and the existing protocol were modified, thus we accomplished successful conjugation of pTNM into S. iranensis as well as the generation of an S. iranensis mutant library. By screening the mutant library in 48-well plates, we found promising mutants lacking the activation of fungal secondary metabolite formation. To verify the involvement of the identified genes, an applicable strategy for targeted gene deletion in S. iranensis was developed. First results of the generated direct gene deletion mutants and further characterizations thereof, will be presented.

MCP54

Bacteria induce pigment formation in the basidiomycete *Serpula lacrymans*

J. Tauber1, V. Schroech2, D. Hoffmeister1,2, A. A. Brakhage1,2

Friedrich Schiller University, Jena, Germany

Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany

Question: The basidiomycetes Serpula lacrymans and Paxillus involutus produce atromentin-derived pigments that are involved in Fenton redox cycling and were shown to have increased production from nutritional cues [2,3]. We addressed the question if there are other environmental cues like microbial communication that can cause induction of these widespread pigments.

Methods: Serpula lacrymans was co-incubated with one of three diverse terrestrial bacteria, Streptomyces iranensis, Bacillus subtilis, and Pseudomonas putida. Analyses on both a genetic and chemical level were accomplished with qRT-PCR and analytical chromatography.

Results: We show that the atromentin gene cluster of S. lacrymans was up-regulated and that secreted pigments accumulated, respectively, during co-cultivation with a bacterium. Each co-incubation condition caused a similar early pattern of gene up-regulation, however, S. lacrymans with Streptomyces iranensis showed prolonged elevated expression whereas B. subtilis and P. putida the expression level subsided.
Conclusion: We concluded that because a diverse set of bacteria caused pigment induction and production in the basidiomycete Serpula lacrymans there is a common signal elicitation from habitat-sharing microbes.

MCP55 Using fluorescent Enterococcus mundtii to study the variation in its gene expression, spatially and temporally, in the gut of Spodoptera littoralis larva
*T. Mazumdar
Max Planck Institute of Chemical Ecology, Biorganic Chemistry, Jena, Germany

Insects harbor a plethora of microorganisms within their gut as their normal flora. They are not only non-pathogenic to them, but also have roles to play in the insect growth, development and immunity. There lies a complex interaction within the microflora and, between the host and the microorganisms. This leads to variations in the microbial population with the development of the insect. Some get eliminated, others are added, whereas, some dominate throughout the insect life cycle [1,2]. The gut microbiota of Spodoptera littoralis, a Lepidopteran insect of family Noctuidae, has been elucidated. The core community consists of Enterococci, Lactobacilli and Clostridia. The variation and selection of one bacterial species over the other is quite evident throughout the life-cycle. By the time the larva reaches the 5th instar stage, Enterococcus mundtii and Clostridia sp persist and dominate. Also, there is a difference in the presence and abundance of bacteria among the fore, mid and hind gut of the larva, [1,2].

The class Ia antimicrobial peptide mundticin KS [1], produced by E. mundtii, acts against the competing bacteria, and exercises its predominance (Unpublished). This way, they help preserve the host gut microbiota, reducing infection in the host and enhance its health. A method of fluorophore-labelling of E. mundtii has been developed to show that it is the persistent and metabolically active species in the gut microbiota (Unpublished). This intrigues us to find out the importance of this symbiotic species. Thus, the aim of my project will be to isolate the fluorescent E. mundtii from various regions of the larval gut, across its developmental stages, and study the variation in their gene expression. The Next generation method of RNAseq will be used to sequence the transcriptome.

Methods: Fluorophore labelling of bacteria and feeding the larvae; Dissection of Guts of S. littoralis larvae; FACS to isolate fluorescent bacteria; RNA extraction; RNA seq

Thus, on analyzing the transcriptome of E. mundtii on the stages of S. littoralis larval development, we might conclude its specific role as a symbiont and its importance as a dominant gut microbiota. This approach can be extended to other relevant gut bacteria.

MCP56 Native root-associated bacteria protect their host plant from a fungal sudden-wilt disease via synergistic mechanisms.
*R. Santhanam1, K. Groten1, A. Weinhold1, T. V. Luu1, J. T. Baldwin1
1Max Planck Institute of Chemical Ecology, Jena, Germany

Plants maintain extensive microbial associations whose functions remain largely unknown. In 2011, our model plant Nicotiana attenuata suffered sudden tissue collapse and black roots, symptoms similar to a Pseudomonas Alternaria disease complex, when grown in its native habitat, the Great Basin Desert, Utah, USA. To find potential remedy for this sudden wilt disease, 3 different protection strategies (fungicide, soil amendment and seed inoculations with native root-associated bacterial and fungal strain isolated from previous experiments) were tested in the field. A field trial with more than 900 plants in field plot showed that only the inoculation treatment with a mixture of five native bacterial isolates significantly reduced disease incidence and mortality. Similar disease reduction rates were obtained from a second field trial during the following year, demonstrating the robustness of the plant protection effect by bacterial treatment (Santhanam et al. 2015). In general, beneficial bacterial mutualists protect their host plants via different mode of actions such as production of antimicrobial and biofilm, competition for nutrients and colonizing ecological niches. Further investigations under in vitro conditions, on the potential mechanism of disease suppression revealed that the mixture of bacterial isolates complementing their biocontrol traits via synergistic mechanisms such as biofilm formation, competition of nutrients- siderophore production, colonizing ecological niches and production of the antifungal compound surfactin. Native plants, perhaps like most eukaryotes, develop opportunistic mutualisms with prokaryotes which help them to protect from phytopathogens.

MCP57 The metabolic gene gbuA is essential for inducing QS-regulated virulence factors at low population density and nutrient limitation in Pseudomonas aeruginosa
*N. Jagmann1, V. Bleicher2, B. Philipp1
1Universität Münster, Institut für molekulare Mikrobiologie und Biotecnologie, Münster, Germany
2Mikrobiologisches Labor Dr. Michael Lohmeyer, Münster, Germany

Question: The ubiquitous bacterium P. aeruginosa employs the same set of quorum sensing (QS)-regulated virulence factors for attacking organisms of different kingdoms like other microbes, plants, and humans. QS is defined as cell density-dependent, but in P. aeruginosa QS is co-regulated by certain environmental cues, mostly nutrient limitation [1]. We investigated the QS-dependent expression of virulence factors with a model system consisting of a bacterial co-culture with P. aeruginosa and the opportunistic pathogen Aeromonas hydrophila using chitin as sole growth substrate [2]. In this model system growth of P. aeruginosa is dependent on the QS-regulated parasitic exploitation of the chitinolytic properties of A. hydrophila. During parasitic growth with A. hydrophila, the QS-regulated virulence factor pyocyanin is crucial for growth of P. aeruginosa. The production of pyocyanin is thereby already induced at a low population density as a consequence of limited nutrient availability. In this study we aimed at identifying novel genes that are involved in QS-regulated pyocyanin production under co-culture conditions.

Methods: Transposon mutagenesis of P. aeruginosa was carried out and mutants were screened for reduced production of pyocyanin in co-cultures with A. hydrophila. Promising mutants were further characterized physiologically and genetically.

Results: We identified the gene gbuA (PA1421) that encodes a guanidinobutyrate (GBuA) catalyzing the conversion of 4-guanidinobutyrate (4-GBu) to 4-aminobutyrate and urea and that is involved in the QS system based on 2-alkyl-4(1H)-quinolone signals, and of two operons required for pyocyanin biosynthesis, phzA1G1 and phzB2G2, were reduced during growth in both single and co-cultures. Transcriptional promoter-lacZ fusions revealed that in a gbuA mutant transcription of the operon pqsABCDE, which is involved in the QS system based on 2-alkyl-4(1H)-quinolone signals, and of two operons required for pyocyanin biosynthesis, phzA1G1 and phzB2G2, were reduced during growth in both single and co-cultures. Addition of the QS signals HHQ and PQS, which are produced by P. aeruginosa and P. aeruginosa, were produced by PsABC, as well as overexpression of PqsE restored pyocyanin production in a gbuA mutant in co-culture. The effect of gbuA deletion on pyocyanin production in single cultures could be enhanced by the addition of 4-GB.

Conclusion: These results suggest that the intracellular accumulation of 4-GB leads to a reduced transcription of genes of the AQ system and, thus, a reduced transcription of genes for pyocyanin biosynthesis. The metabolic context of 4-GB formation and degradation is currently under investigation. Our results indicate that nutrient availability can dominate QS-dependent virulence factor production via a so-far unexplored metabolic pathway.

MCP58 – withdrawn
Identification of secondary metabolites with roles in interactions between Chlamydomonas reinhardtii and other microorganisms

* D. Schaene, P. Aiyar, M. Mittag, S. Sassol
* General Botany and Plant Physiology Friedrich Schiller University Jena, Jena, Germany

Approximately half of global carbon fixation is performed by aquatic photosynthetic organisms, which are mostly algae and cyanobacteria. As primary producers they play a key role in their habitats. So far, little is known about the interaction of microalgae with other microorganisms, and the modes of interaction. To get a closer view into this topic, we started to study the interactions of the unicellular microalga Chlamydomonas reinhardtii living in freshwater and wet soil with other microorganisms. We quantified the growth rates of axenic and mixed cultures of C. reinhardtii and different bacteria. To analyze the chemical nature and function of secondary metabolites in these interplay, metabolite profiles were compared between axenic and mixed cultures using liquid chromatography-mass spectrometry (LC-MS). Also, MALDI imaging will be used to study the interaction interface. First results and environmental aspects of current experiments will be presented.

Chemical cues mediate their life cycle and mating, but only recently the first diatom pheromone was identified in the benthic diatom Seminavis robusta. This proline derived diketopiperazine L-diprolpine mediates the chemoatraction of the mating partners. However, evidence suggests that more signaling molecules are involved in sexual reproduction. Since the natural environment of benthic diatoms is very diverse, other organisms might interfere with their chemical communication. It is therefore of great interest, how specific pheromones are perceived and whether co-existing species can actively interfere the signaling process.

With our study we further investigate the pheromone system of S. robusta by i) identification of novel infochemicals, ii) determination of pheromone specificity and iii) by evaluating the role of co-existing bacteria.

Methods: i) A metabolomics-guided approach was used to identify novel pheromone candidates of S. robusta. The exometabolomes of the two mating types were analyzed by LC-MS and upon comparison of their metabolic profiles pheromone candidates were found and verified in bioassays.

ii) For structure-activity-relationship studies derivatives of L-diprolpine were synthesized. Their bioactivity was then analyzed in attraction assays.

iii) Production and degradation of L-diprolpine in axenic, non-axenic diatom cultures as well as bacterial cultures was analyzed by GC-MS and UPLC-MS.

Results: i) We found signaling molecules that induce a cell-cycle arrest in the pairing cells and the production and perception of the attraction pheromone in S. robusta. Thereby, candidates for these sex-inducing-pheromones of both mating types were identified with one being a sulphated, polyhydroxylated compound.

ii) Our results indicate a surprisingly low stereospecificity of L-diprolpine perception, suggesting that the reception of the attraction pheromone might be promiscuous. Structure activity assays revealed conserved and flexible structure elements in L-diprolpine analogs.

iii) Comparing axenic and non-axenic cultures, we observed a different efficiency in the mating rate, indicating that the bacterial community can influence the sexual cycle of diatoms. However, we still have to understand how bacteria can metabolize and degrade L-diprolpine or if they interact with other important metabolites involved in diatom life cycle.

Conclusion: In this study we used an elaborated analytical workflow to identify novel infochemicals of a benthic diatom. Using synthetic diprolpine analogs the promiscuity of the attraction pheromone receptor was proven. Furthermore, our findings suggest an influence of bacteria on sexual reproduction. Our results point to a cost-efficient multistep-pheromone system in S. robusta.

MCP62

Co-cultivation of Serratia odorifera 4Rx13 and Bacillus subtilis B2g leads to quantitative changes in the volatile profile compared to mono-cultivated strains

M. Kal

University of Rostock, Rostock, Germany

Bacteria emit diverse and complex blends of volatiles, of those the majority is still unknown. Because of their physico-chemical properties the bacterial volatiles present ideal info-chemicals in interaction processes with insects, plants and fungi. Although it was shown that bacterial volatiles beneficially or deleteriously influence plant growth and/or the growth of fungi, their ecological significance is poorly understood.

Serratia plymuthica 4Rx13 is a rhizobacterium that releases at least 100 volatiles including sororifen, several alcohols, terpenoids and sulphate compounds (1). Bioassays demonstrated that the volatile blend of S. plymuthica 4Rx13 can dramatically inhibit the growth of plants (i.e. Arabidopsis thaliana, Physcomitrella patens) and phytopathogenic fungi (Rhizoctonia solani) (2, 3). Thereby, our recent research focused on the functional characterization of volatiles emitted from S. plymuthica grown as single bacterial strain. Single bacterial strains do not occur in multi-functional characterization of volatiles emitted from microbial ecosystems e.g., the rhizosphere or the human body.

Furthermore, it is now well established that the production and/or secretion of primary and specialized metabolites changes due to competition or cooperation with other organisms. For instance, first data suggest that also the production of antifungal volatiles changes in microbial communities (4). Therefore, our hypothesis is that the emission of volatiles by Serratia plymuthica 4Rx13 alters due to bacteria-bacteria interactions.

To test this hypothesis S. plymuthica 4Rx13 was co-cultivated with B. subtilis B2g on solid medium. Within 30 days of co-cultivation the headspace volatiles were analyzed using solid phase micro extraction-gas chromatography/mass spectrometry (SPME-GC/MS).

Qualitative differences in the volatile profile have been detected between co-cultivated S. plymuthica 4Rx13/B. subtilis B2g and mono-cultivated strains. Quantitatively, we observed significant changes in the
viable volatile profile. While in the early stage of co-cultivation the volatile amount has been lower compared to the mono-cultivation, in the late stage the ratio changed to a higher amount of volatiles in the co-cultivation compared to the mono-cultivation. We are presently investigating further co-cultivations with other interaction partners as well as the effect of the culture condition on the interaction and in turn on the volatile emission.

MCP63

Detection and characterization of the quorum-sensing g-butyrolactone molecules produced by *Rhodococcus jostii RHA1* (RJBs)

A. Ceniceros, M. Petrusma*, L. Dijkhuizen*

1 University of Groningen, Microbial Physiology, Groningen, Netherlands

G-butyrolactones are signalling molecules that have been described and extensively studied in *Streptomyces*1,2. These molecules are part of the g-butyrolactone system which regulates secondary metabolism, e.g. antibiotic biosynthesis. g-Butyrolactones bind to a receptor protein (TetR regulators) and thereby regulate gene expression of antibiotic biosynthesis pathways. AfsA is the key enzyme involved in catalysing the first step of g-butyrolactone biosynthesis, the condensation of a glycerol derivative with a fatty acid derivative3.

An AfsA homologue had been detected in different actinomycetes species, including 4 different *Rhodococcus* strains4. No data was available about its function in the *Rhodococcus* genus. In this work we analysed the available *Rhodococcus* assembled genome sequences for the presence of an AfsA homologue, which was found in 12 of the 13 analysed strains. These genes share an amino acid identity of 33 %-44 % with *Streptomyces griseus* AfsA. We studied the possible synthesis of g-butyrolactones by *Rhodococcus jostii RHA1*. We found that this *Rhodococcus* strain is producing molecules which activate a g-butyrolactone specific reporter system developed for *Streptomyces*4. This system relies on binding of g-butyrolactones to the TetR regulator of *Streptomyces* coelocolor (ScbR).

Activation of this reporter system shows that *R. jostii* RHA1 produces one or more g-butyrolactone-like molecules that have structural similarity to the ones found in *Streptomyces*. LC-MS analysis indeed showed that a molecule is produced by *R. jostii* RHA1 with the same mass and retention time as 6-dehydro-SCB2, an isomer of A-factor, the g-butyrolactone produced by *Streptomyces griseus* and a predicted precursor of one of the described g-butyrolactones from *S. coelicolor*, SCB2⁵.

We also showed that the *R. jostii* afsA gene is essential for g-butyrolactone production by constructing a gene deletion mutant. The *R. jostii* ΔafsA strain failed to produce g-butyrolactones. We also constructed an afsA overexpression strain; its analysis indeed showed that this resulted in a higher production of g-butyrolactones.

We report for the first time that the genus *Rhodococcus* produces g-butyrolactones and that the afsA homologue gene is essential for the production of *R. jostii* g-butyrolactones (RJBs). *Streptomyces* and *Rhodococcus* both are found predominantly in soil. Such g-butyrolactone molecules in fact may be involved in communication between these two genera of actinobacteria in their natural environment.

1 Takano et al. 2001, Molecular Microbiology, 41(5), pp. 1015-1028.
3 Kato et al., 2007, Proceedings of the National Academy of Sciences of the USA of America, 104(7), pp. 2378-2383.
4 Doringhuis et al., 2013, BMC Genomics, 14, pp. 611-246-14-611.
6 Martin-Sanchez et al. Manuscript in preparation.

MCP64

New insights in plant-endophyte communication: maytansine as an example

1 Technical University Dortmund, Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Dortmund, Germany
2 Technical University Dortmund, Department of Biochemical and Chemical Engineering, Dortmund, Germany

Question: Studies on microbe-host interactions in plant and animal systems aimed at understanding the role of these associations and their utility in pharmaceutical and agricultural sectors are gaining impetus [1]. Several recent studies have lent evidence to the fact that certain so-called ‘plant metabolites’ are actually biosynthesized by associated endophytic microorganisms. For example, we investigated the central role of chemical crosstalk in plants and endophytes, using the important anticancer and cytotoxic compound maytansine, in *Putterlickia verrucosa* and *Putterellia retrorsipinosa* plants [2]. This extremely interesting outcome provided the scientific basis to investigate the actual producer(s) responsible for maytansine biosynthesis in *Maytenu* plants, which has been an open question since its discovery from this plant genus in the 1970s.

Methods: Endophytic communities harboring different tissues of *Maytenu serrata* originating from Cameroon were investigated using a combination of high performance liquid chromatography high-resolution mass spectrometry (HPLC-HRMS)⁶, matrix assisted laser desorption ionization imaging high-resolution mass spectrometry (MALDI-imaging-HRMS), and genome mining techniques to elucidate the source and sites of maytansine biosynthesis.

Results: Using a combination of bioanalytical methods as well as by molecular profiling, it was revealed that the host plant along with its cryptic endophytic microflora produces the biosynthetically unique core structural moiety mc²14-N, called 3-amino-5-hydroxybenzoic acid (AHA)⁷ that serves as the unique starter unit for maytansine biosynthesis via the aminoshikimate pathway. However, the biosynthetic step of halogenase-mediated incorporation of chlorine, which is missing in the host plant, is accomplished by the culturable stem endophytic community. Thereafter, the biosynthetic steps downstream of halogenation till formation of maytansine are achieved by the host plant.

Conclusion: Taken together, it was particularly interesting to note that only the culturable stem endophytic community of a selected *M. serrata* plant had coevolved a means to produce maytansine jointly with the host plant, including trafficking of the precursors from and to the host plant. Our results provide a scientific handle to delve into further details of plant-endophyte communication not only on the transcriptome level but also the metabolome level to pinpoint regulation of host-endophyte communication, and to determine qualitative and quantitative pattern of localization and trafficking of endophytes with regard to shared biosynthesis of maytansine.

MCP65

N-acyl-homoserine lactones produced by the endofungal bacterium *Rhzobium radio bacter* Rf4 Play a Vital Role in the Biological Activities of Rf4

1 Justus Liebig University Giessen, Institute of Phytopathology, Giessen, Germany
2 Justus Liebig University Giessen, Institute of Applied Microbiology, Giessen, Germany
3 Helmholtz Zentrum Munich, Microbe-Plant Interactions, Neuberger, Germany

The Alphaproteobacterium *Rhzobium radio bacter* F4 (Rf4) was originally isolated from the plant growth-promoting basidionmycete fungus Piforstomopsida indica (syn. Serendipita indica) that forms a triradial Sebacinalean symbiosis with a broad range of host plants. Interestingly, the isolated bacterium showed biological activities widely comparable to the isolated bacterium showed biological activities widely comparable to those exhibited by *P. indica* (Sharma et al., 2008; Gläser et al., 2015), but the mechanism by which these are achieved is not fully understood. Chemical analysis showed that Rf4 produces a spectrum of different N-acyl-homoserine lactones with acyl chains of C8, C10, and C12 as well as hydroxy- or oxo-substitutions at the C3 position. To assess the impact of Rf4-produced N-acyl-homoserine lactones (AHLs) on its beneficial activities, the AHL-negative mutant Rf4NM13 was used. In contrast to Rf4 wild-type (WT), the mutant failed to promote growth of wheat seedlings. Furthermore, bacteria-induced systemic resistance to the bacterial pathogen Xanthomonas translucens pv. translucens was reduced in Rf4NM13-treated plants compared to control plants treated by Rf4 (WT). Moreover and consistent with the above findings, growth promoting activity exerted by Rf4 in Arabidopsis thaliana was greatly abolished with Rf4NM13. Together, our results suggest that AHLs are critical factors of Rf4’s beneficial activity.

A. Bernal Martínez1, S. Jacob1, L. Antelo1, E. Thines1, 2

MCPE6 – withdrawn

MCPE7 – withdrawn

MCPE8

Strategy to study the pathogenicity of the apple canker fungus *Neonectria ditissima* and visualization of pathogenic growth in planta

A. Martín, S. Jacob, L. Antelo, E. Thines

1Institut für Biotechnologie und Wirkstoff-Forschung, Kaiserslautern, Germany

2Johannes Gutenberg University Mainz, Institut für Mikrobiologie und Weinforschung, Mainz, Germany

Neonectria ditissima is the causal agent of apple canker, a devastating disease in all major apple-growing areas of Europe, North America, Chile, Australia, New Zealand, Japan and South Africa. Within the last decades European canker has become a serious economic problem to farmers. The biology of *N. ditissima* as well as the resulting disease symptoms have recently been reviewed (Weber 2014), but little is known concerning molecular mechanisms of plant-pathogen-interactions and the contribution of either phytotoxins or secreted enzymes as putative virulence or pathogenicity factors.

The project aims to identify and characterize factors responsible for disease development. In this context we will address the question whether disease development and pathogenic growth are promoted by either phytotoxin production or enzyme secretion or both?

In order to identify phytotoxic compounds produced by *N. ditissima* and to elucidate the mechanisms of pathogenicity we established a set of diagnostic tools, i.e. a fruit-infection-assay by which disease symptom development and infection strength in fruits can be monitored.

Furthermore this assay is used for the identification of antagonistic microorganisms and fungicides in vivo.

To visualize pathogenic growth, a GFP-expressing mutant strain of *N. ditissima* was generated by developing the first known method for genetic manipulation of *N. ditissima* conidia via Agrobacterium tumefaciens-mediated transformation. The generated fluorescent-labelled mutant strain can be used to visualise pathogenic growth in planta.

Furthermore, we will present initial findings concerning directed molecular manipulation of *N. ditissima*. We are able to generate “loss-of-function”-mutants of genes encoding proteins of interest putatively contributing to virulence or pathogenic differentiation.

MCPE9

Characterization of small regulatory RNAs in the plant pathogen *Agrobacterium tumefaciens*

I. Borgmann, A. Overlöper*, I. Wilmès, F. Narberhaus

1Ruhr-Universität Bochum, LS für Biologie der Mikroorganismen, Bochum, Germany

In recent years, the number of identified small regulatory RNAs (sRNAs) in various bacteria has grown rapidly. Most of the characterized sRNAs exhibit their regulatory function by base pairing with their target mRNA leading to altered translation or stability of their target [1]. Despite evolving bioinformatic prediction tools the identification of sRNA targets remains a major challenge.

In the model organism *Agrobacterium tumefaciens*, which is known as a plant pathogen transferring part of its own DNA into the plant cell, over 650 sRNAs have been discovered [2, 3, 4]. To date, only the two sRNAs RepE, influencing the replication of the Ti plasmid [5], and AbrC1, regulator of various ABC transporters [6, 7], have been functionally characterized.

We report studies of the trans-encoded sRNA C10 from the circular chromosome of *A. tumefaciens*. Deletion of C10 causes pleiotropic effects regarding growth, motility and virulence. Furthermore, bioinformatic predictions lead to identification of putative targets involved in peptide/glycan biosynthesis and chemotaxis.

sequencing. Composition and dissimilarities were assessed using diversity indices, similarity percentage breakdown analysis (SIMPER) and non-metric multidimensional scaling (NMDS). Both stressors strongly influenced the sponge and its bacterial community but certain taxa remained associated and were defined here as the stable subset of the Haliclona sp. microbiome. Compared to the native microbiome, 17 of 25 phyla were affiliated to this stable subset and these taxa occurred primarily with relative abundances of 0.05-0.5% and attributed to 28% in total. The six most abundant phyla in the native Haliclona sp. microbiome Proteobacteria (46%), Gemmatimonadetes (14%), Verrucomicrobia (11%), Bacteriodetes (9%), Acidobacteria (9%), and Chloroflexi (5%), were also most abundant in the microbiome subset, which additionally showed a high abundance of Firmicutes. Antimicrobial defense activity was tested in an Alivibrio fischeri based bioluminescence assay and remained intact in the compressed host. We attribute this defense capacity to the tightly associated bacteria of the stable subcommunity and conclude that basic functionality in stressed holobionts is provided by disposable agents of a resilient microbiome sub-community. This study sheds further light on the sponge microbiome structure in relation to antibacterial defense and can serve as a basis for future investigations of microbiome functions in sponge holobionts.

MCP72 Microplastics reduce growth and survival rates of scleractinian corals and alter microbial communities in ambient water.

*J. Reichert1, J. Schellenberg1,2, S. P. Glasner2, P. Schubert1, P. Kämper2, T. Wilke2
1Justus Liebig University Gießen, Animal Ecology and Systematics, Gießen, Germany
2Justus Liebig University Gießen, Applied Microbiology, Gießen, Germany

Microplastics (plastic fragments <5 mm in diameter) are found globally in marine ecosystems (Moore 2008). Coastal ecosystems, such as coral reefs, are particularly threatened by these contaminants, which mainly originate from terrestrial sources. It has been shown that scleractinian corals can mistake microplastics for prey and ingest it (Hall et al. 2015). However, little is known about its effects on health and survival of the coral holobiont - a unit comprised of the coral itself and its microbial symbionts. Thus, we examined the influence of microplastics (size 35-650 μm, concentration 0.1 g l-1) on six scleractinian coral species in a four week lab experiment. We studied the uptake of the particles histologically and documented coral growth using 3D scanning and subsequent analyses of 3D models. As microbial communities play an import role in marine ecosystems, especially for the integrity of the holobiont, we also documented changes in bacterial numbers in the water column, using SYBR Green I staining and cell counting through epifluorescence microscopy. Additionally, this technique was used to study bacterial colonization of microplastic particles. We proved both uptake and rejection of plastic particles by living corals, as well as significantly reduced growth rates (3.1 % vs 0.4 %) together with severe declines in coral health and survival as reaction on microplastic contact. Particles were colonized with bacteria and our results indicate that microplastics reduce the number of free-living bacteria. We conclude that particle handling is energetically costly for the coral, resulting in lower growth rates. The decline in health might be caused through pathogen transmission, with particles acting as vectors. Further analyses will follow, addressing bacterial community composition of the coral holobiont as well as the interference with microplastic-attached and water-associated bacterial communities. This study is one of the first proving negative impact of microplastics on corals and builds the foundation for understanding the relationship between microplastic-associated bacteria and marine organisms.

MCP73 Root endophytic Basidiomycetes isolates from permanent grassland harbour Mollicutes-related endobacteria and promote wheat growth

*M. Taghinanasab Darzi1, S. P. Glasner3, J. Immani1, M. Hardt2, G. Moser2, C. Mühlen2,3, H. Kogel3
1Justus Liebig University, Institute of Phytopathology, Gießen, Germany
2Justus Liebig University, Institute of Applied Microbiology, Gießen, Germany
3Justus Liebig University, Biomedical Research Centre Selensberg-Imaging Unit, Gießen, Germany
4University College Dublin, School of Biology and Environmental Science, Dublin, Ireland

Beneficial plant-fungal interactions play an important role in the ability of plants to survive changing environmental conditions. Diversity and composition of endophytic fungal communities associated with roots of both monocotyledonous (Arthrhenatherum elatius) and dicotyledonous (Gallium album) plants in the permanent grassland of the „Environmental Monitoring and Climate Impact Research Station Linden near Gießen, Germany was evaluated by microscopy and DNA sequencing of the 18S rRNA-ITS sequences. We characterized two endophytic fungi that are related to Basidiomycota. Using the 16S ribosomal DNA as a phylogenetic marker also revealed that the fungi contained Mollicutes-related endobacteria. Interestingly, the fungal isolate from G. album exhibited strong growth promotion activities in wheat roots and shoots. We discuss the agronomic potential of the novel Basidiomycetes with regard to known previously discovered fungal endophytes.

MCP74 The hidden allies – microbes associated with the gut of a specialist beetle

*P. Alonso-Pernas1, A. Erias-Cordero2, A. Novoselov2, G. Große2, U. Neugebauer2, W. Boland1
1Max Planck Institute for Chemical Ecology, Jena, Germany
2University Hospital Jena, Center for Septic Control and Care, Jena, Germany

The symbiotic gut microbes are of crucial importance for insects feeding on suboptimal diets. They can embrace functions ranging from digestion of recalcitrant compounds, such as cellulose, to protection of the host against pathogens [1]. In the recent years, the European forest cockchafer (Melolontha hippocastani) has been established as a model organism to study insect-microbe associations. During its life cycle, this specialist beetle is able to succeed in two well differentiated ecological niches: the larvae live underground feeding on plant roots, while the adults emerge to feed on leaves. However, withstanding this abrupt shift of the diet and the metamorphosis process, eight taxonomic classes of gut symbiotic bacteria are consistent throughout the insects’ whole lifecycle [2]. In view of this community stability, we combined in vivo stable isotope probing with 454-pyrosequencing of 16S rRNA genes (Pyro-SIP) in order to determine which bacterial phylotypes are the most metabolically active during the larval and adult stages of the insect. Our approach unmasked a shift in the active fraction of gut bacteria, and revealed the orders Lactobacillales and Burkholderiales as key symbionts of, respectively, larvae and adults. Furthermore, parallel investigations of the larval digestive tract led to the discovery of novel structures called “pockets”. The pockets, present only in larvae, are attached at both sides of the distal segment of the gut, the hindgut chamber. 454-pyrosequencing coupled with qPCR analyses showed that their bacterial community significantly differs from the colonizers of the surrounding hindgut wall. Interestingly, a Burkholderiales representative (Achromobacter spp.) was found as the most abundant genus within the pockets. By means of Raman Micro-spectroscopy and Gas Chromatography – Mass Spectrometry, we demonstrated that some of the pocket bacteria are able to accumulate poly-3-hydroxybutyrate (PHB), which suggests that the origin of these symbionts might be environmental [3]. Moreover, culture dependent experiments unveiled a possible involvement of the pocket microbes in hosts’ nitrogenous waste recycling, although, as disclosed by the abovementioned Pyro-SIP approach, their main role might not be played until the adult stage.

MCP72

Symbiotic function of a rhizobial efflux system and its associated transcriptional regulator
*A. Zdyba, A. Welker, S. Kryszenko, D. Mitic, M. Göttert
*Technical University Dresden, Biology, Dresden, Germany

Efflux pumps enable bacteria to remove toxic chemical compounds from their cell. Rhizobial genome sequences reveal the presence of a number of efflux systems belonging to different families. In the alfalfa symbiont Sinorhizobium meliloti strain 1021, 14 efflux systems have been identified (1). In transcriptome analyses, the genes SmoC03167 and SmoC03168 – the deduced proteins are similar to the multi drug resistance proteins EmrB and EmrA of E. coli, respectively – were reported to be inducible by lactuline, a plant signal known to induce nodulation genes (2). Using a transcriptional reporter fusion, we demonstrated that the gene is inducible by several flavonoids, strongest by apigenin but also by quercetin, which is not an inducer of nodulation genes. This suggests that the gene is not regulated directly by NodD, which is the activator of nodulation genes. Upstream of emrA, a TetR-type regulator (EmrR) is encoded. EmrR binds to palindrome-like sequences within the emrB-emrR intergenic region (3). By creating transcriptional emrR-lacZ fusions, we determined the likely transcriptional start site of emrR. This revealed that emrR is also inducible by apigenin. After integration of the emrR-lacZ fusion into an emrR mutant background, the fusion was no longer inducible by apigenin, however, the expression level in the non-induced strain was significantly higher than in the wild type background. This suggests that EmrR acts as a repressor, which regulates the transcription of emrAB and of its own gene. Interestingly, a mutation of emrR but not of emrA, impaired symbiosis with alfalfa (3, 4 and unpublished results). This might indicate that a proper regulation of emrAB is essential for the interaction of S. meliloti with alfalfa. To answer this question we used reporter fusions of emrA and emrR and studied their expression in nodules of alfalfa and Medicago truncatula. Preliminary results indicate that EmrR is expressed in the infection zone of alfalfa nodule. Subsequent experiments will focus on more detailed analyses of the expression of the efflux system during an indeterminate nodule development.

MCP73

Unravelling shipworm symbiont physiology – the bacterial endosymbiont TN10130 of the wood-boring bivalve Teredo navalis
*Ernst Moritz Arndt University of Greifswald, Institute of Pharmacy, Greifswald, Germany
*Ernst Moritz Arndt University of Greifswald, Institute of Microbiology, Greifswald, Germany
*Georg August University of Göttingen, Institute of Microbiology and Genetics, Göttingen, Germany
*Institute of Marine Biotechnology e.V., Greifswald, Germany

Teredo navalis LINNAEUS, 1758 is the dominant wood-boring mussel at the coasts of the Baltic Sea. In contrast to other shipworms, this invasive species is able to live at remarkably low salinities. A community of closely related nitrogen-fixing endosymbiotic bacteria colonizes specialized cells (bacteriocytes) in the gills of T. navalis. Although the general features of this symbiosis are well established, our knowledge on the physiology of the bacterial symbionts of shipworms and their role in this marine symbiosis, which causes dramatic damage to wooden sea structures, is very limited to date.

We investigate the bacterial community of T. navalis and used a proteogenomic approach to characterize the physiological potential of one of the bacteria, a culturable isolate, in detail. The strain TN10130 was isolated from the gill tissue of a T. navalis specimen that had infested a pine board artificially exposed in the Western Baltic Sea (Eckernförde Harbor) for four weeks in summer 2009. The isolate TN10130 is a diazotrophic, cellulose-degrading γ-Proteobacterium that shares the same basic features as the previously described strains of the cultivable endosymbiont Teredinibacter turnerae isolated from the shipworm species Lyrodus pedicellatus. Comparative sequence analysis indicates that TN10130 is taxonomically related to this previously sequenced cultivable strain but seems to constitute a separate taxonomic branch. Our genome analysis revealed a remarkably high number of putative secondary metabolic gene clusters (SMCs) – approximately 8.4 % (~ 490 kb) of the bacterial genome seem to be dedicated to secondary metabolism. It is interesting to note that only 3 of the identified 14 SMCs of TN10130 show remote resemblance to SMCs of T. turnerae T7901. Thus, 11 of these clusters are specific for TN10130. Furthermore, our proteomic analyses reveal a versatile potential of this strain for the degradation of complex terrestrial but also marine polysaccharide structures. Our study gives first insights into the protein inventory and the physiology of a bacterial endosymbiont of the T. navalis symbiosis.

MCP74

Ectomycorrhizal metal stress response
*M. Östreicher, K. Krause, E. Kothe
*Friedrich Schiller University Jena, Institute of Microbiology, Microbial Communication, Jena, Germany

Soil contamination is one reason of increasing land degradation. One problem is the rise in anthropogenically elevated metal concentrations. For optimization of reforestation, a better understanding of the ectomycorrhizal partners’ responses facing various metals may help.

The study aims to compare the fungal and the plant responses to different metal chloride salts at the transcriptomic level. For this purpose, an axenic co-culture system with the coniferous tree Picea abies (spruce) and the ectomycorrhizal symbiont, the basidiomycete Tricholoma vaccinum, is used. Treatments with organic redox cycling compounds such as paraquat and menadione are used to separate metal specific response from that towards reactive oxygen species and formed via the Fenton reaction.

Developmental parameters are investigated to define minimal inhibitor concentrations.

For Al, Cs, Cu, Fe, Ni and Zn, comparatively high concentrations were used. Treatments with organic redox cycling compounds such as paraquat and menadione are used to separate metal specific response from that towards reactive oxygen species and formed via the Fenton reaction. Developmental parameters are investigated to define minimal inhibitor concentrations.

To Al, Cs, Cu, Fe, Ni and Zn, comparatively high concentrations were tolerated by T. vaccinum in the lower millimolar range, whereas lower
tolerance levels were observed towards Cd and Mn. These were found at micromolar levels. Based on previous studies, a similar minimal inhibitory concentration is expected for Cs in Picea abies as shown in T. vaccinum. The organic redox cycling compounds acted at different concentration ranges on T. vaccinum. These results offer the possibility to obtain a transcriptomic analysis based on growth under relevant stress conditions.

MCP79
Colonization of indigenous gut bacterium Enterococcus mundii in the intestinal tract of Spodoptera littoralis
* B. S. Teh1, W. Boland1
1Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Jena, Germany

The cotton leafworm (Spodoptera littoralis) is a highly successful polyphagous insect pest that causes economic loss in agricultural industry. Although pesticides are widely used to combat this pest, yet it is biologically unsafe since its toxic chemical components can accumulate in the plants, and remain dangerous for human consumption. In recent years, many researchers have focused in studying the insect gut microbiota. The gut microbial communities of Spodoptera are well catalogued and characterized, and emerged as a popular model insect in studying insect-microbe and microbe-microbe interactions, which are still poorly understood. It is known that the gut of Spodoptera is dominated by indigenous bacterium of Enterococcus mundii and Cladostrium sp. towards the late-instar larval stage [1]. These bacteria are constantly present in the digestive tract of the insect. In this study, E. mundtii was selected as a model bacterium because of the ability to form biofilm-like protecting layers on the gut epithelium of S. littoralis and has the potential of killing other pathogenic bacteria by the release of antimicrobial peptide as shown by in vitro studies (Shao et al., unpublished). We know that the intestinal pH of Spodoptera differs between gut regions, from highly alkaline in the foregut and midgut, and toward neutral in the hindgut. The mechanism of bacterial survival in harsh gut environment is unknown. To gain better understanding of the strategies used by Enterococcus for survival, we have constructed GFP-tagged bacteria to track its colonization in the intestine throughout different stages of development (larvae, pupae, adults and eggs). We showed that the engineered fluorescent bacteria survived and proliferated in the intestinal tract of insect of all life stages for up to second generation offspring following ingestion. We are interested to further explore the underlying factors that drive the survival by analyzing the bacterial and insect gut membrane transcriptomes. We expect that the transcriptome data will significantly expand our understanding of the functional roles of indigenous bacteria toward the development of the insect.

MCP80
The metting pot ectomycorrhizosphere – communication between Tricholoma vaccinum and its tree host sprout affected by soil microorganisms
* K. Wagner1,2, K. Krause, E. Kothe1, A. David2, W. Boland2
1Friedrich Schiller University Jena, Microbial Communication, Jena, Germany
2Max Planck Institute for Chemical Ecology, Jena, Germany

Ectomycorrhizal interactions between a fungus and the roots of a host plant support nutrient supply of both partners and increase plant vitality. Development of the symbiosis includes bi-directional signaling. The potential of the widespread basidiomycete Tricholoma vaccinum to recognize and respond to its host tree Norway spruce (Picea abies) and the influence of the ambient microbiota and the impact of D’orenone, an apocarotenoid intermediate of trisporic acids produced in T. vaccinum, was investigated.

We sequenced the genome of T. vaccinum, predicted its secretome and verified it experimentally. Moreover, the excretion of phytomolecules and volatile organic compounds was analyzed. Microbial community structure was studied in an ectomycorrhizosphere habitat with 454 pyrosequencing and via isolation. Furthermore, we investigated the influence of T. vaccinum on spruce and the microbial community in microcosms. T. vaccinum synthesizes phytomolecules and plant volatile organic compounds and has the potential to secrete 206 proteins over the classical secretion pathway, e.g. cellulolytic enzymes and mycorrhiza relevant hydrophobins. Supplementation with spruce exudates reduced cellulolytic enzyme abundance and activity in T. vaccinum culture supernatants. Dead host material, unable to exudation forces plant degradation and increased fungal abundance and diversity in the microcosm. D’orenone application increased hyphal branching and mitochondria activity as well as auxin biosynthesis through aldehyde dehydrogenase Ald5 and excretion by the transporter Mte1. D’orenone increased lateral root elongation in P. abies, mostly correlated with changed auxin fluxes. D’orenone stimulated plant growth and increased hyphal branching, but decreased Hartig net formation most probably correlated with plant defense reactions. Most of the effects were comparable with the synthetic apocarotenoid G-253.

Conclusively, ectomycorrhizal signaling involves multiple signals and can be modulated by D’orenone through changed auxin fluxes. To our knowledge, this is the first report of a fungal hormone-like substance with apocarotenoid character affecting ectomycorrhizal signaling.

MCP81
The effects of diet and caste on the termite hindgut microbiota as seen through 16S rRNA sequencing and artificial neural networks
* J. Benjamino1, S. Lincoln1, R. Srivastava2, J. Graf2
1University of Connecticut, Molecular and Cell Biology, Storrs, USA
2University of Connecticut, Chemical and Biomolecular Engineering, Storrs, USA

The eastern subterranean termite Reticulitermes flavipes harbors a tripartite microbial community in the hindgut consisting of Archaea, Bacteria, and protists which aid in the digestion of lignocellulose. The hindgut microbiota has been studied extensively and is known to be similar between termites of the same colony and stable over time. Termite colonies are made up of multiple castes: workers, soldiers, alates (pre-reproductive), and reproductives (king/queen), each with different tasks and feeding habits. Differences in the composition of the protist community have been shown in different castes, but differences in the bacterial community have not been addressed. Diet is an important facet in symbiotic systems as changes in diet can dictate or alter the microbiota of the host. We hypothesize that the composition of termite hindgut microbiota is partially dependent on diet and that the microbiota will differ between termite castes. A single colony was separated into sub-colonies differentiated by diet (starved, original mulch, cardboard, birch, maple, oak, and spruce). Colonies were also sampled for the caste study when there were members of multiple castes present within the same colony. Hindgut contents were sampled in triplicate from each termite colony over the course of 56 days and the V4 hypervariable region of the 16S rRNA genes were sequenced on an Illumina MiSeq. The merged read pairs were processed using Qime. An artificial neural network was used to determine the most connected taxa and how each diet affects the microbiota. A qPCR assay for protist 18S rRNA was used to correlate protist and bacterial abundances in termite castes. Each diet showed a shift in the bacterial community over time, with the starved and oak colonies having the most drastic changes. Only 16 out of 130 taxa increased or decreased by more than 5% among the 7 diets, including Treponema and Endomicrobium, the two most abundant taxa in the hindgut, as shown by sequencing and the neural network analysis. Treponema exist in the hindgut as free-living ectosymbionts of protists and are the main producers of acetate and nitrogen compounds with acetate being the primary source of energy for the termite. Endomicrobium are protist endosymbions and it has been suggested that they provide amino acids to the host protist and the termite. Treponema and Endomicrobium showed the highest variability depending on termite caste, with the lowest abundance existing in the alate caste. The overall stability of the microbiota when fed multiple diets suggests the ability of the core microbiota to adapt as the termite diet changes. Interestingly in castes that do not feed on wood (alates) the major bacterial symbionts in the hindgut dramatically decreased in abundance. These findings reinforce the interdependency of the microbial symbionts, the host and their food source.

MCP82
Bacterial virulence depends on growth phase
C. Bella1,2, L. Kochler1, K. Grosser1, G. Petroni2, M. Schraillhammer1
1University of Freiburg, Microbiologie, Freiburg, Germany
2Università di Pisa, Biology Department, Pisa, Italy

Despite an unambiguous definition, in many biological systems we do not find a neat delineation between mutualism and parasitism. Biotic and abiotic factors influence symbiotic interactions, thus under certain circumstances parasites can provide benefits and mutualists can harm their host. Additionally, the genetic background of both interaction partners can play a significant role. Here we addressed the question which intrinsic
biotic factors are pivotal for the outcome of an intimate host-symbiont interaction and might even tip the scale towards a stronger exploitation of host resources.

As model system we used the obligate intranuclear symbiont Holospora curvaphila (Alphaproteobacteria; Rickettsiales) and its unicellular eukaryotic host Paramecium biaurelia (Alveolata; Ciliophora). The impact on host fitness of the supposed energy parasite was determined in presence and absence of H. curvaphila via growth assays with several genetically identical P. biaurelia lines. Maintenance of the intranuclear bacteria was confirmed at the beginning and end of the experiment using fluorescence in situ hybridisation and microscopy. Following biotic factors were considered as potentially involved in shaping the outcome of the interaction: (1) the host genotype, (2) the parasite genotype, and (3) the growth phase of the host.

All three factors revealed a strong influence on the outcome of the host-symbiont interaction. In presence of H. curvaphila, the Paramecium density in the stationary growth phase decreased. Conversely, a positive effect of the bacteria during the exponential phase was observed for several host × parasite combinations resulting in an increased growth rate of infected P. biaurelia.

The fitness impact of the tested endosymbionts on different P. biaurelia lines were not only dependent on either genotype but were specific for the genotype × genotype combination. Interestingly, a typical parasite such as H. curvaphila has not only negative effects on host fitness. Depending on the actual host growth phase, the presence of these obligate endosymbionts can even be advantageous for P. biaurelia.

Thus, under the here tested experimental conditions, the harmful parasite can be a beneficial mutualist changing from one kind of interaction to the next within the same host and a time-span of less than six days.

MCP83 – withdrawn

MCP84
Zero waste and no known diseases in fungus-farming termites
*M. Poulsen1
1University of Copenhagen, Department of Biology, Copenhagen, Denmark

Thirty million years ago, the ancestors of the termite sub-family Macrotermiteinae and the basidiomycete Termitomyces joined forces in what became one of the most sophisticated plant biomass decomposition symbioses on Earth. Through intricate interactions between an external fungal garden and the termite host and its accompanying gut microbes, this symbiosis manages to fully decompose nearly any plant polysaccharides while having no apparent problems with infectious diseases. We employed 16S rRNA 454 pyro-sequencing to portray community compositions of Macrotermiteinae core gut microflora and Illumina sequencing to obtain metagenome insight into the functional gut community roles. The innovation of fungiculture induced a compositional and functional shift in the Macrotermiteinae gut microbiota. Gut bacteria contribute fungicidal enzymes and enzymes needed for final plant decomposition after Termitomyces degrades the complex carbohydrates. This implies that the shift in gut microbial capacity after Termitomyces domestication has involved the evolution of complementary division of symbiotic labour. A second gut passage of the fungus comb thereby provides their host plants with mineral nutrients and to confer resistance to root pathogens and tolerance to abiotic stress. For example, mycorrhizal plants perform much better on sites contaminated with heavy metals (HMs) compared to their non-mycorrhizal counterparts. Numerous studies showed that taxonomically-related AM fungal strains differ in their capacity to confer HM tolerance to plants and can even loose this character, if propagated under HM-free conditions. The current study compiles the following hypotheses: (1) AM fungi can acclimatize to HM stress over a few generations. (2) This acclimatization process can be monitored on molecular level. (3) Acclimatized strains show increased abilities to confer heavy metal tolerance to plants.

Rhzopogon irregularis DAOM-197198 was chosen as model AM fungal strain and propagated in root organ cultures in the presence of moderate Zn or Pb concentrations. After five generations, cultures were tested at increased HM concentration for hyphal and spore development and for the expression of a set of HM-regulated genes. The results confirmed the first hypothesis: AM fungi can acclimatize to HM stress. Hyphal density or the number of spores was higher, if the strains grow in the presence of HMs compared to the non-acclimatized control strains. The AM fungal gene expression patterns reflect also the process of acclimatization. RNA of particular genes accumulated earlier or to increased amounts in the acclimatized strain confirming the second hypothesis.

In order to test the third hypothesis, the final generation of newly developing spores from the acclimatized and from the non-acclimatized strain was used for inoculating maize plants in pot cultures, treated with high amounts of Zn and Pb. At harvest, plants inoculated with an acclimatized strain formed higher biomasses and showed increased uptake of phosphate and lower amounts of HMs in their shoots compared to plants colonized by the non-acclimatized strain. We propose that this process of acclimatization accompanied by monitoring RNA accumulation of particular genes can be transferred to a commercial directed inoculum production process with quality control adapted to particular customer needs.

MCP86
Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment
*O. Rasigraf1, J. Schmitt2, M.S.M. Jetten1, C. Lüke1
1Radboud University Nijmegen, Microbiology, Nijmegen, Netherlands
2Technische Universität Hamburg-Harburg, Hamburg, Germany

The biological nitrogen cycle is driven by a plethora of reactions transforming nitrogen compounds between various redox states, which can be performed by a variety of different microorganisms. Whereas some of these processes are fairly widespread (e.g. denitrification), some others are only restricted to narrow phylogenetic guilds (e.g. anammox). Here we investigated the metagenomic potential for Nitrogen cycle of the in-situ microbial community in an oligotrophic, low salinity environment of the Bothnian Sea sediment. Total DNA from three depths below the sediment surface was isolated and sequenced with the Ion Torrent technology. The characterization of the total community was performed based on 16S rRNA gene inventory using SILVA database as the reference. The diversity of diagnostic functional genes coding for nitrate reductases (napA; napG), nitrite reductases (nirK; nirS; nirA), nitric oxide reductase (nor), nitrous oxide reductase (nosZ), hydrazine synthase (hzaA), ammonia monooxygenase (amoA), hydroxylamine oxidoreductase (hao) and nitrogenase (nifH) were analyzed by blastx analysis against curated reference databases. In addition, PCR-based amplification was performed on the hzaA gene of anammox bacteria. Our results reveal high genomic potential for full denitrification to N2, but minor importance of anaerobic ammonium oxidation (anammox) and dissimilatory nitrite reduction to ammonium. Genomic potential for aerobic ammonia oxidation was dominated by Thaumarchaeota while bacterial amoA genes were scarce in all sediment depths. In general, phylogenetic composition of core microbial communities correlated well with biogeochemical characteristics of particular depths. Moreover, their lower abundance in the Bothnian Sea sediment, we detected a higher diversity of anammox bacteria in metagenomes than with the PCR-based technique. Our metagenome results reveal the quantitative importance of various N-cycle driving processes and highlight the advantage in detection of novel microbial key players which might be overlooked by using traditional PCR-based methods.

Arbuscular mycorrhizal (AM) fungal strains differ in their abilities to provide their host plants with mineral nutrients and to confer resistance to root pathogens and tolerance to abiotic stress. For example, mycorrhizal plants perform much better on sites contaminated with heavy metals (HMs) compared to their non-mycorrhizal counterparts. Numerous studies showed that taxonomically-related AM fungal strains differ in their capacity to confer HM tolerance to plants and can even loose this character, if propagated under HM-free conditions. The current study compiles the following hypotheses: (1) AM fungi can acclimatize to HM stress over a few generations. (2) This acclimatization process can be monitored on molecular level. (3) Acclimatized strains show increased abilities to confer heavy metal tolerance to plants.

Rhzopogon irregularis DAOM-197198 was chosen as model AM fungal strain and propagated in root organ cultures in the presence of moderate Zn or Pb concentrations. After five generations, cultures were tested at increased HM concentration for hyphal and spore development and for the expression of a set of HM-regulated genes. The results confirmed the first hypothesis: AM fungi can acclimatize to HM stress. Hyphal density or the number of spores was higher, if the strains grow in the presence of HMs compared to the non-acclimatized control strains. The AM fungal gene expression patterns reflect also the process of acclimatization. RNA of particular genes accumulated earlier or to increased amounts in the acclimatized strain confirming the second hypothesis.

In order to test the third hypothesis, the final generation of newly developing spores from the acclimatized and from the non-acclimatized strain was used for inoculating maize plants in pot cultures, treated with high amounts of Zn and Pb. At harvest, plants inoculated with an acclimatized strain formed higher biomasses and showed increased uptake of phosphate and lower amounts of HMs in their shoots compared to plants colonized by the non-acclimatized strain. We propose that this process of acclimatization accompanied by monitoring RNA accumulation of particular genes can be transferred to a commercial directed inoculum production process with quality control adapted to particular customer needs.
MEP01

Evolutionary strategies to efficiently synthesize polyproline containing proteins

J. Lassak1,2, E. Keilbauer3, M. Fürst1,2, K. Wuchtr4, J. Gödecke5,6, A. Steunstra7, J-M. Chen4, L. Segard-Anderson1, J. Rohr2, D. Wilson1,7, S. Häussler5,6, M. Mann1,7, J. Junp1,7

1 Ludwig-Maximilians-Universität München, Biologie I / Microbiology, Martinsried, Germany
2 Center for Integrated Protein Science Munich, Munich, Germany
3 Max Planck Institute of Biochemistry, Proteomics and Signal Transduction, Martinsried, Germany
4 Max Planck Institute for Terrestrial Microbiology, Ecophysiology, Marburg an der Lahn, Germany
5 Institute for Molecular Bacteriology, Twincore, Hannover, Germany
6 Helmholtz Centre for Infection Research, Molecular Bacteriology, Braunschweig, Germany
7 Ludwig-Maximilians-Universität München, Gene Center, Department for Biochemistry, München, Germany
8 University of Kentucky, Pharmaceutical Sciences, Lexington, USA

Translation of polyproline proteins leads to ribosome arrest. To overcome this stalling effect, cells depend on a polyproline specific bacterial translation elongation factor P (EF-P), being orthologous to eukaryotic/archaeal initiation factor 5A (eIF5A). EF-P consists of three β-barrel domains that form a RNA-like L-structure. Thus, EF-P can bind to the stalled ribosome, to the peptidyl-tRNA binding site and RNA-accepting site and thereby it stimulates peptidyl-transferase activity. To enhance activity of both EF-P and eIF5A a positively charged residue protruding towards the peptidyl-transferase center is post-translationally modified. While IF5A strictly depends on hypusination of a conserved lysine, modification strategies of EF-P are highly diverse: Bacteria such as *Escherichia coli* extend a protruding lysine by β-lysinylation and subsequent hydroxylation by the concerted action of EF-P lysyl-transferase (EpmA), lysine aminomutase (EpmB) and EF-P hydroxylase (EpmC). We have unveiled a markedly different modification strategy present in clinical relevant species such as *Propionibacterium shermanii*, *Neisseria gonorrhoeae* and *Bordetella pertussis*. Here, a conserved arginine of EF-P is rhamnosylated by a novel type of glycosyltransferase (EarP) using dTDP-L-rhamnose as a substrate. Inactivation of the EF-P modification system impairs not only bacterial fitness but is also important for development of pathogenicity making EarP and dTDP-L-rhamnose-biosynthesizing enzymes ideal targets for antibiotic development.

MEP02

Genome dynamics in the Roseobacter group

J. Petersen

Leibniz-Institut DSMZ, PmC, Braunschweig, Germany

Question: Alphaproteobacteria of the metabolically versatile Roseobacter group (*Rhodobacteraceae*) are abundant key players of marine ecosystems. Morphological heterogeneity is a common trait and some of these model organisms to retrace the genetic basis of their phenotypic variability. In the current study we investigated the genomes of more than a dozen mutants of these model organisms to retrace the genetic basis of their phenotypic variability.

Methods: We sequenced genomes of the wild type, plasmid curing and transposon mutants as well as transconjugants of *D. shiba* and *P. inhibens*. Size selected large DNA fragments (>10kb) were used for PacBio sequencing and Illumina HiSeq sequences were established for error correction. Data analysis was performed with the bioinformatics pipeline of the DSMZ. The authenticity of single nucleotide polymorphisms (SNPs) or gaps was checked with de novo assembled Illumina data and sequencing of PCR products. Plasmid profiles were determined via pulsed field gel electrophoresis (PFGE).

Results: A combination of second and third generation sequencing (PacBio, Illumina) was used to establish finished genomes of highest quality. Resequencing of the *D. shiba* and *P. inhibens* wild type strains revealed the accuracy of the Sanger reference genomes. Our mutants (curing, transpon) and transconjugants accumulated only a few SNPs, but we observed frequent genomic rearrangements. Plasmid recombination in *D. shiba* was independently validated by altered PFGE profiles. Notable finding was the identification of a chimeric *D. shiba* plasmid that was horizontally transferred into *P. inhibens*, but is lacking a type IV secretion system. A chromosomal inversion in the plasmid-free curing mutant of *P. inhibens* might largely influence its gene expression. Furthermore, we observed that plasmid loss and native transposons with sizes between 1.5 to 6.3 kb that jumped into protein encoding genes thus disrupting their function.

Conclusion: The technical progress in genome sequencing paved the way to retrace and understand the phenotypic spectrum of a single bacterium. Comparative genomics of the D. shiba mutants of our model organisms revealed a conspicuous degree of recombination that might be characteristic for *Rhodobacteraceae*. Genome dynamics in combination with the wealth of (conjugative) plasmids provides a plausible explanation for the evolutionary adaptability of roseobacters and their rapid colonization of novel marine habitats.

MEP03

Modeling of evolutionary changes of oligonucleotide usage patterns of whole bacterial genomes and in horizontally transferred loci

X. Yu, O. Reva

1 University of Pretoria, Bioinformatics, Pretoria, South Africa

Nowadays, complete genome sequences of multiple bacteria became readily available for analysis. One of the most prospective way for genome comparison, identification of evolutionary meaningful events of horizontal gene transfer (HGT) and phylogenomic inferences is based on annotation-and-alignment free genome linguistic approaches, i.e. comparison of oligonucleotide usage patterns (OUP) of genome-scale DNA fragments. Until now this approach still lacks a reliable evolutionary model to explain the mechanisms and dynamics of changes in OUP that hinders application of this approach. The aim of the current work was to design a mathematical model of evolutionary changes in OUP to explain the following two general processes: i) amelioration of horizontally acquired genomic islands (GIs) in bacterial genomes; ii) estimation of phylogenomic distances between microorganisms by comparison of whole genome OUP. HGT has been thought to be a driving force of bacterial evolution. For decades, majority of studies was done on creation of tools for identification of HGT while little is known about the evolution of the transferred genes. Our focus is on amelioration where the base DNA composition of transferred genes undergoes a mutational pressure to represent similarly to the recipient genome. The model will allow estimation of time of acquisition and identification of possible donors of GIs. We also attempted on using compositional methods to analyze phylogenetic relations between sequenced Corynobaera. To perform these tasks, a stand-alone Python program was developed. The difference in OUP were analyzed in terms of logistic probability equation and best model fitting approaches to simulate the evolutionary processes. The best fit was obtained as the Verhulst equation. The program predicts a graduate merging of a foreign insert’s OUP towards the target genomes that would stabilize at some level of pattern similarity. The dynamics of this process and the level of stabilization depend on the rate of mutations in the target organism as well as the level of compositional dissimilarity between foreign inserts and target sequences. These parameters can be estimated from simulated data and could relate to biologically meaningful characteristics such as selection rate and similarity gap between GIs and host OUP. The results also show significant differences between evolution process of coding and non-coding regions where coding regions showed higher initial substitution rate and reaches equilibrium faster while non-coding had larger fluctuations around equilibrium exhibiting increased random mutations. Comparison of different Corynobaera also showed fitting genome evolution processes to this model.

MEP04

Bacterial species delineation in the era of whole genome sequence data: application to the clade of rapidly growing thermotolerant mycobacteria

J. Garía-Martínez1, S. Gola2

1 Universidad Autónoma de Madrid, Faculty of Medicine, Madrid, Spain
2 Spanish National Biotechnology Centre - CNB-CSIC, Department of Microbial Biotechnology, Madrid, Spain

Question: Rapidly growing thermotolerant mycobacteria as *Mycobacterium smegmatis* serve as model systems and surrogates for pathogenic species of the genus. According to main databases, strains JS623 and mc²155 are both considered members of the species *M. smegmatis*, and are among the few strains of that species with an accessible whole genome sequence (WGS). This is why strains JS623 and...
mc155 are becoming increasingly popular for comparative genome-based studies. We found unexpected differences between both genomes, and reasoned that strain JS623 might have been classified erroneously. This work investigates the membership of both strains to the same species, describing at the same time a roadmap for successful application in silico methods for species delineation that can be useful in other similar cases.

Methods: We combined traditional molecular taxonomic procedures—inferrence of single and concatenated gene trees—from the one hand, and modern whole genome-based in silico methods—calculation of Average Nucleotide Identity (ANI), digital DNA-DNA hybridisation (dDDH) and analysis of gene synteny—from the other hand, to address the relationship of strain JS623 to other rapidly growing thermotolerant mycobacteria, especially to independent isolates of *M. smegmatis*.

Results: A single gene tree based on the almost full-length 16S rDNA sequence confirmed classification of strain JS623 in the clade of *m. smegmatis*. A concatenated gene tree based on partial sequences from 16S rRNA, rpoB, hsp65, and *raf* genes supported this result. Only strain mc155 and another independently isolated strain, MKD8, clustered with the *M. smegmatis* type strain. These molecular phylogenetic analyses further suggested that strain JS623 is more related to *M. fortuita* than to *M. smegmatis*.

Three online available tools that deliver species identification-relevant parameters from WGS data were applied: the ANI calculator (1), the Genome-to-Genome Distance Calculator (2) and MAUVE (3). According to the standard values accepted for species delineation at all parameters of JS623 clearly separate this strain from the other two strains of *M. smegmatis* at the genome level.

Conclusion: Our data reveal that strain JS623 is not *M. smegmatis* and underline the strength of genome comparisons to identify erroneously classified genome entries. Systematic application of the novel in silico tools helps to avoid confusions as well as misleading conclusions, as, for example, those derived from comparative genome-based analyses of mycobacteria, when a genome wrongly attributed to a certain species in the databases was included in the analysis.

MEP06

Defeating non-producer exclusion in biofilms via general adaptation rather than by specific adjustment

*M. Martin1, T. Hölscher1, A. Drages1, A. T. Kovacs1

1 Friedrich Schiller University, Institute of Microbiology, Terrestrial Biofilms Group, Jena, Germany

During biofilm formation, the secreted matrix provides benefit to the microbial population i.e. protection, attachment to substratum or surface. Spreading its production provides high cost to individual cells. In Gram-positive bacterium *Bacillus subtilis*, mutant strains that are matrix deficient (non-producers) have higher fitness gain under well mixed planktonic conditions. Moreover, the non-producers (i.e. matrix deficient), have an advantage in spatially structured conditions [1]. The density of cells at the onset of biofilm growth on a solid surface is affected by pattern formation and high assortment during biofilm growth facilitates cooperation [2]. However, biofilms on air-liquid interface called pellicles seem to benefit public good producers by utilizing a different strategy. While flagellum-based motility, chemotaxis, and oxygen sensing are not absolutely essential for biofilm development in single strain cultures, as these mentioned traits are important for successful competition during pellicle formation [3].

Non-producer strains deficient in matrix cannot form pellicles alone and are excluded in the community when cultured together with producer strains in pellicles; a developmental mechanism that positively selects for cooperators. While this mechanism offers a strategy to restrict non-producers from the population, experimental evolution revealed that non-producers regain their incorporation ability in pellicles after prolonged repeated co-cultivation in the presence of the producer population. This study was conducted in order to understand if the increased pellicle inclusion of the evolved non-producer strains is due to specific mutations or due to general adaptation. Genome resequencing revealed high amount of synonymous mutations both in the evolved producer and non-producer populations. Additionally, matrix production was subsequently disrupted in the evolved producer strains (i.e. non-producer that was initially evolved as producers) and their fitness gains were compared with that of the evolved non-producer strains. Fitness assay revealed increased fitness behavior similar to the evolved non-producers. These results illustrate how general adaption to certain growth conditions can benefit a non-producer population by regaining its fitness at the expense of the cooperation population frequency.

MEP07

Role of mannitol dehydrogenases in osmoprotection of *Gluconobacter oxydans*

*N. Zahid1, U. Deppenmeier1

1 Institute for Microbiology and Biotechnology, University of Bonn, Germany

Question: Mannitol is a polyol that has been recognised as an osmoprotective compound in different organisms. Recently we discovered that *Gluconobacter oxydans* produces and accumulates mannitol under osmotic stress conditions, which functions as compatible solute. However, the pathways and the enzymes responsible for mannitol synthesis were unknown. Here, we identified these mannitol dehydrogenase encoding genes and their role in osmo-protection of *G. oxydans*.

Methods: *G. oxydans* possesses two cytoplasmatic mannitol dehydrogenases (MDH) that vary for co-factor specificity. While Gox1432 is NADP-dependent (EC 1.1.1.138), Gox0849 prefers NAD as cofactor (EC 1.1.1.67). Both MDH encoding genes were deleted in *G. oxydans*, separately using the coAB markerless in-frame deletion method. The effect of these deletions was analysed on growth of the cell and intracellular mannitol formation under osmotic stress.

Results: The deletion of the NADP- dependent MDH encoding gene (g ox1432) resulted in reduction of cell growth under osmotic stress, while the deletion of the NAD-dependent MDH encoding gene (g ox0849) had no effect on growth of the cells. In addition, the intracellular mannitol content was reduced in the knock out mutants lacking the NADP- dependent enzyme in comparison to the control strain under stress conditions. These results indicated the role of the NADP-dependent MDH as a major mannitol synthesizing protein, responsible to protect *G. oxydans* from osmotic stress. Moreover, the simultaneous deletion of both genes resulted in a more severe growth defect of *G. oxydans* under stress conditions. Over-expression of g ox1432 in the corresponding deletion mutant restored growth of the cell under osmotic stress, further strengthening the importance of the NADP-dependent MDH for osmo-tolerance in *G. oxydans*.
Conclusion: In summary, we report for the first time about the correlation of mannitol dehydrogenases and osmo-protection of G. oxydans under osmotic stress. These findings will be valuable to understand the detailed molecular mechanism of mannitol-mediated osmo-protection and to improve the catalytic efficiency of G. oxydans under osmotic stress.

MEP08 Comparative genomics of Clostridium difficile strains isolated from European, African and Asian patients

"T. Riedel1, J. Wittmann1, B. Bank1,2, C. Spörrer1,2, A. Thürmer1, K. Gunka1, O. Zimmermann1, S. Gronew2, H. Liesegang1, U. Nübel1,2, U. Groß1, D. Daniel1,2, J. Overmann1,2

1Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
2German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany

Questions: The anaerobic and spore-forming Gram-positive bacterium Clostridium difficile is a facultative nosocomial pathogen responsible for antibiotic-associated diarrhea or pseudomembranous colitis. Many studies focused on the epidemiology of hospital-acquired C. difficile-associated diarrhea in Europe and North America [1]. However, little is known about the presence and biology of C. difficile in Africa and Asia. Furthermore, the role of mobile elements for the evolution of C. difficile in general has remained unclear despite massive whole genome sequencing during the past years.

Methods: C. difficile strains were isolated from European, African and Asian patients. Complete de novo genome sequencing of strains was carried out using a combination of single molecule real time (SMRT) and Illumina sequencing technology and also included C. difficile strain 630 [2, 3] and C. difficile strain DSM 1296 [4, 5].

Results: Comparative genome analysis revealed highly syntenous genomic regions in all chromosomes. Genome assembly and analysis revealed the presence of extrachromosomal elements such as different plasmid-like structures and provide evidence for new types of phages infecting C. difficile. Besides single nucleotide polymorphism level (SNP) in the core genome, differences between strains were mostly found in the mobilome (e.g., bacteriophages and transposons). Whereas C. difficile strains from Europe and Asia contain sequences encoding C. difficile-specific toxins, many of the isolates from Africa lack toxins. Whereas the C. difficile core genomes fall into six different phylogenetic clades [6] the mobilome showed a markedly different pattern that diverges from that of the core genomes.

Conclusions: Various mobile elements of C. difficile are transferred frequently between distantly related clinical strains obtained from different continents. Our results suggest a major role of the mobilome in the evolution of C. difficile.

MEP09 Distribution, domain architecture and phylogeny of proteins with a KdpD domain

"Y. Wang1,2, M. Klein1,2, K. Jung1,2
1Ludwig-Maximilians-Universität München, Department of Biology I, Microbiology, Martinsried Munich, Germany
2Center for Integrated Protein Science Munich at the Department of Biology I, Munich, Germany

Question: K+ is the most abundant cation in all living cells and involved in maintaining turgor, metabolism and intercellular communication [1, 2]. K+ transporter systems with various kinetics and expression patterns have been identified. Among them, the inducible high affinity transporter (KdpFABC), the sensor KdpD histidine kinase (HK) and the response regulator (RR) KdpE have been comprehensively investigated in E. coli K-12. The HK KdpD has a conserved cytosolic N-terminal domain that is composed of the KdpD and Usp domains. It is the aim of this study to analyze distribution, domain architecture and phylogeny of the KdpD domain.

Methods: A database was created from Uniprot reference proteomes (RF) (2015.10). HMMER 3.0 was utilized to construct Hidden Markov Models (HMMs). KdpD, KdpA and TrkH were fished by querying RF with corresponding HMM models. KdpD protein domain architectures were annotated with CDD v-3.14. Multiple sequences alignment was done with MAFFT v7.221 linsi algorithm, refined with TrimAl v1.2 and submitted to Phyml 3.0 to construct the maximum likelihood tree. Promoter motifs of kdp operons were dissected with MEME-ChIP. Proteins with a KdpD domain were grouped into kinase, non-kinase and “others” versions. A reporter strain was constructed in E. coli kdpDE by replacing P_kdp with a chosen kdp promoter.

Results: Distinct distributions and occurrence frequencies of KdpD, KdpA and TrkH super-families were detected. The KdpD domain is highly conserved, and KdpD and KdpA show a high degree of co-occurrence. KdpD in connection with a kinase domain are prevalent in Proteobacteria and Actinobacteria, while Bacteroidetes, Cyanobacteria and Deinococcus-Thermus have dominantly non-kinase KdpD.

Phylogenetic analysis of KdpD-containing proteins suggests that the ancestral form of KdpD domain proteins was a non-kinase and underwent domain rearrangements to evolve into a kinase. Genomic neighborhood analysis of non-kinase KdpD loci identified neighboring ORFs of HKs and RR.

First results suggest that the kdp operons in Bacteroides are regulated by n-54 dependent RR.

Conclusion: Kdp systems and KdpD proteins are more diverse than we knew from E. coli and Anaerobios.

MEP10 Ongoing research into ancient pre- and post-contact tuberculosis in the New World

"A. J. Vägøne1, A. Herbig1, T. Honap2, J. E. Buikstra3, A. C. Stone4, K. I. Bos5, J. Krause1
1Max Planck Institute for the Science of Human History, Archaeogenetics, Jena, Germany
2Arizona State University, School of Life Sciences, Tempe, Arizona, USA
3Arizona State University, School of Human Evolution and Social Change, Tempe, Arizona, USA

Question: Today, tuberculosis (TB) infections in the Americas are dominated by human adapted European lineage 4 strains, likely introduced to the New World starting in the 16th century during European colonization. However, archaeological evidence indicates the presence of TB as early as ca. 700AD. A recent study recovered ancient tuberculosis genomes from human remains from three distinct archaeological sites in southern Peru that pre-date European contact (1). These ancient Peruvian strains are closely related to those circulating in seals and other marine mammals today, which are rarely known to cause human infection. This study seeks to further investigate the genetic diversity of TB strains circulating in the Americas pre and post European contact.

Methods & Results: After screening skeletal remains from 23 individuals three TB positive ancient samples were identified using a combination of array DNA-hybridization capture and metagenomic analyses.

Conclusion: Future research will concentrate on isolating more ancient TB DNA from these samples in order to reconstruct full genomes. Genomic data will help to address questions related to the geographic and temporal extent of the ancient Peruvian strains in the pre-contact New World, in addition to providing a better overview of the genetic diversity of TB strains infecting humans in the past.

MEP11

Rapid evolution of cooperative cross-feeding in auxotrophic bacterial consortia

D. Preudger1, C. Kost1
Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Jena, Germany

Metabolic cross-feeding is very common in natural bacterial communities. However, the evolution of such cooperative interactions poses a conundrum to evolutionary biology: why should bacteria direct costly benefits to other individuals and not use these resources to enhance their own fitness? Here we address this question in a long-term coevolution experiment to identify the factors that facilitate the evolution of cooperative cross-feeding from an obligate by-product interaction. This experiment was initiated with a synthetically designed consortium consisting of two mutants of Escherichia coli each auxotrophic for a different amino acid. Populations of prototrophic wild type (WT) cells served as control, in which cell growth was not contingent on amino acid cross-feeding. Serial propagation of both the auxotrophic consortia and prototrophic WT for 80 days in a shaken, liquid environment revealed that the cross-feeding consortium gained significantly increased population densities during the time that were statistically indistinguishable from the population densities achieved by the derived WT populations. Moreover, while the fitness of the derived auxotrophic consortia showed a two-fold increase relative to their evolutionary ancestors, WT fitness increased only marginally in the course of the experiment. Quantifying the growth of cocultured auxotrophs that were utilised as biosensors indicated significantly increased amino acid production levels in the coevolved auxotrophic mutants, yet not in the WT controls. These findings evidenced that starting from a by-product interaction, auxotrophic consortia evolved cross-feeding interactions, in which they started to invest costly resources into their respective counterpart. Moreover, separating both derived partners with a filter membrane that allows passage of free amino acids in the growth medium but prevents a direct interaction between cells showed that the exchange of amino acid was to a substantial part contact-dependent but also based on diffusion. Direct contact might reduce the loss of amino acids to the external environment and thus minimizes the production costs of amino acids, while diffusion might operate permanent due to leakiness of cells. Our results show that cooperative cross-feeding interactions, in which costly metabolites are reciprocally exchanged between bacterial cells in a dual strategy, can rapidly evolve from obligate by-product interactions and may thus explain the widespread distribution of these interactions in nature.

MEP12

Molecular profiling of bacterial populations from vaginal samples of calves and health adult Arabian Camels (Dromedary camelus)

J. Alsafari1, R. Miranda-Casoluengo1, J. Lu1, A. Miranda-Casoluengo1, M. Al-Eknah2, K. Al-Busadah2, W. Meijer1
1University College Dublin, School Of Biomolecular and Biomedical Science, Dublin, Ireland
2King Faisal University, Camel Research Centre, Al-Ahsa, Saudi Arabia

The author does not wish to publish the abstract.

MEP13

Analysis of a high-coverage Yersinia pestis Genome from a 6th century Justinian Plague Victim

M. Feldman1, M. Harbeck1, M. Kelle1, M. Spyrou1, A. Rott1, B. Trautmann2, H. Scholz3, B. Päffgen4, K. Bos5, A. Herbig6,7,8,1
1Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Jena, Germany
2University of Tübingen, Tübingen, Germany
3State Collection for Anthropology and Palaeoanatomy, Munich, Germany
4Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Jena, Germany
5Rapid Evolution of Cooperative Cross-feeding in Auxotrophic Bacterial Consortia, Jena, Germany
6Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
7State Collection for Anthropology and Palaeoanatomy, Munich, Germany
8Bundeswehr Institute of Microbiology, Munich, Germany
9Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilians University, Munich, Germany

Question: The Justinian Plague, which started in the 6th century and lasted to the mid 8th century, is thought to be the first out of at least three historically documented plague pandemics. It was suggested to be one of the main factors that contributed to the decline of the Eastern Roman Empire and marks the transition from the Antique to the Middle ages. Historical accounts as well as molecular data suggest the gram-negative bacterium Yersinia pestis (Y. pestis) as the etiological agent of this pandemic. Here we attempted to genetically characterize the Justinian strain.

Methods: We used hybridization capture techniques combined with next generation sequencing (NGS) to obtain a high coverage Y. pestis genome from a 6th century skeleton recovered from a Southern German graveyard.

Results: The reconstructed ancient Y. pestis genome is characterized by substitutions that are unique to this lineage, and structural differences in regions of the genome that have been previously suggested to be plague virulence factors. Since these motifs have not been identified in extant Y. pestis strains, this lineage is likely to be extinct.

Conclusion: We confirm that a terminal branch of Y. pestis was circulating in mainland Europe during the Justinian pandemic. These results may be influential for functional investigations that could explore the role of these newly discovered genomic characteristics in terms of physiology, virulence and host adaptation.

MEP14

Designing a transitional microcosm for experimental bacterial evolution studies.

C. Immoro1, A. Spiers1
1Abertay University, Dundee, Great Britain

Introduction: Bacterial adaptive radiation has been successfully investigated in the past using Pseudomonas fluorescens SBW25 in static liquid microcosms. In these, radiating populations give rise to the novel biofilm-forming adaptive genotype known as the Wrinkly Spreaders (WS). Although the WS has a fitness advantage over the ancestral wild-type strain and other non-biofilm-forming competitors in static microcosms, it is genetically unstable and has a low fitness on agar plates where the cost of expressing biofilm-associated components is costly. We are interested in examining the differences in WS fitness in these two environments and in the transition zone between the two, and are now developing novel static microcosms by incorporating a dry agar surface which we refer to as a ‘transitional environment’.

Methods: Standard King’s B static microcosms have been developed containing wedges of 0.8-1.2% (w/v) agar, providing both an air-liquid interface for biofilm-formation, as well as an agar slope in which ‘dry’ colony development can occur. Replicate microcosms have been tested with wild-type P. SBW25 (WT) and the archetypal Wrinkly Spreader, as well as with motility (chemotaxis) (MD) and surfactant (SD)-deficient strains over 3-10 days to assess radiation, fitness, and the colonisation of the dry agar surface.

Results: Preliminary experiments confirm that WT populations will radiate in the reduced liquid volume of the transitional microcosm, and produce Wrinkly Spreaders with 3-5 days. These WS isolates had a fitness advantage over the ancestral strain (WT) when tested in standard static microcosms, but differed in wrinklarity (microcosm growth, biofilm strength and attachment levels, and colony expansion) compared to isolates recovered from static microcosms. WT, WS, MD and SD strains all produced colonies on the agar, and over a period of several days the colonisation of the agar surface expanded to 1-5-2 cm from the liquid-agar intersection. Some behavioural differences were noted in the colonisation of the agar, but this has yet to be quantified and analysed.

Conclusion: Although some technical issues needed to be overcome, the transitional microcosm has been shown to have the potential to enable future investigation of the adaptation of bacteria to different environments as well as the transition zone linking the two.

MEP15

Long-term evolution of a fluorinated bacterial proteome

F. Agostini1, N. Buda2, B. Kocks3
1Free University of Berlin, Institute of Chemistry and Biochemistry, Berlin, Germany
2Berlin University of Technology, Institute of Chemistry, Berlin, Germany

Fluorinated amino acids are valuable tools for protein engineering as they can dramatically change the properties of target proteins [1]. The potential of fluorine moieties is well exploited by material science and pharmaceutical industry. On the opposite, fluorine is not found in any class of natural biological macromolecules, most likely because of its low availability and reactivity in aqueous environments. The only exception known so far is the naturally-occurring fluorinated amino acid 4-fluorothreonine, produced as precursor of a toxic metabolite.[2] We are interested in expanding the amino acids repertoire beyond the 20 canonical amino acids and to understand the mechanisms that guided the evolution of the current genetic code. We have performed a Lenski-type Long-Term Evolution Experiment [3] to replace the latest acquisition of the genetic code, tryptophan, with two monofluorinated analogues. A Escherichia coli tryptophan-auxotrophic strain was grown in presence of fluorinated
precursors and eventually adapted to synthesize the fluorescent amino acids by metabolic reactions while retaining viability. Evidence suggests that all UGG tryptophan codons have been fully reassigned to the fluorescent tryptophan analogues. Corresponding results will be shown.

NPP01

Mass spectrometry-based identification of siderophores produced by *Streptomyces chartreusis*

*C. Senges1, S. Langklotz1, J. Bandow1

1Ruhr University Bochum, Applied Microbiology, Bochum, Germany

Question: Bacterial secondary metabolites are widely used in medicine and industry. The discovery of novel metabolites is tedious as they normally need to be isolated from complex mixtures prior to their identification. In this study a workflow for the mass spectrometry-based, global analysis of secondary metabolites in complex samples is established. As a proof of concept the siderophores in the culture supernatant of *Streptomyces chartreusis* were identified. Siderophores can chelate and mobilize iron, making them essential for the utilization of Fe³⁺, which is almost insoluble under oxygenic conditions. As iron is often a growth-limiting factor, siderophores are also important for the microbial competition for nutrients [1].

Methods: The secretion of siderophores upon different growth conditions was detected qualitatively and quantitatively in chrome azurol S (CAS) fragmentation spectra, as well as for the identification of siderophores, a molecular network based on cosine similarity scores was created [3, 4]. Elemental compositions and structures were predicted based on parent masses and fragmentation spectra in conjunction with in silico fragmentation [5].

The produced siderophores were quantified by continuous MS² measurements.

Results: *S. chartreusis* produced siderophores when cultured on solid or in liquid media to which no iron was added. Hydroxamate siderophores of the desferrioxamine, bisacubcin, and coelchelin-families were detected when *S. chartreusis* was cultivated in liquid medium. Aside the already known variants of these siderophores, a variety of previously undescribed derivatives could be identified. Overall, more than twenty siderophores, which were all produced simultaneously in a time-course experiment, were identified and their molecular structures predicted. Since the siderophores are predominantly found in genera that are producers of specialized metabolites [2], it appears that metabolic gene expansion events are to be studied if the simultaneous production of a diverse set of siderophores is advantageous in the competition for scarce iron in natural bacterial habitats.

[3] gpps.ucsd.edu

NPP02

Antimicrobial activity of crude extracts of *Punica granatum* L. and their liquid fractions

*W. Al Khatteeb2, E. Hussein1, M. Alzuobi1

1Yarmouk University, Biological Sciences, Irbid, Jordan

Punica granatum L. (pomegranate) is an ancient fruit that is widely consumed as fresh fruit and juice. Both in vitro and in vivo studies have demonstrated that this fruit possesses an antioxidant, anti-diabetic, hypolipidemic, antibacterial, anti-inflammatory, and antiviral activities. In this study, antimicrobial activity of two cultivars (sour and sweet) was tested. Different fruit parts (carm, peel and seed) of *Punica granatum* L. were evaluated against four Gram-negative bacterial species, three Gram-positive bacteria species, and three fungal species using agar diffusion method as well as broth dilution method. Maximum value of inhibition zone (40 mm) was obtained by ethanolic peel crude extract of *P. granatum* against the Gram-positive *Micrococcus luteus*. The minimum inhibition zone (10 mm) was obtained, however, by ethanolic crude extract of *P. granatum* against *Salmonella typhimurium*. The minimal inhibitory concentrations (MIC) of *P. granatum* crude extract showed that methanolic peel crude of sour *P. granatum* had the lowest MIC value (10 μg/ml) against *Serratia marcescens*, whereas the highest MIC value (350 μg/ml) was in case of methanolic seed crude of *P. granatum* against *Micrococcus luteus*.

NPP03

Evolutionary insight to central carbon metabolism in *Streptomyces* for specialised metabolic production

*J. Hiltner1, P. Cruz Morales2, N. Selens1, L. Fernandez-Martinez2, I. Hunter1, F. Barona Gómez2, P. Hoskisson1

1University of Strathclyde, SIPBS, Glasgow, Great Britain

2Langebio Cinvestav, Irapuato, Mexico

Edge Hill University, Ormskirk, Great Britain

Question: The rise of antibiotic resistance represents a significant threat to humankind and there is a need to discover new antibiotics, enhance production of existing antibiotics and gain a greater understanding of specialised metabolite production. *Streptomyces* species are prolific producers of specialised metabolites with large genomes. These Gram-positive soil bacteria show a simple life cycle with the formation of vegetative and aerial hyphae, as well as spores. Here we studied the expansion of primary metabolism in *Streptomyces* in comparison to other actinobacteria and in relation to specialised metabolism production.

Method: A database of 614 actinobacterial genomes was created. Each genome was re-annotated in RAST and the total metabolic function of each genome was used to create a table of central carbon metabolic enzymes by counting how many times each reaction occurs per genome to highlight over-represented metabolic reactions per genus. The identified genes were further analysed phylogenetically to characterise their origin and possible recruitment.

Results: Among the primary metabolic enzymes, pyruvate kinase was detected as a metabolic expansion event in the *Streptomycineae* family. Phylogenetic analysis revealed a conserved family specific gene duplication. The phenotype of the mutants also differs, with a *pyk1* mutant positively affected in specialised metabolite production on complex culture medium whereas the growth of a *pyk2* mutant is retarded when grown on glucose as the sole carbon source. The expression levels of both genes was found to be the same on a range of carbon sources, suggesting that there were regulated at the post-transcriptional level. Detailed biochemical analysis of both *Pyk1* and *Pyk2* from *S. coelicolor* revealed that each enzyme has a different affinity for the effector molecule, AMP, indicating diverse physiological roles for these proteins in *Streptomyces*. It appears that metabolic gene expansion events are predominantly found in genera that are producers of specialised metabolites. These data may be explored in order to investigate the link between primary metabolic scaffolds and specialised metabolites. The detailed characterisation of pyruvate kinase suggests that *Pyk2* is the primary pyruvate kinase in *Streptomyces* and *Pyk1* is activated upon accumulation of AMP during slower growth phases. The duplication of this enzyme allows a fine tuning of metabolism and represents an interesting target for metabolic engineering to increase specialised metabolite production.

NPP04

Droplets as active vessels for ultra-high throughput cultivation and screening of microbial cells

*L. Mahler1, M. Tovar1, T. Weber1, O. Shvydkiy2, K. Martin1, C. Beemelmanns2, E. Zang1, M. Roth1

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Bio Pilot Plant, Jena, Germany

2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute. Chemical Biology of Microbe-Host Interactions, Jena, Germany

Conclusion: Dried antibiotic pipelines and simultaneously the rapidly increasing occurrence of multiresistant microbial pathogens, escalate to a perfect storm as experts describe it[1]. To find urgently needed new substance classes the return to cell-based screenings that deliver molecules, which
proven already their functionality in complex whole cell settings, has been proposed. But those approaches come with low throughput and high costs, which hinder extensive investigation of microbial diversity. Droplet microfluidics, however, could be the game-changer in classic cell-based screening, presenting the possibility of 1000 fold miniaturization of a MTP-well and allowing throughput rates of 1000 Hz. With its fast andstable aqueous droplets, that serve as picoliter bioreactors for highly parallelized cultivation of microbial cells, droplet microfluidics will bring new inspiration to the field of natural product discovery.

Our efforts are aimed at further optimizing droplets as a comprehensive platform for microbial experimentation, since limitations like inappropriate oxygen supply during droplet incubation and restriction to fluorescence based read-outs still exist. We developed a dynamic droplet incubation system that provides sufficient and homogeneous oxygen supply for millions of droplets simultaneously, resulting in successful cultivation of a diverse set of microbial species, including obligate aerobes like *Pseudomonas fluorescens* and fastidious actinobacteria. Additionally, we established image-based, label-free detection and analysis of microbial growth in droplets, which facilitates qualitative and quantitative characterization of cell replication. Since the image analysis is performed in real-time, sorting of droplets according to different selection criteria can be implemented. Having optimized this ultra-high throughput method for cultivation of microbial cells allows us to exploit the diversity of natural organisms and their metabolites derived from various natural habitats. By compartmentalizing single cells in droplets, commonly underrepresented species like slow growing organisms, can be targeted, since competition for nutrients is prevented. After obtaining monocultures, which is supported by improved incubation conditions, reporter strains are added to the droplets to screen for antibiotic metabolites. First experiments revealed a production of various antimicrobial substances in significant amounts. Furthermore, we achieved a reliable differentiation between strains producing antibiotics and those who do not, which paves the way to soon fill the dried pipelines with new substances found in droplets.

1 D. M. Sihabes, Antibiotics: The Perfect Storm, 2010
2 J. J. Agresti et al., *PNAS*, 2010, 9, 4004-4009
3 L. Mäkitalo et al., *BMC* Advances, 2015, DOI: 10.1051/c5ra/20181G
4 E. Zang et al., *Lab. Chip*, 2013, 13, 3707-3713

NPP06

Novel siderophores from *Variorovax boronicumulans* discovered by genome mining

C. Kurth, S. Schieferdecker*, K. Athanassopoulou¹, I. Secareea*¹, M. Net*¹

Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Junior Research Group Secondary Metabolism of Predatory Bacteria, Jena, Germany

Siderophores are small molecules that are secreted by microorganisms in order to acquire iron. Photoactive siderophores are unique in that they rapidly upregulate photoinduced oxidative cleavage when complexed to Fe(III). As a result, free Fe(II) is released into the environment, available to uptake by surrounding organisms². Photoactive lipopeptide siderophores thus have the potential to influence the composition of microbial communities. Originally described from marine bacteria³, photoactive siderophores have recently also been detected in some freshwater and soil bacteria⁴. Here, we report the discovery of the photoactive variochelins, novel lipopeptide siderophores from the soil bacterium *Variorovax boronicumulans*. The production of variochelins was initially predicted by genomic analysis and, subsequently, the siderophores were isolated using a bioactivity-guided fractionation. Structure elucidation was performed using NMR, LC-MS and MALDI-MS/MS. Photoactivity of the compounds was confirmed in two different assays. Variochelins represent another example of photoactive siderophores from a non-marine bacterium. Their effects on other microbes will be tested in co-cultivation experiments in the future.

NPP07

Harnessing enzymatic promiscuity in myxochelin biosynthesis for the production of 5-LO inhibitors

Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany

1 *Friedrich Schiller University, Jena, Germany*
2 *Rheinische Friedrich Wilhelms University, Bonn, Germany*

Human 5-LO (5-LO) catalyzes two steps in the conversion of arachidonic acid to leukotrienes, which are important mediators of inflammatory and allergic reactions [1]. The catechol siderophore myxochelin A from the bacterium *Pyxidicoccus fallax* was recently identified as a potent inhibitor of 5-LO [2]. Since the enzyme harbors a non-heme iron atom acting as redox mediator during catalytic reactions [3], it seemed plausible to ascribe the 5-LO inhibitory effects to the iron chelating properties of myxochelin A. We applied a precursor-directed biosynthesis approach in order to generate new myxochelin analogues. Preliminary feeding studies were performed with 34 aryl carboxylic acids possessing different aromatic substitution profiles. To upscale the production of incorporated substrates, larger fermentations were carried out in the presence of a polysytrone resin. After purification by reversed-phase HPLC, derivatives were characterized by NMR and MS analyses before testing their activities in a cell free assay against recombinant 5-LO.

We observed that a single feeding experiment led to the production of up to three new analogues due to a randomized incorporation of the precursor at two possible positions [4]. Fluorine and hydroxyl substituted aromatic precursors as well as 2-chlorobenzoic acid were accepted as alternative substrates by the myxochelin biosynthesis enzymes. Derivatives lacking aromatic hydroxyl groups lost their inhibitory activities, whereas analogues harbouring one catechol unit still inhibited 5-LO. Interestingly, three new derivatives featuring just one phenolic hydroxyl group seems to be crucial for the inhibition. The myxochelin biosynthetic complex seems to be a promising tool to create new 5-LO inhibitors due to its substrate tolerance.

NP08

Functional analysis of microbes commonly associated with Hydractinia echinata

M. Rischeder1, H. Gas1, M. Roth2, C. Weigel1, C. Beemelmanns1

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Chemical Biology of Microbe-Host Interactions, Jena, Germany
2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena Microbial Resource Collection, Jena, Germany

Question: Do associated microbes produce antimicrobial metabolites to fend off predators and pathogens of the cnidarian host? And which bacterial signals are responsible for the larval settlement and metamorphosis of marine invertebrates commonly known as biofouling? Recent efforts in natural product research have aimed for more detailed microbial and chemical investigations of specific microbe-host interactions to find new natural products in a targeted way. We selected a cnidarian model system, the marine polyp H. echinata,[1] to study the function of the associated microbes as well as their biosynthetic potential.

Methods: We isolated culturable associated microbes from H. echinata and prioritized the culture extracts using antimicrobial activity and larvae settlement assays. In addition, we sequenced the genomes of several bacterial isolates to investigate their biosynthetic potential.[2] The production of the respective antimicrobial compounds was optimized, and we are currently aiming for the isolation and structure elucidation of the respective compounds.

Results: Sequence analysis revealed antimicrobial activity against known human pathogens, showing selective activity against a broad range of microbial strains, indicating a defensive function in this ecological system. The discovery of novel antimicrobial compounds highlights the chemical potential of this unexplored niche.

Conclusion: H. echinata associated microbes induce larval settlement and metamorphosis. Preliminary data showed that the bacterial signal is part of the microbial biofilm and stable to a broad range of physical and enzymatic treatments. In addition, the induction strains showed high antimicrobial activity against a broad range of microbial strains indicating a defensive function in this ecological system. The discovery of novel antimicrobial compounds highlights the chemical potential of this unexplored niche.

NP09

Screening of cyanobacteria extracts against the cysteine protease rhodesain of Trypanosoma brucei

R. Bensdorp1, E. Sommerwerk1, C. Weigel1, S. Otani2, M. Poulsen2, C. Beemelmanns1

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Chemical Biology of Microbe-Host Interactions, Jena, Germany
2University of Copenhagen, Department of Biology, Copenhagen, Denmark

Question: Termites of the genus Macrotermiteinae cultivate a mutualistic food fungus (Termiomyces spp.) for nourishment in so called “fungus gardens.”[1] The fungus garden is a nutrient-rich environment, which is prone to exploitation by pests and pathogens. Symbiotic and associated bacteria are assumed to play a major role in the defense of the fungus garden.[2] Due to the specialized mode of substrate uptake and fungus-farming, we hypothesize that in particular gut bacteria protect the system by secretion of antimicrobial small molecules, which selectively target garden parasites and other invading species.

Methods: To analyze and characterize the secondary metabolites in question, we use culture depend and independent methods. We first isolated a broad range of symbiotic and associated microbes using different cultivation techniques. Then, we performed challenging assays pairing bacterial symbionts and garden parasites to investigate the production of specific antifungal compounds. Subsequently, the produced antimicrobial secondary metabolites were analyzed using HPLC/LC-MS/NMR. We are now aiming for a culture-independent approach to describe the antimicrobial (gut) environment.

Results: In particular members of the Actinobacteria phylum were isolated from different parts of the termites and termite nest.[3] Extracts of the bacteria culture were tested against known human pathogens showing a high antimicrobial activity against most co-isolated and antagonistic fungi, such as Trichoderma sp.

Conclusion: Microbial symbionts and commensals most likely contribute to the fungus garden homeostasis by secretion specific antimicrobial compounds.

NP11

Polyketide synthase chimeras reveal key role of ketosynthase domain in chain branching

S. Sundaram1, D. Heine1, C. Heitweck1,2

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Biomolecular Chemistry, Jena, Germany
2Friedrich Schiller University, Chair for Natural Product Chemistry, Jena, Germany

Many therapeutically relevant polyketides are produced by modular type I polyketide synthases, where ketosynthase (KS) domains uniformly catalyze head-to-tail Claisen condensations of malonyl and acyl building

resonance (NMR) spectroscopy and high resolution mass spectrometry (HRMS) as well as characterization of their bioactivity is under way. Our study confirms that cyanobacteria present a valuable source for protease inhibitors. Further investigations concerning activities against other proteases relevant in infectious diseases are planned.

blocks to yield linear chains. The biosynthesis of the highly antimotic agent rhizoxin\(^1\), however, affords an unusual chain-branching module. KS domain, acyl carrier protein and a branching (B) domain install a d-lactone residue that is pivotal for bioactivity. The unique d-lactone unit results from a Michael addition of a malonyl unit to an a, b-unsaturated intermediate followed by lactonization\(^2\). To investigate the role of the B domain we designed chimeric modules with structurally similar domains like the X domain from a tentative glutarimide-forming module, and a dehydratase (DH) domain. Biochemical and kinetic analyses revealed that catalytic functions and substrate affinities are retained in all constructs, including mutated B, X, and DH domains\(^3\). Our results provide clear evidence for a structural role of the accessory domains and a multifarious catalytic function of the KS. This finding is important for synthetic biology approaches towards novel polyketide architectures.

NPP12

Streptomyces hawaiiensis

R. Laura, D. Thomy*, J. Hauser\(^1\), P. Sass\(^1\), H. Brötz-Oesterhelt\(^1\)

\(^1\)Interfaculty Institute for Microbiology and Infection Medicine, Dept. of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany

ClpP is the proteolytic core of the bacterial caseinolytic protease. In concert with Clp ATPases, ClpP is responsible for degradation of aberrant and regulatory proteins. ClpP is the target of a new class of acyldepsipeptide antibiotics (ADEPs), naturally produced by *Streptomyces hawaiiensis* [1]. ADEPs have potent antibacterial activity against Gram-positive bacteria, including multi-drug resistant clinical isolates [1]. In streptomyces, ClpP is essential for viability, in contrast to most bacteria [2].

While *Bacillus subtilis* contains only one and *Mycobacterium tuberculosis* two clpP genes, most *Streptomyces* species contain five different clpP homologues, e.g. *Streptomyces lividans* [2, 3, 4]. There, the clpP genes are organised in two bicistronic and one monocistronic operon [2]. Here, we analysed the clpP genes of *S. hawaiiensis* and observed high sequence homology to *S. lividans* as well as the same gene organisation. In *S. lividans*, the expression of ClpP1/2 and ClpP3/4 is regulated by distinct transcription factors and either ClpP1/2 or ClpP3/4 have to be expressed for viability [2]. This raises the question of interaction and functional cross talk between the ClpP proteins in *Streptomyces*. So far, none of the *Streptomyces* ClpP proteins was studied in vitro. By recombinant expression of *S*ClpP proteins, we aim to determine the composition of the proteolytically active complex(es) in vitro. Peptidase and protein degradation assays will be performed in the absence and presence of ADEP. Constructs containing affinity tags will be used for pull-down experiments and interaction studies. Functional interplay with the ClpP ATPases ClpX or ClpC1 will also be investigated.

NPP13

Heterologous expression of a biosynthetic gene cluster from Amycolatopsis sp.

K. Geyer, M. Schorn*, M. Adamek*, N. Niewert\(^1\)

\(^1\)University of Tübingen, Department of Microbiology/Biotechnology, Tübingen, Germany

\(^*\)University of California San Diego, Scripps Institution of Oceanography, San Diego, USA

Antibiotic resistances are an emerging problem in today’s healthcare. There is a great demand for new therapeutic agents with new modes of action that do not develop cross resistances. Secondary metabolites produced by bacteria and their derivatives are commonly used as antibiotics and also find other important applications in medicine. Genome sequencing projects have revealed an immense reservoir of secondary metabolite biosynthetic gene clusters in the order Actinomycetae, most of which have not been connected to known compounds and potentially code for novel molecules. The best investigated Actinomycete genus is the soil actinomycete family streptomycetaceae and its use has revealed that the diversity of natural products in bacteria is higher than previously thought. Specifically, soil bacteria possess many more biosynthetic pathways for production of antibiotics than those they express in culture.

Our goal is to identify the potential of antibiotic gene clusters in the environment. Therefore, we are analyzing geographical and seasonal distribution patterns of bacteria and their secondary metabolites in soil. After extracting and sequencing RNA directly from the environment, we are analyzing domains of two major classes of secondary metabolites, polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS), in different locations, at various soil horizons, and at several time points. Bioinformatic analysis of these sequence tags in combination with in depth analytics of the soil, weather conditions and bacterial diversity, allows to correlate secondary metabolites to environmental conditions. Here we present first results of the secondary metabolite diversity in different horizons of three types of soils (podzol, cambisol and gleyisol) in Tübingen and provide first insights into potential sampling sites for novel antibiotic discovery efforts.

NPP14

Local and seasonal distribution of secondary metabolites’ biosynthetic pathways in soil bacteria

H. Sales-Orell*, H. Neidhardt*, Y. Oelmüller, N. Niewert\(^1\)

\(^1\)University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbiology and Biotechnology, Tübingen, Germany

The need for new antibiotics has increased in the past years due to the raise of antibiotic resistant genes among pathogenic bacteria. New biotechnology tools allow for screening of biosynthetic pathways in environmental samples, and its use has revealed that the diversity of natural products in bacteria is higher than previously thought. Specifically, soil bacteria possess many more biosynthetic pathways for production of antibiotics than those they express in culture.

Our goal is to identify the potential of antibiotic gene clusters in the environment. Therefore, we are analyzing geographical and seasonal distribution patterns of bacteria and their secondary metabolites in soil. After extracting and sequencing RNA directly from the environment, we are analyzing domains of two major classes of secondary metabolites, polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS), in different locations, at various soil horizons, and at several time points. Bioinformatic analysis of these sequence tags in combination with in depth analytics of the soil, weather conditions and bacterial diversity, allows to correlate secondary metabolites to environmental conditions. Here we present first results of the secondary metabolite diversity in different horizons of three types of soils (podzol, cambisol and gleyisol) in Tübingen and provide first insights into potential sampling sites for novel antibiotic discovery efforts.

NPP15

Purification of acyldepsipeptide antibiotic ADEP1 from Streptomyces hawaiensis NRRL 15010 culture broth

D. Thomy, P. Sass*, H. Brötz-Oesterhelt

*University of Tübingen, Microbial Bioactive Compounds, Tübingen, Germany

Questions: *Streptomyces hawaiensis* NRRL 15010, a Gram-positive actinomycete, is the producer of the antibacterial complex A54556.\(^2\) The main component, ADEP1, is the precursor of a new class of acyldepsipeptide antibiotics (ADEPs) with an unprecedented mode of action. ADEP1 and several synthetic congeners were shown to be potent antimicrobials against various Gram-positive bacteria, including multi-resistant nosocomial pathogens.\(^2\)

ADEPs target the proteolytic core of the bacterial caseinolytic protease (ClpP) via a dual mechanism. By using the same binding sites as the associated ClpP-ATPases ADEPs inhibit all natural functions of ClpP. Moreover, ADEP binding to ClpP induces the opening of the entrance pores to the proteolytic chamber of ClpP leading to entry and degradation of essential proteins and finally cell death.\(^2\)

Here, we established a fast purification procedure for ADEP1 from *S. hawaiensis* culture broth for use in antimicrobial activity tests.

Methods and Results: *S. hawaiensis* was grown in YM medium, harvested by centrifugation and subsequently filtrated. The supernatant was fractionated by adsorption chromatography using a hydrophobic adsorbent and a water-methanol gradient. While hydrophilic substances were eluted within the water-methanol gradient, the resin retained ADEP1 amongst others until elution with 100 % methanol. After determining the antibiotic containing fraction with bioassays we continued purification of ADEP1 via semi-preparative HPLC, which yielded pure ADEP1.

The antimicrobial potency of ADEP1 was tested in bioassays against different Gram-positive strains. ADEP1 effectively inhibited growth of *Streptomyces lividans*, *Streptomyces coelicolor* and *B. subtilis*.\(^3\)
Conclusions: Under the chosen chromatographic conditions it was possible to improve fractionation of the S. hawaiiensis culture supernatant to allow subsequent purification of ADEP1 by semi-preparative HPLC. Easy handling and efficient purification of ADEP1 is a prerequisite for further investigation of this new class of antibiotics that will provide a better understanding of its mechanism of action and insights into the Ctp proteolytic machinery.

NPP16

Genome mining reveals the potential for secondary metabolite production in Amycolatopsis

*M. Adamek1, M. Alanjary2, N. Ziemert1
1University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, German Centre for Infection Research (DZIF), Tübingen, Germany

The Amycolatopsis genus Amycolatopsis has already been well recognized as a producer of important antibiotics such as rifamycin and the glycopeptide vancomycin. Besides these notable products, the genus harbors a huge, unexplored reservoir of secondary metabolites. To date 67 different Amycolatopsis species from variable origins have been described. They are typically isolated from soil, but also from other environments such as ocean, lake sediment, cave, and clinical environments. For about half of them and for several unclassified Amycolatopsis strains complete genome sequences are available for genome mining.

We are interested in studying the potential for secondary metabolite biosynthesis and the evolution of secondary metabolite gene clusters in Amycolatopsis, in order to guide the identification of novel secondary metabolites, while minimizing the risk for rediscovery of known compounds, and shedding light on the ecological functions of these molecules.

Newly sequenced strains from the Tübingen Amycolatopsis collection in addition to the publicly available Amycolatopsis genomes were mined for secondary metabolite biosynthesis clusters using antiSMASH 3.0. Furthermore, the phylogenetic relationship between the strains was evaluated based on a multi locus sequence typing (MLST) approach for seven housekeeping genes. As a first target, non-ribosomal peptide secondary metabolite biosynthesis clusters using antiSMASH 3.0.

We present evidence that this gene cluster is required for the production of hortein a polyketide so far only known from marine fungi. Hortein has antibacterial activities which makes it a potential antibiotic for various applications. Its unique structure is rarely found among natural products, thus making it a good candidate for investigation of its biosynthesis pathway. Through heterologous expression of pksl in A. nidulans synthesis of a new compound could be observed giving insight of the precursor molecule of hortein.

NPP18

Genomic analysis of the biosynthetic potential of Psychococcus fallax HKI 727

*A. Sester1, J. Korp1, M. Nett1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Secondary Metabolism of Predatory Bacteria, Jena, Germany

The predatory myxobacterium Psychococcus fallax HKI 727 was recently reported as a producer of novel polyketide antibiotics [1] and the nonribosomal peptide synthetase (NRPS)-derived siderophore myxochelin A [2, 3]. Preliminary genetic analyses suggested that P. fallax might harbor an even larger biosynthetic potential for the production of bioactive secondary metabolites, raising questions concerning the structural features of these compounds.

Sequencing of the P. fallax HKI 727 genome with Illumina HiSeq 2000 and PacBio techniques followed by similarity searches against TIGRFAMs, PRIAM, Pfam, SWISS-PROT/TrEMBL and KEGG revealed the gene cluster responsible for guilminicin biosynthesis. In addition, a diverse range of undesigned polyketide synthase (PKS), NRPS and PKS-NRPS clusters were annotated. Subsequent analysis of these gene clusters using AntiSMASH [4] allowed structural predictions of the encoded natural products. The obtained results illustrate the diverse and versatile genomic potential of P. fallax for natural product biosynthesis and build a valuable data basis for further drug discovery studies.

NPP19

Analysis of protein degradation by ADEP-activated ClpP peptidase

P. Sass1, *N. Silber1, L. Hannoort1, H. Brötz-Oesterhelt1
1IMIT/Universität Tübingen, Microbial Bioactive Compounds, Tübingen, Germany

Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands

A novel class of antibiotic acyldepsipeptides (ADEPs) exerts prominent antibacterial activity against Gram-positive bacteria incl. Staphylococcus aureus in vitro and in vivo [1]. ADEPs act via a yet unprecedented mechanism by dysregulating the caseinolytic protease ClpP. Usually, the activity of ClpP is tightly controlled by ATP-dependent Clp-ATPases and accessory proteins. ADEPs overcome these control mechanisms, switching the activity of ClpP is tightly controlled by ATP-dependent Clp-ATPases and accessory proteins. ADEPs control these mechanisms, switching ClpP from a regulated to an uncontrolled protease that targets unstructured proteins as well as nascent polypeptides at the ribosome in the absence of Clp-ATPases [1, 2, 3]. Dissecting the cascade of events that leads to bacterial death, we noticed that at inhibitory concentrations of ADEP close to the MIC, rod-shaped cells formed long filaments and cocci developed into enlarged spheres indicating considerable remaining biosynthetic capacity [4].
The reason for this filamentation phenotype at lower ADEP concentrations was revealed by high-resolution fluorescence microscopy of ADEP-treated *Bacillus subtilis*, which showed the delocalization of central cell division proteins leading to the inhibition of septum formation and cell division [4]. In cytoplasmic extracts of in vivo treated cells we observed a significantly reduced amount of intact FtsZ protein, an important cell division mediator that is essential in most bacteria including important human pathogens, and when purified FtsZ was exposed to ADEP-activated ClpP in vitro, proteolytic degradation of FtsZ into small fragments took place.

As FtsZ is a well-characterised protein and has not been discussed as particularly unstructured or unstable, we investigated the reason why folded FtsZ is such a preferential target for ADEP-ClpP, while several other stably folded proteins had been resistant to degradation in the course of our studies. To this end, we characterized the role of specific structural features of FtsZ in ADEP-ClpP dependent degradation. Our results allow first insights into the way, how the ADEP-activated ClpP complex attacks proteins to finally lead to suicide-like bacterial killing.

NPP20

Discovery and characterization of novel bioactive peptides from Cyanobacteria

S. Kabbett1, I. Starke2, R. Suesseuth3, E. Dittmann1

1University of Potsdam, Institute for Biochemistry and Biology, Golm, Germany
2University of Potsdam, Institute for Chemistry, Golm, Germany
3Technical University Berlin, Institute for Chemistry, Berlin, Germany

The group of ribosomally synthesized and posttranslationally modified peptides (RiPPs) has revealed an astonishing diversity of structures with a large variety of posttranslational modifications. Products of such pathways include antimicrobial peptides such as nisin and thiostrepton as well as potent toxins of snails and fungi such as conotoxins and ð-amanitin [1].

In previous studies, our group discovered the RiPP pathway for the cyanobacterial microviridin, a depsipeptide which acts as a potent serine-protease inhibitor. Due to the action of two ATP grasp ligases, which complexing ligands involved in the management of a broad spectrum of metal ions (e.g. Fe, Cu, Zn, Mo, V) [1]. This study was meant to characterize the metal ligandophore of the filamentous actinomycete *Frankia* spp. in an effort to shed light on its molecular interactions with the environment, emphasizing nitrogen fixation processes. In particular, we are interested in the symbioses between *Frankia* spp., its host plant Alder (*Alnus* sp., *Betulaceae*), and ectomycorrhizal fungi [2]. Plants and bacteria exude a cocktail of compounds which could have a combined impact on the rhizosphere in regards to metal uptake, detoxification, and inhibitory of microbial activity. Because of this, we aimed to decipher the plant-microbe chemosphere in its entirety (metabolites in the community released by the microbial cultures were spiked with the isotope-pairs of 54Fe/58Fe and 54Mg/58Mg) to ascertain the impact of condensation domains on amino acid activation. Further, we initiated a number of point mutations in the adenylation and condensation domains to identify determinants of their multispecificity. The in vitro data were compared in vivo data from selected natural *Microcystis* strains. We provide evidence that the production of chemically diverse microcystin variants broadens the functional repertoire of microcystins. The results led to new insights into the function of NRPS and might contribute to a more effective engineering of NRPS.

novel metallophores candidates which will be now purified for further characterization and structure elucidation.

NPP23
Bioactive compounds in the secondary metabolome of a russuloid basidiomycete

*P. Brandt1,2, D. Schwenk1,2, J. Braesel1,2, M. Nett3, D. Hoffmeister1,2
1Friedrich Schiller University Jena, Chair for Pharmaceutical Microbiology, Jena, Germany
2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Pharmaceutical Microbiology, Jena, Germany
3Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Secondary Metabolism of Predatory Bacteria, Jena, Germany

Question: A taxonomically undescribed basidiomycete (BY1) that very likely belongs to the order Russulales was investigated and its secondary metabolome was of interest because i) the fungus showed antifungal activity and ii) as its mycelium showed yellow pigmentation following injury. The objective of the study was to identify the compounds underlying these observed effects.

Methods: The compounds were isolated with organic solvents from the culture broth and injured mycelia, respectively. Subsequent purification was accomplished with normal and reversed phase liquid chromatography. Structure elucidation was based on high-resolution mass spectrometry and 1D and 2D nuclear magnetic resonance spectroscopy.

Results: Two distinct injury-induced yellow pigments were identified as pittoporic acid-related polyenes [1]. The structures were determined as 18-methyl-19-oxoicosanoic acid and 20-methyl-21-oxoicosanoic acid [2]. Subsequent stable-isotope labeling with [1-13C]acetate proved a polyketide origin, most likely mediated by a highly-reducing polyketide synthase (HR-PKS). Candidate PKS genes have been identified in the genomic sequence of BY1. Both polyenes showed a dose-dependent inhibition of Dro sophila melanogaster larval development in concentrations between 12.5 μM and 100 μM. Further compounds isolated from BY1 include fomannoxin- and vibralactone-related natural products, which were structurally elucidated and identified as antifungally active against various filamentous fungi.

Conclusion: The injury-induced and sustained presence and antilarval activity of the BY1 polyenes suggests an ecological role in long-term defense. The production of antifungal fomannoxin and vibralactone derivatives by BY1 may confer a selective advantage for substrate colonization. Further, it underscores the evolutionary relationship of BY1 with the Russulales and the Stereaceae in particular, as these compounds are known from species in the genera Heterobasidion, Boreostereum and Stereum, respectively.

NPP24
Characterisation of the adenylation domains of Coprinus cinereus reductases induced through inter-domain interaction

*D. Braga de Lima1, A. Kombrink2, M. Künzler2, M. Aebl2, D. Hoffmeister1
1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
2Eidgenössische Technische Hochschule, Switzerland, Switzerland

Question: It is intriguing that basidiomycetes possess far more genes linked to natural products than originally anticipated. In diverse environments, these fungi evince abundant interactions with other microorganisms, and the observation of these behaviours is an important tool to help understand the biosynthesis of such molecules and how they affect other biological systems. A transcriptomic study (Kombrink et al., manuscript in preparation) identified a set of genes of Coprinus cinerea found to be up-regulated after its co-cultivation with Escherichia coli, among which two sequences encoding adenylylating multidomain reductases (NRPS_3009 and NRPS_06235). Here we aim to characterise the adenylation (A) domains of both enzymes, elucidating their substrate predilection and optimal functional conditions.

Methods: The sequences encoding the A domain of NRPS_03009 and the AT di-domain of NRPS_06235 were heterologously expressed in E. coli BL21 in the form of N-histidine tagged fusion proteins. The substrate specificity of both domains was determined by the substrate-dependent ATP-[32P] pyrophosphate exchange assay. Once the substrates were identified, the pH and temperature optima were determined using the aforementioned method.

Results: The A domains of the analysed NRPS-like reductases showed equal preference for l-alanine, l-serine, and l-valine as substrates. The reaction using l-threonine, biochemically similar to the accepted amino acids, was only modestly recognised and, thus, not considered a substrate. Moreover, both domains demonstrated maximum substrate turnover at pH 7.5, albeit NRPS_03009 was more active at 25 °C, whereas the optimal temperature for NRPS_06235 was 37 °C.

Conclusion: The first step of the natural product biosynthesis by adenylate-forming reductases from C. cinerea was elucidated by the characterisation of their A domains. The final products of the pathway initiated by these reductases, as well as their role in the basidiomycete vs. bacterium confrontation, are still elusive.

NPP25
A novel allelopathic molecule from Synecochoccus elongatus PCC 7942

*K. Brillasuela1, T. Niedermeyer1, S. Grond2, K. Forchhammer1
1University of Tübingen, Organismic Interactions, Tübingen, Germany
2University of Tübingen, Biotechnology, Tübingen, Germany
3University of Tübingen, Organic Chemistry, Tübingen, Germany

The cyanobacterial production of bioactive metabolites is a poorly explored and understood field in the Natural Product Research. Although many bioactive metabolites from Cyanobacteria were characterized in the past years, the majority remains to be explored. Within these metabolites, allelochemicals play an important role in cyanobacterial survival. Allelopathy is defined as the chemical inhibition of related organisms by the release of selective substances. In Cyanobacteria, allelochemicals are mainly known from section III-V strains, however numerous chemical structures are not elucidated. Investigation of section I strains indicated the presence of an allelopathic compound also in Synecochoccus elongatus PCC 7942. The isolated compound reveals growth inhibition in filamentous cyanobacteria.

NPP26
Complex dynamics of zwitterionic sulfur species from phytoplankton in the marine sulfur cycle

*K. Thums1, B. Gebser2, G. Pohnert1
1Friedrich Schiller University, Institute of Inorganic and Analytical Chemistry, Jena, Germany
2Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany

Question: The zwitterionic microalgal metabolite dimethylsulfonio propane (DMSP) plays a key role in marine sulfur cycling.[1] In addition to the functions as osmolyte and cryoprotectant it is discussed to act as an antioxidant. But also oxidized organic sulfur species might have an important impact in this context. Resulting from the antioxidant activity of reduced sulfur species especially dimethylsulfoxide (DMSO) is considered to be a potential key player. We are looking now for new metabolites from phytoplankton that pave the way for a mechanistic understanding of the antioxidative properties of DMSP and related compounds.

Methods: We recently developed LC/MS based methods to quantify the zwitterionic DMSP as well as to detect related highly polar metabolites from plankton.[5] Guided by their LC/MS properties we identify new metabolites using MS/MS techniques and spectroscopic methods like NMR for structure elucidation as well as synthetic approaches. Zwitterionic metabolites are investigated in the context of growth curve experiments in stationary cultures, but we also investigate the fate of these metabolites by monitor their degradation by microalgae and bacteria.

Results: Using our new LC/MS based method an entire family of structurally related dimethylsulfonio metabolites as well as N-containing zwitterionic metabolites is detected in phytoplankton with species-specific signatures.[5] By extending our analytical concept we were also able to detect novel zwitterionic compounds including the S-oxidized sulfoxonium analog of DMSP. This metabolite is to our knowledge only the second natural product reported with a sulfoxonium group.[5]

Conclusion: Based on the prevalence in different stressed phytoplankton cultures we suggest new models for the regulation of highly polar zwitterionic metabolites in phytoplankton and identify a novel candidate for a biomarker for oxidative stress.
NPP27

A systematic analysis platform to elucidate antibiotic mechanisms

* C. Marx1, A. Müller2, J. Engels2, M. Rausch1, F. Grein1, H.-G. Sah1, T. Schneider2

1Universität Bonn, Institut für Pharmazeutische Mikrobiologie, Bonn, Germany
2German Centre for Infection Research (DZIF), Bonn/Cologne, Germany

Novel antibiotics with unprecedented mechanisms of action are urgently needed to overcome rising resistance. Analysis of the mode of action of an antibiotic and identification of the molecular target are integral components of the drug development process. Without this detailed knowledge, rational drug design is strongly hampered. We built up a comprehensive mode of action (MoA) platform, combining whole cell screenings and a biochemical platform that allows rapid identification of antibiotics on all cellular levels. Initial screenings of compound and extract libraries in whole-cell based assays identify biologically active compounds and provide first indications of the metabolic pathway affected. “SmartScreens”, such as the antisense (AS) RNA technology, provide intrinsic information on the target structure. AS RNAs targeted gene expression and insensitivity by lowering the cellular pool of the cognate protein target. A biochemical analysis platform combining more than 60 individual in vitro assays further allows for the identification and characterization of a specific target on the molecular level.

NPP28

Integrated biosurfactant production using *P. putida* – high cell density cultivation and purification

* E. Sarikaya1, *R. Zauter1, A. Germer1, T. Tiso1, L. Blank1

1Institute of Applied Microbiology, RWTH Aachen, Aachen, Germany

Question: Applications of surfactants are widely spread throughout different aspects of life. They are applied particularly in washing agents and domestic detergents but are also of importance in pharmaceutical and cosmetic industry. The surfactant producing industry uses petrochemical and oolechemical raw material. A reasonable alternative for an environmentally conscious society are bacterially produced surfactants from renewable resources, which feature high biocompatibility and degradability. Rhamnolipids are in terms of industrial utilization – a relatively new surfactant. Being surfactants (surface active agents) rhamnolipids are amphiphilic molecules, consisting of a hydrophobic and a hydrophilic part. A non-pathogenic and non-toxic bacterium is capable to produce rhamnolipids [1]. To that end, we used *P. putida* KT2440 as host strain and introduced the two genes responsible for rhamnolipid production from *P. aeruginosa*.

The goals of this work are to establish rhamnolipid production by high cell density cultivation enabling high product titers and the development of a suitable downstream process with focus on capture and purification.

Methods: The first step in establishing high cell density fermentation is the identification of an optimal medium as well as an optimal feeding strategy. Rhamnolipids accumulate in the foam, which is formed during cultivation time. Subsequently downstream processing is focused, using an adsorption/desorption procedure to capture the desired product established previously [2]. To obtain high purity, selection of an optimal adsorbent as well as a suitable elution profile is crucial.

Results: With the developed fermentation process, we are able to reach cell densities of about 50 g CDW/L. The application of a *P. putida* strain with altered cell wall hydrophobicity hampers the foaming out of the cells. An improved elution profile yielded a purity of >90 %.. The adjustment of the pH value provides the possibility to determine the product appearance.

Conclusion: We here established a holistic approach for the sustainable production of an industrially interesting biosurfactant including fermentation and downstreaming.

NPP29

Function of the acyltransferase XrDE in the production of NRPS derived metabolites and cytotoxic amides in *Xenorhabdus doucetiae* DSM 17999

*E. Bode1, *H. B. Bode1

1Goethe Universität Frankfurt a. M., Molekulare Biowissenschaften, Frankfurt a. M., Germany

The entomopathogenic Gram-negative bacteria *Xenorhabdus doucetiae* live in symbiosis with its nematode Steinernema diaprepi. After entering the insect prey, the infecting nematode releases the bacteria into the insect hemolymph where they proliferate and produce metabolites to kill the insect and food competitors. Furthermore the bacteria support the nematode development into a new infective stage and stabilizing the symbiosis. This complex lifestyle requires a balanced metabolism of compounds for signaling, defense and development. In the biosynthesis pathway for the production of the antimicrobial compound xenorhabdin in *X. doucetiae* we detected the acyltransferase XrDE, that acylates the xenorhabdin precursor and thus diversifies it into different bioactive xenorhabdin derivatives. In *X. doucetiae* XrDE is also responsible for the production of cytotoxic tryptamides by acylating tryptamine with different acyl moieties. The deacarboxylation involved in tryptamine biosynthesis was found to be additionally involved in the biosynthesis of cytotoxic phenylethylamindes. Interestingly, the deletion of XrDE resulted not only in the loss of xenorhabdine and tryptamine derivatives but also influences the production of other secondary metabolites like xenocoumacins and xenocoamines. From our findings, we conclude, that XrDE might be an important “key enzyme” in the metabolism of *X. doucetiae*, that shows unique activity compared to our investigations in other *Xenorhabdus* strains.

NPP30

Structure prediction, biosynthesis and purification of a siderophore from a thermophilic bacterium

T. Heine1, M. Noffke2, M. Mehnert1, R. Schwabe1, *D. Tischler1

1Technical University Bergakademie Freiberg, Interdisciplinary Ecological Center, Freiberg, Germany

Siderophores are low-molecular weight compounds produced by microorganisms to assimilate vital Fe(III) out of iron-deficient environments. These molecules are heterogenic according to there structure, metal-selectivity and binding affinity [1]. Their selectivity for other elements makes metallophores interesting for bioremediation of heavy metals and the extraction of high value elements like Au, Ag, Ga, V, I and others. Further they have a high potential in medical applications as they might be used as a carrier for antibiotics to resistant bacteria, for iron overload therapy, as an antimalarial drug, removal of radioactive elements and for cancer therapy [2]. Thus it is essential to understand the synthesis of these molecules to further increase the set of available metallophores that are stable and suitable for the respective application.

We have chosen the thermophilic actinobacterium *Thermocrispum agrestes DSM 44070* and the application of a peptidoglycan-like siderophore to predict the biosynthetic pathway and the probable structure of the metallophore. An N-hydroxylating monoxygenase (NMO: ThxA) of *T. agrestes* DSM 44070 that catalyzes an initial step was synthesized and characterized in detail. The respective metallophore was synthesized, purified and studied. The siderophore prediction of *T. agrestes* DSM 44070 suggested a hydroxamate-type siderophore (Erythrochelin-like) that contains L-N5-hydroxymoieties. This precursor is provided by ThxA which was approved by activation determination. As known for other NMOs the substrate specificity is restricted, in this case to L-ornithine. The siderophore “Thermochelin” was synthesized under iron limitation, extracted and purified successfully. Iron complexation was confirmed by means of the CAS-assay. Thermochelin is also able to bind other metals like Vanadium. Here we expanded the scope of siderophores and the knowledge towards there biosynthetic pathways. Thermochelin is the second siderophore which was purified from a thermophilic organism [3] and ThxA is the first NMO which was characterized from an extremophile.

2Saha M; Sarkar S; Sarkar B; Sharma BK; Bhattacharjee S; Tribeledi P (2015) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res Int. Epub
3Drouard EJ; Albohun PF; Brunder SD (2008) Structure elucidation and biosynthesis of fusicoccins, peptide siderophores from the moderate thermophile Thermobifida fusca. FEMS Microbiology Letters 266:105:15311-15316
The role of carbon catabolite repression in the emission of ’sodorifen’ by Serratia plymuthica 4Rx13

* N. Magnus, D. Donnik, T. Weise, S. von Reuß, A. Thümmler, B. Ferdhulla

University of Rostock, Biochemistry, Rostock, Germany

Euroimmun, Lübeck, Germany

Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Jena, Germany

Georg August University Göttingen, Institute of Microbiology and Genetics, Göttingen, Germany

During the past years we were trying to elucidate the biological function of the unusual and unique volatile organic compound sodorifen. This volatile was first discovered in 2009 as the dominant compound (≤ 45 %) in the volatile spectrum of the rhizobacterium Serratia plymuthica 4Rx13 [1]. By the use of NMR & GC/HRMS the structure of sodorifen could be identified as a polymethylated bicyclic with the molecular formula C_{6}H_{12}O_{5} [2]. We expect by unraveling its biosynthesis and the regulation of the sodorifen emission to get insight into the biological role of sodorifen.

With this strategy we were able to find a cluster of four genes that is involved in the biosynthesis of sodorifen since knockout mutants showed a sodorifen negative phenotype [3]. Furthermore, we observed that glucose as the sole carbon source reduced the sodorifen emission in S. plymuthica 4Rx13 to very low levels. In contrast, adding succinate to the growth medium lead to a 200-fold increase in sodorifen emission relative to complex medium [4]. In our study we want to prove that the sodorifen emission is regulated by the carbon catabolite repression (CCR) mechanism.

Therefore we constructed knockout mutants of the central CCR genes cry & crp and deleted a potential activator binding site of the CCR (CRE) from the upstream sequence of the sodorifen cluster in S. plymuthica 4Rx13. Following this, we analyzed the sodorifen emission of the mutant strains in comparison to the wild type using a VOC collection system (modified according to [1]) and investigated the expression of the sodorifen cluster genes by RT-PCR and Northern blot. These tests revealed that in the knockout/deletion mutants Acry, Acrp & AcRE i) the sodorifen emission was significantly reduced by 30 - 90 % and ii) the transcription of the sodorifen cluster was severely inhibited. Surprisingly, the mutants Acry & Acrp were no longer capable of growing in minimal medium supplemented with succinate whereas AcRE was still able to do so.

In this study we obtained comprehensive data proving that the regulation of the sodorifen emission takes place at a transcriptional level. Also, we could show that this regulation is specific for the sodorifen cluster and not due to a pleiotropic effect. Taken together, these results clearly suggest that the CCR mechanism plays a central role in the regulation of the sodorifen emission.

expression of the Dsr02-LacC2 fusion in Magnetospirillum gryphiswaldense resulted in labeling of the magnetosome chains thus validating the ability of the fusion to detect phospholipids in subcellular organelles.

To find an explanation for the in vitro detection of phospholipids in isolated PHB granules as described 50 years ago we isolated native PHB granules from R. eutropha Purified PHB granules from DsrRed2-LacC2 - but not from DsrRed2-expressing R. eutropha occasionally were fluorescent indicating that PHB granules in vitro can be contaminated by cell membrane debris to which DsRed2-Lac-C2 can bind. In conclusion, native carbonosomes have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally consist of proteins only.

NPP33 Function and biosynthesis of aryl polycyclic pigments, one of the most widespread class of bacterial natural products

Goethe Universität Frankfurt, Frankfurt für Molekule Biowissenschaften, Frankfurt a. M., Germany

Japan Women’s University, Tokyo, Japan

Goethe Universität Frankfurt, Bachmann Institute for Molecular Life Sciences (BMLS), Frankfurt a. M., Germany

Pigments of the aryl polycyclic (APE) type are structurally related to the well known carotenoids and were previously only found in bacteria of the Cytophaga-Flavobacteria-Bacteroides group (APE/dialkylresorcinol hybrid) and the xanthomonadaceae (APE). Recent research showed that the APE biosynthetic gene cluster (BGC) is actually one of the most common BGCs found within sequenced bacteria (around 1000 APE BGCs detected) and that they are widespread throughout taxonomically distant Gram-negative bacteria including bacterial pathogens of animals, humans and plants but also plant symbionts, human commensals and bacteria found in heavy metal and crude oil contaminated soils. However, the biological function and biosynthesis of these APEs is mostly unknown.

Here we report our current progress on the biosynthesis of APEs and APE/dialkylresorcinol hybrids and the structure of arcuflavin, which has finally been solved by NMR. Furthermore, the biological function of the APE/dialkyresorcin pigment arcuflavin was elucidated. An analysis of the distribution of BGCs for APEs and biosynthetic genes for carotenoids in bacterial genomes is presented that shows a complementary distribution of these pigments in bacteria.

NPP34 Heterologous in vivo and in vitro reconstitution of the pigment synthesis from Aspergillus terreus conidia

*E. Geib, M. Gressler, C. Hertweck, M. Brock

1.University of Nottingham, Fungal Genetics and Biology, Nottingham, Great Britain

Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany

Aspergillus species produce coloured asexual conidia. The pigment in these conidia generally derives from a polyketide synthase that produces a naphthopyrone, which eventually ends in the formation of a dihydroxynaphthalene melanin polymer. Unexpectedly, Aspergillus terreus lacks such a polyketide synthase despite producing a cinnamon-brown pigment. Therefore, we addressed the question which enzymes and pathways might be involved.

cDNA analyses identified several genes encoding NRPS-like enzymes that were highly induced during conidiation. Subsequent deletion of promising upregulated genes in A. terreus and their heterologous expression in A. niger led to identification of genes and precursors involved in pigment synthesis. Isolation and characterisation of natural products included HPLC analyses and NMR.

Deletion of the NRPS-like gene melA resulted in white conidia. Furthermore, deletion of the neighbouring tyrosinase gene tyrP produced conidia with an intermediate brightly fluorescent yellow colour, indicating

that melA and tyrP are jointly involved in pigment formation. The yellow fluorescent intermediate was isolated from tyrP mutants and from an A. niger strain expressing the melA gene and was identified as aspulvinone E, which is formed from the condensation of two p-hydroxyphenylpyruvate residues. Solving the structure of TyrP in the pigment formation process turned out difficult due to incorrect reading frame predictions. Elucidation of the correct open reading frame showed that TyrP codes for a tyrosinase like enzyme, which could be involved in hydroxylation and oxidation with subsequent auto-polymerisation of aspulvinone E. This was confirmed by co-expressing the tyrP gene in melA expressing A. niger strains, which resulted in cinnamon-brown mycelium. While MelA appears to localise to the cytoplasm, TyrP contains an export signal sequence. A TyrP fusion with a red fluorescent protein implied accumulation of the protein in vesicles without subsequent secretion. This may ensure the correct reaction environment for TyrP, which is sensitive to reducing agents. A. terreus follows an unprecedented pathway for production of its conidial pigment. Currently, we are elucidating the structure of TyrP reaction intermediates in order to draw a complete picture on the formation of this new pigment. However, from our research it can already be concluded that the A. terreus pigment is produced from the tyrosine derived aspulvinone E rather than a polyketide.

NPP35
The CASSIS suite – promoter-based prediction of secondary metabolite gene clusters and their anchor genes in eukaryotic genomes
T. Wolf1, N. Nath2, A. Burmistrova1, E. Shelest1

1Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Systems Biology and Bioinformatics, Jena, Germany
2University Medicine Greifswald, Institute for Bioinformatics, Greifswald, Germany

Introduction: Secondary metabolites (SM) are structurally diverse natural products of high pharmaceutical importance. Genes involved in their biosynthesis are often organized in clusters, i.e., they are co-localized and co-expressed.

Objectives: In silico cluster prediction in eukaryotic genomes remains problematic mainly due to the high variability of the clusters’ content and lack of other distinguishing sequence features. Our aim is to develop a novel method and tool which accurately predicts the borders of SM gene clusters based on motifs, i.e. transcription factor binding sites, in promoter sequences.

Methods: We present the CASSIS suite, which consists of two novel software tools: (i) CASSIS, a method for the prediction of SM gene clusters in eukaryotic genomes. Unlike other tools based on protein similarity, e.g. SMURF [1] and antiSMASH [2], CASSIS exploits the idea of co-regulation of the cluster genes [3], which assumes the existence of common regulatory patterns in the cluster promoters. The method searches for “islands” of enriched cluster-specific motifs in the vicinity of anchor genes. (ii) SMIPS, a tool for the genome-wide detection of SM key enzymes (“anchor” genes): polyketide synthases, non-ribosomal peptide synthetases, and dimethylallyl tryptophan synthases. The anchor gene predictions are based on protein domain annotations by InterProScan [4].

Results: CASSIS was validated in a series of cross-validation experiments. In comparison to the similarity-based tools, CASSIS showed a much higher precision and comparable sensitivity. SMIPS recognized all given anchor genes, whereas SMURF and antiSMASH did not. Online versions of CASSIS and SMIPS, as well as downloads for both tools, are freely available at https://sbi.hki-jena.de/cassis.

Conclusion: Most of the cluster prediction approaches developed so far rely on protein domain similarity. They ignore the co-expression (or co-regulation), which is an elementary feature of SM gene clusters. Conversely, CASSIS considers the promoter information and achieves better prediction results.
At first we will demonstrate aspects of graphical perception and visual channels and highlight their role in efficient data visualization. Secondly we will introduce new tailor-made tools which have been adapted for data visualization tasks in OMICS driven research such as Voronoi treemaps and streamgraphs. They have been used to analyze data sets from a variety of real life experiments. Concerns regarded to the display of simple but also complex data, of clearly defined but also uncertain data, of nominal, ordinal but also quantitative data will be demonstrated and discussed. Finally we will introduce the web resource http://bionic-vis.biologie.uni-greifswald.de that makes tools introduced in our presentation available for the public.

OTP02

Microbiological endocrinology – the fate of catecholamines during cultivation with *Vibrio cholerae*

C. Toulouse, B. Michel, J. Steuber

1 University of Hohenheim, Institute for Cellular Microbiology, Stuttgart, Germany

Question: Catecholamines such as adrenaline and noradrenaline are known to stimulate growth and swarming of some enterobacteria like *EHEC* [1] or *Salmonella* enterica Typhimurium [2] and also, recently shown by our group, *Vibrio cholerae* [3], the causative agent of the Cholerae disease. A major drawback in these studies is the prolonged incubation of bacteria with catecholamines [4]. Since catecholamines are known to undergo oxidative degradation [5], we investigated their stability during bacterial cultivation.

Methods:

V. cholerae was grown in the presence of 0.1 mM adrenaline in different media, at varying temperatures, aerobically or anaerobically. After different incubation times, aliquots of the medium were analyzed by HPLC connected to an UV/VIS detector for detection and quantification of adrenaline at 279 nm or the presumed conversion product adrenochrome at 480 nm.

Results: Adrenochrome was confirmed as an oxidation product of adrenaline in the controls (cell free medium) and in minimal medium or LB medium inoculated with *V. cholerae* [3]. In the presence of *V. cholerae*, degradation of adrenaline was delayed compared to cell-free controls. Aerobic conditions promoted the formation of adrenochrome out of adrenaline both in the presence and in the absence of cells.

Conclusion: Adrenaline undergoes partial oxidation during cultivation of *V. cholerae*. We propose that the availability of O$_2$ and reactive oxygen species (ROS) in solution determines the amount of adrenochrome formed. In the presence of respiring bacteria, O$_2$ partial pressure decreases, concomitant with diminished adrenochrome formation compared to the cell-free control. ROS like superoxide enhance adrenochrome formation [5]. In the presence of *V. cholerae* adrenochrome formation decreases due to the periplasmic superoxide dismutase [3]. Hence, the concentration of this signaling molecule like adrenaline is affected by the O$_2$ partial pressure during growth of *V. cholerae*.

OTP03

Electron transfer, voltage generation and sodium binding characteristics of the Na$^+$-translocating NADH-quinone oxido-reductase (Na$^+$-NQR) from *Vibrio cholerae*

B. Claussen, C. Toulouse, V. Mura*, J. Steuber

1 University of Hohenheim, Cellular Microbiology, Stuttgart, Germany

Question: The Na$^+$-translocating NADH-quinone oxidoreductase (Na$^+$-NQR) is the respiratory complex of *Vibrio cholerae*, which couples the electron transfer from NADH to ubiquinone to the Na$^+$-translocation across the membrane [1]. Until now it is unknown which electron transfer step is essential for ion translocation. Here we characterize the effect of Rb$^+$ on NQR and analyze its binding of Na$^+$ in a quantitative manner. Since the quinone substrate undergoes protonation after reduction, the influence of pH (neutral-alkaline) on electron transfer by the NQR was also studied.

Methods: To determine the electron transfer activity of NQR in vitro, the reduction of quinone was followed by UV-VIS spectroscopy using purified NQR [2]. The Na$^+$ transport was monitored with NQR reconstituted into liposomes using the voltage-sensitive dye oxonol VI, supported by fluorophore-dependent Na$^+$ transport measurements [2]. The amount of sodium bound to the NQR in the reduced or oxidized state was determined by atomic absorption spectroscopy using enzyme purified by gel filtration in Na$^+$-free buffers.

Results: Electron transfer was stimulated by Rb$^+$, but this cation was not translocated. Rb$^+$ did not diminish Na$^+$-dependent voltage formation of NQR in proteoliposomes. We could show that Na$^+$-translocation activities of NQR are most pronounced around pH 7.5 and 8.0. Occulsion experiments show that Na$^+$ binds in a substoichiometric manner to the reduced or the oxidized NQR.

Conclusion: Although Rb$^+$ does not act as a coupling cation for NQR, it does not inhibit the Na$^+$-stimulated electron transfer activity of the NQR. Voltage generation by NQR is more efficient in slightly acidic pH. We found no evidence for the occlusion of Na$^+$ within the purified NQR which binds Na$^+$ in a clearly substoichiometric manner.

OTP04

Analyzing the RNA-seq-based transcriptome of the acetic bacterium *Clostridium aceticum*

M. Karl, A. Podehl*, R. Daniel*, P. Dürr

1 University of Ulm, Institute of Microbiology and Biotechnology, Ulm, Germany
2 Georg August University, Genomic and Applied Microbiology, Göttingen, Germany

Question: *Clostridium aceticum* was the first isolated autotrophic aceticogen (1936). It is able to use gases such as syngas and H$_2$+CO$_2$ via the Wood-Ljungdahl pathway and forms acetic acid. Therefore, *C. aceticum* is an interesting biocatalyst for production of biofuels and biochemicals. Like *C. ljungdahlii* and *Acetobacterium woodii* it uses an Rnf complex to pump cations for energy conservation. Unlike those two organisms, *C. aceticum* also contains a cytochrome. The role of cytochromes during autotrophic growth is unclear. Therefore, a transcriptome study was performed using autotrophic and heterotrophic conditions to analyse the differentially expressed genes (DEGs).

Methods: After sequencing the whole genome of *C. aceticum*, the respective transcriptome was investigated. RNA-seq-based global transcriptome analysis was performed and compared for autotrophic growth on H$_2$+CO$_2$ and heterotrophic growth on fructose. Cells for RNA preparation and cDNA synthesis were harvested at mid exponential phase under both conditions. Sequencing was performed using the Illumina MiSeq system and the identification of DEGs was achieved by the baySeq algorithm.

Results: In total, 847 genes were differentially expressed under the two conditions applying restrictive evaluation parameters. Comparing autotrophic with heterotrophic growth, 228 genes were upregulated and 619 genes were downregulated. Interestingly, a hem cluster coding for cytochrome synthesis was also upregulated. These DEGs were classified into 20 functional categories of COGs.

Conclusion: Comparing autotrophic and heterotrophic growth of *C. aceticum*, significant changes in gene expression levels were observed. The transcriptome data shows an upregulation of a hem cluster which indicates its involvement in autotrophic growth. In sum, the analysis of DEGs involved in the utilization of different carbon sources allows the identification of relevant genes to target for metabolic engineering.

OTP05

SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in *Bacillus subtilis*

L. Wilhelm, F. Bürmann*, S. Gruber

1 Max Planck Institute of Biochemistry, Chromosome Organisation, Martinsried, Germany

Every living organism relies on cell divisions for survival. In this essential process the complete genetic information has to be precisely replicated and segregated to opposite cell halves before cell division. To ensure faithful segregation of chromosomes, the genome of a cell has to be highly condensed and well-organized in the form of chromosomes. Amongst the various types of proteins implicated in structuring the chromosome, the SMC family of proteins, which is highly conserved in all branches of life, is known to play an important role in many organisms. In eukaryotes, several SMC complexes are present within a cell such as cohesin, condensin and the Smc5/6 complex, in prokaryotes, however, usually one
of two types, Smc-ScpAB or MukBEF, is present. In *Bacillus subtilis*, the deletion of the Smc protein is detrimental and leads to severe defects in chromosome segregation. Presumably, Smc-ScpAB mediates the compaction and resolution of sister DNA molecules during cell division, however, the molecular mechanism for this action is only poorly understood. We have developed a novel biochemical assay to determine whether the binding of Smc-ScpAB to native chromosomes in *B. subtilis* involves entrapment of DNA by the Smc-ScpA ring. The assay is based on chemical cross-linking, with which the three interfaces of the Smc-ScpA ring can be linked together covalently in living cells. During the isolation of whole intact chromosomes under protein denaturing conditions, exclusively the cross-linked ring species of Smc-ScpA remains associated with the chromosomes. The chromosome entrapment by Smc-ScpAB is abolished by mutations interfering with the Smc ATPase cycle of the complex and the ParB protein. Taken together, we show that the prokaryotic Smc-ScpAB complex in *B. subtilis* entraps the bacterial chromosome, in an ATP-hydrolysis dependent manner. The entrapment of chromosomal DNA by SMC-complexes is an evolutionary conserved feature of different SMC complexes. Our entrapment assay presents a new method to determine the physical association of ring-shaped protein complexes with whole bacterial chromosomes.

OTP06

Interplay between SMC head dimerization and coiled-coil conformation in Smc-ScpAB

F. Bürmann1, Y.-M. Soh2, M.-L. Diebold1, B.-H. Oh2, S. Gruber1

1Technical University Kaiserslautern, Biology, Kaiserslautern, Germany
2Korea Advanced Institute of Science and Technology, Daejeon, South Korea

Smc-ScpAB is the most widely distributed SMC complex in prokaryotes, and promotes proper chromosome segregation in many species. Its structural core is formed by a homodimer of Smc that is asymmetrically bridged by the kleisin ScpA, a configuration which has probably served as the evolutionary blueprint for all eukaryotic SMC-kleisin complexes. Smc-ScpAB adopts a rod-like shape, in which the ~40 nm long intramolecular coiled-coil domains of the Smc dimer are closely annealed. The rod contains the constitutively dimeric Smc hinge domains at one end, whereas the other end terminates in the Smc head domains, whose dimerization is regulated by ATP binding. Here we monitor Smc head-domain dimerization and coiled-coil alignment in vivo using site-specific cross-linking, and propose that ATP-induced head engagement drives coiled-coil disengagement. The resulting conformational change might open up the complex for the entrapment of DNA fibres, and ultimately allow Smc-ScpAB to organize the bacterial chromosome.

OTP07

Structure and function of phycobiliprotein lyases of *Guillardia theta*

N. Riedel1, K. Overkamp2, N. Frankenberg-Dinkel1

1Max Planck Institute of Biochemistry, Chromosome Organization and Dynamics, Martinsried, Germany
2Korea Advanced Institute of Science and Technology, Daejeon, South Korea

Phycobiliproteins (PBP) for light-harvesting. Therefore, the apo-proteins hycobilins. These pigments are connected with the apo-protein via thioether bonds to conserved cysteine residues. In contrast to the majority of other bilins to cryptophyte apo-PBPs is not yet understood. We present a case of an infant with disseminated *Leishmania* Donovani bodies and cutaneous leishmaniasis in an area where both visceral and cutaneous leishmaniasis is endemic. Skin biopsy and the bone marrow aspirate showed *Leishmania* Donovani bodies and its heterogeneous expression in *E. coli*. We were able to show a functional fusion-enzyme with a PbsS-like activity which converts BV to PEB. This fusion will be used for crystallization studies for a better understanding of the proposed protein-protein interaction. In a second approach, the transient interaction of PbsA and PbsB will be trapped employing different types of cross-linking reagents in combination with the SPINE method for a rapid analysis of protein interactions during in vivo experiments (5).

OTP08

Metabolic channeling during phycoerythrobilin biosynthesis in cyanobacteria

M. Ara1, N. Frankenberg-Dinkel1

1Technical University Kaiserslautern, Microbiology, Kaiserslautern, Germany

Phycocyanobilin (PcB) is a linear tetrapyrrole molecule found in cyanobacteria, red algae and cryptomonads. It serves as a light-harvesting pigment in the phycobiliproteins of these organisms. The biosynthesis of PbB requires two reduction steps which are catalyzed by ferredoxin-dependent bilin reductases (FDBR). The first step of PbB biosynthesis starts with a specific reduction of biliverdin IXα (BV) by dihydrobiliverdin:ferredoxin oxidoreductase (PebA) to 15,16-dihydrobiliverdin (15,16-DHBV) which then serves as a substrate for the second reduction catalyzed by phycoerythrobilin:ferredoxin oxidoreductase (PebB) (1). During PbB biosynthesis, the intermediate 15,16-DHBV is suggested to be transferred in a transient interaction from PebA to PebB via a covalent channeling. The knowledge of the new FDBR member phycoerythrobilin synthase (PbsS) revealed a direct reduction from BV to PBA (2). Originated in cyanophages, PbsS shows a high structural homology to PbaA but is more efficient than the dual enzyme system (PebA & PebB) of cyanobacteria (2,4). Here we describe the construction of a translational fusion between pbaA and pbeB and its heterologous expression in *E. coli*. We were able to show a functional fusion-enzyme with a PbsS-like activity which converts BV to PEB. This fusion will be used for crystallization studies for a better understanding of the proposed protein-protein interaction. In a second approach, the transient interaction of PbaA and PbaB will be trapped employing different types of cross-linking reagents in combination with the SPINE method for a rapid analysis of protein interactions during in vivo experiments (5).

OTP09

Visceral leishmaniasis and chronic granulomatous disease in an infant

M. AlAyed1

1Najran University, Pediatrics, Najran, Saudi Arabia

Objective: to report a case of an infant with disseminated leishmaniasis Donovani (LD) and Chronic Granulomatous Disease (CGD).

Method: A report of the clinical and laboratory data on a six months old infant who presented with multiple skin lesions and fever since second week of life.

Result: The infant had indolent fever since the second week of life associated with skin lesions on the face, neck and the limbs. He came from an area where both visceral and cutaneous leishmaniasis is endemic. Skin biopsy and the bone marrow aspirate showed leishmanias Donovani bodies and the culture revealed Staphylococcus aureus and serratia marcescens on two different occasions. His immune work up confirmed CGD as the diagnosis of CGD is poor, with high morbidity and mortality and infantile leishmaniasis also adds on high rate of morbidity and mortality if not treated early. Establishing an early diagnosis has important practical implications in the successful treatment of these patients. The description of this case and a brief review
of the current literature are provided to familiarize physicians mainly in the endemic areas with the relatively rare presentations of these two conditions together.

OTP10

Characterization of Escherichia coli K12 mutants hypersensitive to photodynamic inactivation with Chlorin e6

*I. Lutter1, M. Walther1, C. Simon2, C. Müller1, S. Fischer1, D. Hüttenberger2, H.-J. Foth1, J. Cullum1

1Technical University, Biologie, Kaiserslautern, Germany
2Technical University, Physics, Kaiserslautern, Germany

Apotec Pharma GmbH, Bielefeld, Germany

Question: Photodynamic inactivation (PDI) using the photosensitizer Chlorin e6 is a potential alternative to antibiotic therapy. *Escherichia coli* K12 is relatively insensitive to such a treatment and it has been suggested that the killing is due to surface binding of photosensitizer rather than uptake by the cells. This study aimed to investigate this question by isolating hypersensitive mutants.

Methods: A genome-wide screening system for PDI-sensitivity was developed using 96 well microtiter plates and high power LEDs (wavelength 670 nm, power density 31 mW/cm²). Cells from liquid cultures in mid-log phase were incubated in PBS buffer (pH 6.7) containing 128 μM Chlorin e6 for two hours at 37 °C. The bacterial suspensions were diluted 600-fold with PBS and irradiated for two minutes. The survival rate was determined by plating on LB agar.

Results: Screening of the 3985 single-gene knockout mutants of the *Keio* collection isolated 16 hypersensitive mutants with a survival rate under 30 %. The genes affected included tolC (encodes an outer membrane channel protein) and the mdtABC genes (encode an inner membrane export system, which interacts with TolC). Three genes encoding enzymes of lipopolysaccharide synthesis also yielded hypersensitive knockout mutants. The screening also showed a role for the genes recA and rdgC, which are involved in the SOS response. Catalase and superoxide dismutase mutants did not have a hypersensitive phenotype.

Conclusion: The hypersensitive phenotypes of the transport system mutants suggest that Chlorin e6 enters the periplasm and cytoplasm and dismutase mutants did not have a hypersensitive phenotype.

OTP11

New RNA thermometers from Yersinia pseudotuberculosis

*C. Twittenhoff1, F. Rigbiatti2, A.M. Nuss1, F. Narterhau1, N. Alkan1, C. Müller1, S. Fischer1, R. Thiermann1, H. Wolf-Watz2, F. Narberhaus1, P. Dersch1

1Ruhr University Bochum, Microbial Biology, Bochum, Germany
2Helmholtz Centre for Infection Research, Molecular Infection Biology, Braunschweig, Germany

Question: RNA thermometers (RNATs) or small RNAs (sRNAs). Dynamic changes in regulatory RNAs structure enable a rapid modulation of gene expression as demonstrated for RNA thermometers (RNATs) or small RNAs (sRNAs). RNA thermometers (RNATs) are regulatory RNA-elements that respond rapidly to shifting temperature. These are mainly localized in the 5′ untranslated region of temperature controlled mRNAs and regulate gene expression at translational level. At low temperatures, the mRNA forms a modified outer membrane structure has also an influence on the sensitivity. The sensitivity of recA and rdgC mutants suggests that DNA damage is responsible for part of the killing by photodynamic inactivation.

OTP12

The influence of high temperature and water stress on in vitro growth in isolates of the nematode-trapping fungus *Arthrobtosrys*

*C. Eken1, N. Alkan1, M. Sögür1, F. M. Güçü Ozdemir1, D. Denir1

1Suleyman Demirel University, Agricultural Biotechnology, Isparta, Turkey
2Suleyman Demirel University, Plant Protection, Isparta, Turkey

Nematodes one of abundant and successful organisms which are located in the very nest of ecological. They are parasites of plants and animals on earth. Nematode effects on humans are by reducing of crops, direct infection of humans and incapable of domestic animals. Nematophagous fungi have been seen as potential biological control agents against nematodes for a long time. Among the nematophagous fungi, the nematode-trapping fungi are the most studied. Nematode-trapping fungi are ubiquitous in soil environments. These fungi capture nematodes by three-dimensional networks, adhesive columnar branches, adhesive knobs, constricting rings, and non-constricting rings. The genus *Arthrobtosrys* belongs to the group of nematode-trapping fungi. These fungi are relatively easy to culture on artificial media and numerous isolates are currently maintained in various laboratories worldwide.

The objectives of this study were to determine the influence of high temperature, low water availability, and their combination on *in vitro* growth of strains of nematode-trapping fungus *Arthrobtosrys*. All isolates (CEA-1, CEA-2, CEA-3, CEA-4 and CEA-5) were obtained from alfalfa fields in Isparta province (Turkey). Growth assays were done at 25, 30, 35, and 40 °C and in media (potato dextrose broth) with water stress created by 10, 20, 30, and 40 % polyethylene glycol (PEG 6000).

There were significant interspecies variations in growth rates on media modified with PEG 6000. There is no growth at 35 and 40 °C *Arthrobtosrys* isolates, only isolate CEA-5 growth at 35 °C and low concentration (10 and 20 %) of PEG 6000. These findings will aid the selection of isolates nematode-trapping fungus *Arthrobtosrys* for use in field trials in hot or dry agricultural climates.

The work was supported by the Ministry of Food, Agriculture and Livestock, the General Directorate of Agricultural Research and Policies (TAGE), Project No. TAGE/14 / AR-GE / 07.

OTP13

Advantages and disadvantages of 16S-rRNA gene and ITS/5.8S-rRNA gene region sequencing for Identification of unknown cultures

*M. Nagert1

1selsekt-ID BIOLABS GmbH, Berlin, Germany

Question: A fast, reliable and cost effective method to identify unknown microorganisms is very important in many areas of research and also for commercial organisations. Since more than 20 years a PCR based method is established to differentiate bacterial cultures: 16S/ITS-rRNA gene sequencing.

Is 16S/ITS-rRNA gene analysis sufficient to identify unknown cultures? **Method:** The 16S/ITS-rRNA gene is located on the ribosomal RNA which allows, due to small genome size, the reproducible amplification of genes starting from very low amounts of template DNA. Since the 16S/ITS-rRNA genes are flanked by highly conserved regions, universal PCR primer sets can be used for broad range amplification. The first step is the extraction of the genomic DNA. Afterwards the target region is amplified by PCR: 16S-rRNA gene for bacterial or ITS/5.8S-rRNA gene region for fungi and yeasts, followed by a gel electrophoresis as quality check and purification to clean out the PCR primers and nucleotides prior sequencing reaction. In case of pure cultures Sanger sequencing of amplicons is performed and the sequences were compared against internal and external databases to identify the sample by homology. Most databases are based on NCBI (National Center for Biotechnology Information) entries. If a mixed-culture is object of inquiry the partial sequencing of 16S/ITS rRNA gene by Next Generation Sequencing is recommend, e.g. MiSeq.

Results: 16S/ITS-rRNA gene sequencing can characterize a strain rapid (within 24 hours). It can be done in 96 well plates which reduces cost
significant: This method represents a cost-effective high-throughput analysis. In contrast to classical taxonomic methods like morphological analysis the molecular biological based 16S/ITS-rRNA gene sequencing method can also differentiate non-cultivable isolates and pathogen strains without risks for lab staff. The database is often a limiting factor since NCBI is a huge and actual database, but not in all cases all entries are validated.

For an exact identification of strains a significant difference in genotype is necessary. If the genotype of 16S/ITS-rRNA gene shows no significant differences the strains were summarized in taxonomic groups.

Also a qualitative and semi-quantitative analysis of mixed cultures can be done which allows detailed analysis of biodiversity studies of microorganisms.

Conclusion: Since the 16S/ITS-rRNA gene does not show significant differences in genotype for all species this method cannot be used as a stand-alone method for differentiation of subspecies. Additional methods were required (as like MALDI-TOF, API, RAPD-PCR and MLST) to differentiate the isolates exactly. The best method differs by genus: The optimal combination of these methods is currently the main focus in the development activities of select-ID BIOLABS GmbH.

However, for routine diagnostics the 16S/ITS-rRNA gene sequencing is a very attractive method since it can identify/analyse an unknown culture up to species level rapid and cost-effective.

OTP14

The two-component regulatory system CiaRH of *Streptococcus pneumoniae* R6 is subject to feed-back regulation by several members of its regulon.

1University of Kaiserslautern, Microbiology, Kaiserslautern, Germany

The two-component regulatory system CiaRH of *Streptococcus pneumoniae* is a pleiotropic control device influencing processes such as competence, maintenance of cell integrity, β-lactam resistance, bacteriocin production, host colonization, and virulence. The response regulator CiaR controls directly 15 promoters and thereby 25 genes, 19 of which code for proteins, while five specify highly similar small non-coding base-pairing RNAs, designated csRNAs (cia-dependent small RNAs) (1). The csRNAs control competence development by interfering with quorum sensing (2, 3). The CiaRH system is active under a variety of conditions and a signal for its activation is still missing. In experiments to explore conditions altering the activity of CiaRH, evidence for feed-back regulation by at least one regulon member was obtained. Therefore, we tested systematically, if members of the CiaR regulon could influence CiaR activity.

Results: Genes controlled by CiaR that could be inactivated were disrupted by resistance cassettes and the activity of promoters known to be strongly activated by CiaR were measured by means of β-galactosidase reporter fusions. These experiments indicated that CiaR-dependent promoter activities raised upon inactivation of htrA, encoding a cell surface exposed protease, of the five csRNA genes, and of manLMN, encoding the major glucose phosphotransferase system of *S. pneumoniae*. Inactivation of htrA had the strongest effect on promoter activities, while deletion of the csRNA genes or manLMN were less effective. In a strain without HtrA and the csRNAs, CiaR-dependent promoters were most active. More than one csRNA gene must be inactivated to achieve full promoter activation, but which csRNA combination is most effective remains to be determined.

Conclusions: The two-component regulatory system CiaRH of *S. pneumoniae* is subject to extensive feed-back control by several members of the CiaR regulon. The extent of this negative regulation suggests that the system has evolved to counteract strong activation by negative feedback mechanisms to maintain a rather constant expression level.

OTP15

How are polyphosphate biosynthesis and PHB biosynthesis related in *Ralstonia eutropha*?

1Institut für Mikrobiologie - Universität Stuttgart, Stuttgart, Germany

A physiological connection between polyhydroxybutyrate (PHB) metabolism and the formation of polyphosphate (polyP) granules is known in the "enhanced biological phosphate removal process" (EBPR) and is used to remove phosphate from waste-water. The coupling of PHB synthesis in the first phase with the accumulation of polyP in the second phase on the expense of accumulated PHB during EBPR is indicative for a metabolic link between synthesis of PHB and synthesis of polyP. Unfortunately, EBPR bacteria such as *Candidatus Accumulibacter phosphatis* cannot be cultivated in pure cultures. Here, the question of a potential link between PHB and polyP metabolism in *Ralstonia eutropha* H16, an easy to cultivate β-proteobacterium with documented ability to synthesize PHB and polyP and with taxonomical relationship to *Candidatus Accumulibacter phosphatis* was addressed. *R. eutropha* was used to simulate the EBPR process as a model organism and the adaptation to EBPR conditions will be screened on genomic, transcriptomic, proteomic and metabolomic levels in order to find the key players of the EBPR process. First data will be presented.

OTP16

Regulation by five related small non-coding RNAs in *Streptococcus pneumoniae*

1University of Kaiserslautern, Microbiology, Kaiserslautern, Germany

The two-component regulatory system CiaRH of *Streptococcus pneumoniae* is implicated in β-lactam resistance, maintenance of cell integrity, bacteriocin production, host colonization, virulence, and competence. The response regulator CiaR controls directly 25 genes, five of which specify highly similar small non-coding RNAs, designated csRNAs (cia-dependent small RNAs). The csRNAs were predicted to act as regulatory base-pairing sRNAs. Therefore, we tested their implication in CiaR-dependent phenotypes.

Results: Inactivation of the csRNA genes showed that at least some of the CiaR-related phenotypes, enhanced β-lactam resistance, autolysis, and prevention of genetic competence, are dependent on the csRNAs. Computational target predictions and micro-array experiments followed by evaluations identified eight genes to be under negative csRNA control. Six of them encoded transport proteins, while the remaining two are involved in regulatory processes. Measuring the effect of single csRNAs on three of these targets indicated that individual csRNAs were not as effective in downregulation as all csRNAs together. Thus, csRNAs acted additively, at least for these targets (1).

Remarkably, one of the csRNA-controlled genes is *comC* encoding the precursor of the competence stimulating pheromone CSP. Production of CSP is absolutely essential for the quorum sensing process leading to competence development. Suppression of its synthesis by the csRNAs will therefore interfere with competence induction. In the presence of five csRNAs, competence did not develop, but several combinations of three csRNAs were also effective. Partially disrupting predicted csRNA-comC complementarity by mutating *comC* (*comC*) led to strongly diminished repression of a *comC*-fluZ translational fusion by the csRNAs and to transformability in a *comC* strain with all csRNAs. Reconstitution of csRNA complementarity to *comC* restored competence suppression. Again, more than one csRNA was needed. In this case, even two mutated csRNAs complementary to *comC*, csRNA1-8 and csRNA2-8, were suppressive (2).

Conclusions: The csRNAs greatly expand the regulatory potential of CiaRH by targeting a number of genes. One of the targets, *comC*, is additively controlled by the csRNAs resulting in downregulation of genetic competence.

OTP17

Expansion of the substrate range of the gentisate 1,2-dioxygenase from *Corynebacterium glutamicum* ATCC 13032 for the conversion of (substituted) salicylate(s)

E. Eppinger1, S. Bürger1, A. Stolz1

1Institute for Microbiology, Stuttgart, Germany

Question: The “conventional” gentisate-1,2-dioxygenase (GDO) from *Corynebacterium glutamicum* ATCC 13032 converts gentisate (2,5-dihydroxybenzoate) but no monohydroxylated benzoates. In contrast, the GDO from the α-proteobacterium *Pseudomonas salicylaticidanus* BN12 oxidatively cleaves in addition to gentisate also salicylate, various aminos-, chloro-, fluoro-, hydroxy-, and methylsalicylates, and 1-hydroxy-2-naphthoate. Therefore, it was attempted to modify the GDO from *C. glutamicum* in order to enable the conversion of (substituted) salicylate(s).

Methods: Multiple sequence alignments in combination with structural analyses were performed in order to identify specific amino acid residues which distinguish the GDO from *P. salicylaticidanus* from “conventional” GDOs. Accordingly, the gene encoding the GDO from *C. glutamicum* was mutated at different positions and the mutated genes expressed in *E. coli* cells. A colony screening system was established which allowed to detect the salicylate cleavage product after derivatisation with 2,4-dinitrophenylhydrazine by the formation of a deep red color. Cell extracts were prepared from positive clones and further analyzed by UV/VIS-spectroscopy and HPLC.

Results: The GDO from *C. glutamicum* was modified by saturation mutagenesis at three amino acid positions. The obtained clones were screened for the conversion of salicylate by the newly established color assay. It became evident that only the exchange at position Ala112 gave rise to salicylate converting clones. The variants were tested by enzyme assays for the conversion of salicylate and clustered into 4 groups. The genes coding for the salicylate converting enzyme variants were sequenced and found to correspond to the amino acid exchanges Ala112Gly, Ala112Ser, Ala112Ile and Ala112Asp. The Ala112Gly variant was further studied and shown to oxidatively cleave salicylate and 1-hydroxy-2-naphthoate, also various substituted salicylates.

Conclusion: Our results demonstrate that simple point mutations are sufficient to allow “conventional” gentisate 1,2-dioxygenases to convert monohydroxylated aromatics.

OTP18

Contribution of lateral gene transfers from bacteria to the genome evolution of the nematode *Deladenus siricidicola*

F. J. Clasen2,3, A. Postma Smidt2, R. Pierneff2, O. Reva2, B. Slippers2

2Department of Genetics, Pretoria, South Africa
3Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Pretoria, South Africa

Question: The asexual movement of genetic material between different species, collectively termed Lateral Gene Transfer (LGT), has long been known to play a significant role in the genome evolution of prokaryotes. Whether LGT occurs at appreciable levels in eukaryotic organisms is still under debate. In order to aid in answering principle questions regarding LGT in eukaryotes, the genome of *Deladenus siricidicola* (nematode) was subjected to a study to identify LGTs from bacterial origin, as well as the functions associated with these genes. We also consider the possible mechanisms of transfer from this data.

Methods: The utility and accuracy of SeqWord Genomic Island Sniffer, SigHunt and AlienHunter as genomic island (GI) prediction tools were compared. All three of these tools exploit the compositional bias of lateral transferred sequences to infer GIs. The combined results of these tools were used to annotate GIs using InterProScan, Blast2GO and other eukaryotic annotation tools. Compositional and sequence similarity comparisons were done against the PreGI database (http://pregi.bi.up.ac.za/index.php), which contains known bacterial GIs. This was done to determine whether bacterial functions are similar to eukaryotic functions associated with GIs and also to assign possible donor species. Phylogenetic validation of a subset of genes was performed using MEGA6.

Results: The study revealed that approximately 2 % of the genome showed a variance in oligonucleotide usage pattern and were most likely acquired from foreign origins. These regions were associated with a diverse range of functions, but were found to be mostly involved in transmembrane transport, metabolism and immunity. Genes commonly associated with GIs, such as integrases, ABC-transporters and transposable elements were also identified. Searches against the PreGI database showed that the majority of foreign genes were closely related to members of the *Bacillus, Staphylococcus* and *Clostridium* genera. Phylogenetic analysis clustered many of the identified genes with bacteria instead of other eukaryotes, and confirmed them as LGT events.

Conclusions: A significant proportion of the *D. siricidicola* genome appears to consist of bacterial genetic material. The study lays the foundation to explore the potentially significant influence that these genes have had on the evolution of the symbiont in this nematode with insects and fungi, as well as mechanisms of LGT in eukaryotes. The unique pipeline used here can increase the rate of GI identification in other eukaryotic species.

OTP19

Adaptation of *S. aureus* Δ*mvaS* to mevalonate depletion

*S. Reichert*1, M. Negga1

1University, Microbial Genetics, Tübingen, Germany

Isoprenoids are a very large and diverse group of organic compounds with a wide range of biochemical functions [1]. They take part in the synthesis of the cell wall as the lipid carrier undecaprenol, in the transport of electrons as ubiquinones, in protein biosynthesis as prenylated tRNAs, and many more. The universal precursor for all isoprenoids is isopentenyl pyrophosphate (IPP), which is synthesized in *Staphylococcus aureus* exclusively by the mevalonate (MVA) pathway. The synthesis of IPP starts with the acetylation of acetoacetyl-CoA to Hydroxymethylglutaryl-CoA (HMG-CoA) catalyzed by the HMG-CoA synthase (MvaS) [1]. HMG-CoA is then converted via mevalonate to IPP, which is essential for all living organisms. An mvaS deletion mutant in *S. aureus* grows normal in the presence of mevalonate but not in its absence. However, when the mutant was cultivated in the absence of mevalonate for several days it was able to adapt and started to grow. CFU values dropped drastically during the first 24 h but afterwards the culture recovers and the CFU increased again [2]. Once adapted the mvaS mutant (ΔmvaS-ad) is permanently able to grow without mevalonate. The main task of this project is to find out how it was possible for the mutant to grow without mvaS and to elucidate the underlying mechanism. The phenotype of ΔmvaS-ad shows a severe growth defect, which is mainly caused by the missing menaquinone in the respiratory chain. The cell and colony morphology are instead similar to that of the wild type and the cell wall surprisingly shows no differences in the peptidoglycan structure as well as the amount of teichoic acids, which suggests the presence of undecaprenol as a lipid carrier for the precursors. However, the MIC of bacitracin, which is tremendously higher for ΔmvaS-ad than for the wild type, suggests another function. So far it is known that ΔmvaS-ad is able to translocate the PGN and WTA precursors across the membrane but not if undecaprenol is involved in this process. To elucidate the underlying mechanism of the adaptation the genomes of the wildtype, the not adapted mutant and ΔmvaS-WT were sequenced. Two interesting SNPs, which were present in ΔmvaS-ad could be found. One SNP is located in the promoter region of *drp35*, which encodes for a lactonase with yet unknown function. It could be shown that the mutation leads to an upregulation of *drp35* and that it is involved but not alone responsible for the adaptation. The role of the other SNP has to be elucidated. So the mechanism of the adaptation is not fully understood yet.

OTP20

Occurrence and function of DNA methylation in the cyanobacterium *Synechocystis* sp. PCC 6803

K. Gärtner1, S. Klähn2, M. Kopf2, W. Hess3, M. Hagemann4

1University Rostock, Plant Physiology, Rostock, Germany
2Albert Ludwigs University, Faculty of Biology, Freiburg, Germany
3University of Würzburg, Department of Chemistry, Würzburg, Germany
4University, Microbial Genetics, Tübingen, Germany

Introduction: Methylation of the prokaryotic genome is a crucial epigenetic signal for various mechanisms, including DNA repair, recognition of foreign DNA or chromosome portioning. This ubiquitous mechanism of DNA modification is catalysed by DNA-methyltransferases, utilizing S-adenosyl methionine as methyl group donor. Recent studies suggested a regulatory role of DNA methylation within gene expression ([Lluch-Senar et al., 2013]), However, the underlying mechanism of epigenetic control is entirely unknown.

Objectives: The aim of this project is to unravel the casual links between DNA methylation, control of gene expression and physiological effects within the cyanobacterial model strain *Synechocystis* sp. strain PCC 6803.
Methods: Single molecule real-time DNA sequencing (SMRT-Sequencing) was performed to analyse base specific DNA modification in Synechocystis wild type. Interposon mutagenesis was used to knockout genes for putative DNA methyltransferases. Subsequently, microarrays were applied to search genome-wide transcriptional changes.

Results: Initial studies showed that the genome of Synechocystis harbors genes for three methyltransferases, but no restrictase. The gene slr1803 codes for MSsp6803III which was shown to methylate the motif 5'-GA/TC-3'. This dam-like activity is essential for the viability of Synechocystis. The genes slr0214 (Scharnagl et al., 1998) and slr0729 code for non-essential, orphan methyltransferases MSsp6803I and MSsp6083II. Analysis of mutants lacking slr0214 or slr0729 reveal differences in gene expression and phenotypes compared to wild type. Moreover, SMRT-Sequencing identified an additional DNA modification within the palindromic sequence 5'-GA/AGGC-3'. In silico analysis detected three genes that potentially code for the missing methyltransferase. These genes were found to code for non-essential proteins, because completely segregated knockout mutants were identified. Further research will be conducted regarding changed methylation pattern and gene expression.

Conclusion: We identified up to five methyltransferases and started analysing their physiological functions.

OTP21

An integrated platform for high-throughput whole genome mlst and whole genome snp analysis

Applied Maths NV, Sint-Martens-Latem, Belgium

Objectives: With the increasing availability of next generation sequencing technology, whole genome sequencing (WGS) methods are increasingly being used for bacterial typing. Key challenge is the ability to rapidly extract the relevant information from large sequence data files. We present two pipelines for high resolution WGS-based molecular typing: whole genome multilocus sequence typing (wgMLST) and whole genome single-nucleotide polymorphism analysis (wgSNP). Both strategies are compared using data from a hospital *Staphylococcus aureus* outbreak.

Methods: Using an in-house developed wgMLST schema that extends the core genome schema from Leopold et al. (2014), we apply two independent allele calling approaches, an assembly-free and a BLAST-based allele calling algorithm, to determine locus presence and detect allelic variants in a quality-controlled manner. The wgSNP pipeline, tuned to reduce false positives while maximizing resolution, detects SNP variants by mapping the WGS reads to a reference sequence internal or external to the data set.

For both methods, all calculation-intensive data processing steps are performed on the BioNumerics® Calculation Engine, deployed locally or in the cloud.

Results and Conclusions: In the data set at hand, wgMLST detected two distinct outbreak clusters, clearly separating the outbreak from non-outbreak isolates. Among the used methods (cgMLST, wgMLST and wgSNP) to resolve the largest outbreak cluster, wgSNP proved to offer the highest resolution. wgMLST holds the advantage that the data is highly portable and enables to make functional predictions as the loci are based on annotated genomic features. In contrast to cgMLST, wgMLST is not limited to a core subset of alleles but represents the whole available pan genome of the organism. The BioNumerics® 7.6 software and its integrated Calculation Engine offer a powerful platform where both wgMLST and wgSNP can be performed to provide a robust, portable and high resolution picture of molecular typing data. The polyphasic approach allows for validation both between WGS analysis techniques and traditional techniques such as MLST or PFGE.

ribosomes from reaching the overlap. The levels of the bicistronic transcripts as well as the DHFR levels were quantified. Strikingly, the DHFR levels were zero when ribosomes terminated prematurely, strongly indicating that termination-reinitiation operates in *H. volcanii* and there is no de novo initiation at the downstream gene. To investigate whether termination-reinitiation operates in *E. coli*, a dual reporter gene system was established. Translational fusions were constructed of 1) the reporter gene *gfpD* with the last 33 codons of selected upstream genes, and 2) of the first ten codons of downstream genes with the reporter gene *gusA*. Again, variants with premature stop codons were generated, and transcript levels and reporter enzyme levels were quantified. The *GusA* levels were zero in the stop codon-containing variants, indicating that termination-reinitiation operates also in *E. coli*. Investigations aiming at analyzing the role of the SD motif in termination-reinitiation are currently under way. Possible evolutionary advantages of termination-reinitiation (compared to independent initiation) will be discussed.

1 Kramer *et al.*, (2014) *Haloferax volcanii*, a species that does not use the SD mechanism for translation initiation at 5’-UTRs. *PLoS ONE* 9, e94979.

OTP24

The regulatory influence of sRNA132 on potential target mRNAs in *Haloferax volcanii*

K. Jaschinski, **J. Kliemt**, **J. Babski**1, **J. Soppa**1

1 Goethe University Frankfurt, Institute for molecular bioscience, Frankfurt a. M., Germany

The investigation of small non-coding RNAs (sRNAs) of the halocarchael model species *Haloferax volcanii* led to the identification of approximately 250 sRNA genes (1, 2). By generating deletion mutants of about 30 sRNA genes, halocarchael sRNAs were found to be involved in many different biological processes (3). While eukaryotic sRNAs typically bind to the 3’-UTRs of their targets, bacterial sRNAs often bind to the 5’-UTRs. In contrast, only very few targets are known for archaeal sRNAs.

Therefore, we aimed at identifying target mRNAs of *Haloferax volcanii* sRNAs and to characterize sRNA-target mRNA interactions. Putative target mRNAs were identified by comparing the transcriptomes of the wild-type and sRNA deletion mutants using DNA microarrays. For the sRNA sRNA132, this led to the identification of an operon encoding an ABC transporter that had phosphate as an annotated target. In *silico* analysis revealed a potential interaction site of 20 nt between sRNA132 and the 3’-UTR of the operon mRNA. Northern blot analysis revealed that both sRNA132 and the operon mRNA are highly upregulated under phosphate-limiting conditions. In the sRNA deletion mutant the operon mRNA level is lower and the induction after the start of phosphate starvation is slower, revealing 1) that the sRNA is a positive regulator of the operon mRNA, and 2) that a secondary regulatory mechanism for the expression of the operon exists.

To identify additional potential targets of sRNA132, the transcriptomes of wild-type and deletion mutant were compared under phosphate starvation conditions. It was revealed that the operon mRNA had the highest difference also under this condition. In addition, transcripts encoding several kinases, a glycero-phosphate transporter, and several zinc-finger proteins were identified as further potential targets for the sRNA132 regulation.

In *Halobacterium salinarum* a "P box" could be identified as a motif involved in phosphate-dependent transcriptional regulation (4). A potential P box motif was also found upstream of the sRNA132 gene and the ABC transporter operon of *H. volcanii*. Fusion of the respective promoter regions to a reporter gene to characterize its function in phosphate-dependent gene regulation is currently under way.

OTP25

Game-based learning in a virtual microbiology laboratory

*S. Prove**, **H.-G. Reimer**, **F. Gers**

1 Beuth University of Applied Sciences Berlin, Biotechnology, Lab for Microbiology, Berlin, Germany

Villa Hirschberg Online GmbH, Berlin, Germany

Game-based learning is gaining increasing attention in different areas of school and university teaching and industrial training. We apply game-based learning to laboratory exercises in microbiology. These are composed as a complex ensemble of interconnected parallel processes. Using a game-based simulation, students should get the opportunity for independent, realistic preparation of the experiments. This asks for special requirements in the graphical user interface of the game-based learning application. It should provide pedagogically and educationally relevant monthly operations in the game transference to the real laboratory. To do this the user interface must provide a context-sensitive help, give immediate feedback in the form of praise and censure, and contain an evaluation and reward system. We demonstrate the realization of the user interface of the game-based learning application as a virtual lab including an assistant as avatar. The application has been evaluated quantitatively in a field trial with students in a real laboratory internship. The analysis of the results shows the added value of the application for the participants. It demonstrates in particular the ease of learning and the usability of the interface, as well as an increase of effectively for participants using the game-based application.

OTP26

Impact of genetics and parental microbiota on the gut microbiome of offspring

N. S. Treichel, **A. Schöller**, **Z. Prevoršek**, **B. Stres**, **M. Schöller**

1 Helmholtz Zentrum München, EGEN, Neuherberg, Germany

2 University of Ljubljana, Department of Animal Science, Ljubljana, Slovenia

The gut microbiome has great impact on the physical condition of its host. It is involved in the development of innate and adaptive immunity, defends its host against pathogens and influences the degradation and uptake of nutrients. Therefore the gut microbiome is strongly linked to phenotypic features of the host. Consistently, several studies showed that the transfer of gut microbiota from obese mice to germ-free mice increases total body fat compared to the transfer of a “lean microbiome”, which might be explained by the fact that the obese microbiome has an increased capacity to harvest energy from nutrition. Moreover, several studies suggest a genetic contribution to the composition of the gut microbiome: The gut microbiomes of one family are more similar to each other than to unrelated individuals and more similar within monzygotic twin pairs compared to dizygotic twin pairs (Goodrich 2014).

To further investigate the impact of the genetic make-up and the contribution of the microbiota of the mother on the gut microbiome of the offspring, we selected two mouse lines, that were derived from a long term divergent selection on body fat and weight (Bünger 1999), resulting in one mouse line that is prone to be obese (FLI), while the other is lean (FHI).

To discern the genetic contribution on the gut microbiome from the maternal one a cross fostering experiment was conducted. Half of a litter was exchanged between a FLI and a FHI mother. The other half of the litter was not exchanged and served as a control. The mice were dissected at 3 weeks age, and the DNA was extracted from the colon with content and the cecum with content. Investigation of the microbiome was performed by paired-end next generation sequencing. The sequences were taxonomically affiliated and analyzed at 97 % sequence identity with QiIME using the Greengenes database.

1 Diversity analysis shows a distinct influence of the mother as well as clustering of the samples according to genotype. This indicates that the genetics as well as the inherited communities have an impact on the individual’s microbiome. The two dominating phyla are, as expected *Firmicutes* and *Bacteroidetes*. On order level there is a noticeable difference in the abundance of *Clostridiales* and *Bacteroidales*. While *Clostridiales* are dominating in the gut microbiome of the lean FHI mice with 52 % abundance of all bacteria found, *Bacteroidales* take over the majority in the obese FLI mice. The abundances of these two orders in the mice that were cross fostered are lying in between the ones of the controls. In future data will be analyzed on family and species level, and an experimental set up with more time points, to investigate the further development of the microbiome, will be set up.

The conserved dsw gene cluster of R. sphaeroides encodes an uncommonly extended 5'UTR featuring sRNA and sORF

The spatial and temporal regulation of peptidoglycan biosynthesis and its role in cell morphology has been studied intensively in well-characterized model organisms such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus, which divide either by symmetric or asymmetric binary fission. To broaden our knowledge of the mechanisms governing bacterial morphogenesis, we have started to investigate the dimorphic marine alphaproteobacterium Hymphononas neptunium as a new model organism. H. neptunium is characterized by a unique mode of proliferation whereby new offspring is generated by the formation of buds at the tip of a stalk that emanates from the mother cell body. The main focus of our studies was the identification of cell wall biosynthetic enzymes and regulatory factors enzymes that are critically involved in stalk and bud biogenesis. To this end, we performed a comprehensive analysis of the localization patterns of all proteins with cell-wall-related functions encoded in the H. neptunium genome. In addition, we probed the essentiality of these candidate proteins by deletion analysis and interrogated the phenotypes of the resulting strains. These studies revealed that peptidoglycan biosynthesis in H. neptunium is a complex process based on an intricate interplay between many different factors. Using a fluorophore-conjugated D-amino acid to visualize nascent peptidoglycan, we found that the stalk is growing from the basis of the stalk pole through insertion of new peptidoglycan. In accordance with that homologs of peptidoglycan synthases and hydrolases localize to the stalk pole in a cell cycle-dependent manner. These results are the basis for future studies in H. neptunium to reveal the regulatory mechanisms of cell differentiation and budding.

between biotic and abiotic treatments. No differences of metal extraction rates have been found between the treatment with Aspergillus niger and the abiotic treatment.

OTP31

Characterization of DivIVA-ParB complexes dynamics in Corynebacterium glutamicum

*G. Giacomelli1, M. Bramkamp1
1LMU - AG Brämkamp, Department I - Microbiology, Planegg - Martinsried, Germany

Question: The partitioning protein ParB is known to organize the origin region of the bacterial chromosome. In Corynebacterium glutamicum ParB interacts with the polar localized protein DivIVA, thereby tethering the chromosome to the cell pole. Characterization of the ParB-DiviVA interaction, of their complex formation and their dynamics are of fundamental importance to understand the mechanisms underlying chromosome segregation in Corynebacterium glutamicum.

Methods: Dynamic protein localization, complex formation and protein interactions are analysed in strains encoding fluorescent fusion proteins at their native loci. Protein dynamics are visualized by means of fluorescence recovery after photo bleaching (FRAP) and subsequent statistical analysis using custom made R scripts. More detailed insights into cluster formation and subcellular structures are gained by using photoactivated localization microscopy (PALM).

Results: Complex formation of DivIVA-mCherry at the cell poles is influenced by the presence of ParB in a concentration dependent manner. Compared to DivIVA dynamics in absence of ParB, we observed a decreased half time recovery in presence of increasing ParB levels. ParB and DivIVA complexes form distinct nanostructures at the poles and PALM microscopy with 20 nm spatial resolution allows formulating a model for ParB and DivIVA organization within C. glutamicum cells.

Conclusion: Increased dynamics on the cytoplasmic side of DivIVA complexes, due to the increased concentration of an interaction protein (ParB), enhance the cluster subunit exchange rate. While the biological meaning of such a behaviour is still unclear, it can be speculated that increased ParB levels naturally occur in WT cells when extra replication stress proteins involved in detoxification of oxygen radicals such as microbe-material-interface was imaged with high resolution scanning electron microscopy (SEM).

Results: Surface coverages of the nanorough titanium thin films with E. coli and S. aureus were statistically significantly (p ≤ 0.05) reduced by 40.5 % and 55 %, respectively, after 11 h of adhesion on the rougher surface (6.1 nm) compared to the smoothest (2.0 nm). We found evidence that with decreasing titanium surface peak density and decreasing specific titanium surface area the surface coverage with microbes was reduced. Investigating the structure of the microbe-material-interface indicated that the initial adhesion of the microbes might be controlled by the number of nano contact points between the microbial cell and the material’s surface.

Conclusions: Our results suggest that surface roughnesses even in the very low nanometer range significantly influence microbial adhesion. These findings support the development of new antibiotic-free strategies to prevent implant-associated infections.

OTP33

Identification of antibiotic-tolerant persister cells in the zoontic pathogen Streptococcus suis

*J. Willenborg1, D. Willins1, R. Bertram1,2, R. Goethe1, P. Valentin-Weigand1
1University of Veterinary Medicine Hannover, Institute for Microbiology, Hannover, Germany
2University of Tübingen, Department of Microbial Genetics, Tübingen, Germany

Question: Bacterial adhesion as well. Understanding the fundamental physical processes was analyzed using confocal laser scanning microscopy. Titanium surface roughnesses in the nanometer range gained interest to reduce microbial adhesion. The aim of this study was to explore the unknown structure of the microbe-material-interface. To define the peroxide stress stimulon, exponentially growing stationary growth phase populations. Biphasic killing, typical for persister cell enrichment, was observed in both growth phases. Notably, S. suis persister cells can tolerate a variety of different antimicrobial compounds that were applied at concentrations vastly exceeding the minimal inhibitory concentration (MIC). Furthermore, we could show that phenotypical non-tolerance is not inheritable within a bacterial population, at least at the time points we investigated, and that the majority of persister cells consist of so-called type-I-persisters. Testing of additional S. suis strains and specific S. suis mutants indicate that persister cell formation may be very common in this species and seems to be related to central metabolic processes. Taken together, this is the first study that reports multi-drug-tolerant persister cells in the zoontic pathogen S. suis.

OTP32

Microbial adhesion on nanorough titanium – insight into the nanostructure of the microbe-material-interface

*C. Lüdecke-Beyer1,2, M. Roth3,2, J. Bossert1,2, K. D. Jandt1,2
1Otto Schott Institute of Materials Research, Chair of Materials Science, Jena, Germany
2Jena School for Microbial Communication, Jena, Germany
3Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Bio Pilot Plant, Jena, Germany

Background: Implant-associated infections are primarily initiated by the adhesion of microorganisms on the implants’ surfaces. Conventional approaches for preventing these infections most often comprise the use of antibiotics for coating or incorporation into the biomaterials, e.g. titanium surface roughnesses in the nanometer range gained interest to reduce bacterial adhesion as well. Understanding the fundamental physical mechanisms of the microbial interaction with nanorough material surfaces is the first step for developing new strategies to prevent implant-associated infections.

Aim: The aim of this study was to explore the unknown structure of the microbe-titanium-interface to shed light on microbial adhesion on this material. To gain related understanding of the physical mechanism of microbial adhesion as a function of nanoroughness, we linked it to the interfacial structure.

Methods: Adhesion of Escherichia coli and Staphylococcus aureus was investigated between 1 h and 11 h using physical vapor deposited titanium thin films as 2D model surfaces with nanoroughnesses (Rq) of 2.0 nm, 2.3 nm, 3.0 nm and 6.1 nm. Titanium surface topography was characterized with atomic force microscopy. Titanium surface coverage with the microbes was analyzed using confocal laser scanning microscopy. Bacterial cells adherent to the nanorough titanium thin films were cross-sectioned after 3 h and 9 h, respectively, using a focused ion beam. The

Results: Various differences of metal extraction rates have been found between the treatment with Aspergillus niger and the abiotic treatment.

Discussion: The unknown structure of the microbe-material-interface was imaged with high resolution scanning electron microscopy (SEM).
catalases remained constant. Considering the high hydrogen peroxide tolerance of D. shibae in contrast to other bacteria, it seems very likely that these proteins are constitutively highly expressed. Furthermore, induction of proteins belonging to the glucose (KDG pathway) and iron metabolism was detected. Notably, the argument of one potential iron regulator has been found to be reduced in response to oxidative stress, which is accompanied by a derepression of iron responsive genes.

OTP35

Creation of an IPTG and tetracycline inducible dudt-expression shuttle vector for Corynebacterium glutamicum and Escherichia coli

O. Goldbeck, G. Seibold

Question: C. glutamicum is a Gram-positive, biotechnologically relevant organism, which also serves as a model organism for various pathogens like Mycobacterium tuberculosis. Vector based protein-expression is a powerful tool for the investigation of various questions in this organism with regard to physiology, biotechnology and biochemistry. However, while dudt-expression vectors are well established for E. coli, no such system was described so far for C. glutamicum. In this work we aimed to create an expression system with two independently inducible promoters, followed by unique multiple cloning sites which enable the specific introduction of target genes. The creation of such a vector would bypass the two vector solutions used hitherto.

Methods: The backbone of the pCLtLon1 plasmid with its tetracycline inducible ptet/tetR system, and the ptac/lacI derived from the pEKeX2 vector. Standard cloning procedures were conducted to obtain the final vector, designated pOGOduet. Genes encoding the fluorescent proteins eYFP and eCFP were introduced in either one of the multiple cloning sites. Measurements of the exhibited fluorescence and fluorescence microscopic pictures of E. coli or C. glutamicum strains harboring the vector were performed to test the functionality of both sites of expression.

Results: Restriction analysis of the final vector resulted in the expected fragment-pattern. Transformation of the plasmid and derivatives encoding either eYFP, eCFP or both into E. coli or C. glutamicum was successful. Fluorescence measurements showed expression of both proteins and a tight regulation in correlation with the titration of the two inducer molecules in both E. coli as well as in C. glutamicum. The ptet/tetR system of the vector was tightly adjustable with anhydrotetracycline, as well as in C. glutamicum strains. The IPTG induction was less sensitive, but gave higher levels of expression.

Conclusion: The control experiments with fluorescent proteins proved that the new pOGOduet vector and its dudt feature is functional in both E. coli and C. glutamicum, offering versatile possibilities for its application.

OTP36

Surface wall biosynthesis in Streptomyces coelicolor

S. Sigle*, N. Steblau1, W. Wohlleben1, G. Muth

1Eberhard Karls Universität Tübingen, IMIT, Microbiology/Biotechnology, Tübingen, Germany

The Gram-positive soil bacterium Streptomyces coelicolor undergoes a complex life cycle with differentiation in substrate mycelium, aerial mycelium and spores. In contrast to the early developmental steps, the formation of proper spores is dependent on a protein complex similar to the peripheral proteins of the CISM complex which is attached to the extracellular site of the cell membrane. Besides CISM, the complex also contains a protein annotated as complex iron-sulfur molybdoenzyme (CISM), a hydrogen uptake hydrogenase which is accompanied by a derepression of iron responsive genes. The creation of such a vector would bypass the two vector solutions used hitherto.

Methods: The backbone of the pCLtLon1 plasmid with its inducible ptet/tetR system, and the ptac/lacI derived from the pEKeX2 vector. Standard cloning procedures were conducted to obtain the final vector, designated pOGOduet. Genes encoding the fluorescent proteins eYFP and eCFP were introduced in either one of the multiple cloning sites. Measurements of the exhibited fluorescence and fluorescence microscopic pictures of E. coli or C. glutamicum strains harboring the vector were performed to test the functionality of both sites of expression.

Results: Restriction analysis of the final vector resulted in the expected fragment-pattern. Transformation of the plasmid and derivatives encoding either eYFP, eCFP or both into E. coli or C. glutamicum was successful. Fluorescence measurements showed expression of both proteins and a tight regulation in correlation with the titration of the two inducer molecules in both E. coli as well as in C. glutamicum. The ptet/tetR system of the vector was tightly adjustable with anhydrotetracycline, as well as in C. glutamicum strains. The IPTG induction was less sensitive, but gave higher levels of expression.

Conclusion: The control experiments with fluorescent proteins proved that the new pOGOduet vector and its dudt feature is functional in both E. coli and C. glutamicum, offering versatile possibilities for its application.

OTP37

Subunit composition analysis of respiratory reductive dehalogenase complex in Dehalococcoides mccartyi

K. Seidel, A. Kublik1, L. Adriani

1Helmholtz Centre for Environmental Research – UFZ, Isotope Biogeochemistry, Leipzig, Germany

Persistent organic pollutants such as halogenated aromatic compounds and alkene can be transformed by some microorganisms, e.g. the organohalide-respiring bacteria Dehalococcoides mccartyi strain CBDBI. Strain CBDBI utilizes hydrogen as electron donor and chlorinated aromatic compounds or alkene as electron acceptor. The reductive dehalogenase (RdhA) is the enzyme that catalyses the dechlorination reaction. Investigations showed that RdhA is localised in a larger protein complex which is attached to the extracellular site of the cell membrane. Besides RdhA, the complex also contains a protein annotated as complex iron-sulfur molybdenzyme (CISM), a hydrogen uptake hydrogenase (Hup) and its three membrane anchoring proteins as well as an iron-sulfur cluster binding protein that is encoded in the Hup operon. In this study, we aimed to describe the composition and stability of this complex in more detail to get insight into how electron transfer takes place. First, we reproduced SDS-PAGE and PAGE analyses combined with nLC-MS/MS measurements to confirm the presence of all subunits and to determine the dehalogenation activity of the complex depending on the presence of different subunits. In the mass spectrometrical analyses the outer peripheric proteins of the complex were detected with more unique peptides and higher score values than the integral membrane proteins predicted to bind the peripheral proteins to the membrane. For example, in previous experiments only one putative anchoring protein (RdhB) of RdhA with only one unique peptide was found. To improve the detection of these membrane proteins, membrane preparations were incubated with proteinase K to cleave extra-membrane loops of integral membrane proteins (“Membrane Shaving”) and after solubilisation the naked transmembrane helices were objected to mass spectrometry. This resulted in an increased number of hits for RdhB proteins and the number of unique peptides for the membrane subunit of CISM. A further task was the purification of active complex or sub-complexes from crude cell extracts. Different chromatographic techniques, including anion exchange chromatography, gel filtration, hydrophobic interaction chromatography, and a combination of them were established. Refined understanding of the complex composition in terms of stoichiometry and a purified complex will allow further studies to address interaction sites and interaction strength among the subunits as well as experiments on how the subunits function together.
Clonal diversity of multiregion resistant Acinetobacter baumannii strains disseminated among hospitals in Upper Egypt

R. Samir Ahmed¹, M. Mohammed², M. Yones³, M. Amin²

1 Cairo University, Faculty of Pharmacy, Microbiology and Immunology. Cairo, Egypt
2Al-Azhar University, Faculty of Pharmacy, Assiut, Egypt

Acinetobacter baumannii growing resistance is a worldwide problem. The increasable strains of A. baumannii endanger the lives of millions of hospitalized patients every year. Continuous study of its resistance pattern is a must to control its devastating effect on the quality of medical treatment.

From January 2014 to May 2015, a total of 1021 isolates were collected from different wards of Al-Azhar and Assuit University hospitals, Assuit Government, Upper Egypt. A number of 69 (6.76 %) A. baumannii isolates were identified using both biochemical and PCR reactions. The PCR detected the presence of blaSIM gene unique to A. baumannii different strains.

The antimicrobial susceptibility pattern of the 69 A. baumannii isolates, determined by Kirby Bauer disc diffusion method, showed high resistance rates against Cefpime 94.2 % (65/69), Cefotaxime 92.75 % (64), Pipracillin 91.33 % (63), Cefazidine 98.85 % (62), Ceftriaxone 88.40 % (61), Ciprofloxacin 84.05 % (58), Tobramycin 82.60 % (57), Tazocapactam 81.16 % (56), Sulactam 79.71 % (55), Imipenem & Meropenem 78.61 % (53), Amphotericin B 75.96 % (52), Amikacin 75.91 % (51), Tigecycline 71 % (49). In addition to 2 pan-drug resistant isolates (2.90 %). On the other hand, Colistin was the most effective antibiotic with a susceptibility of 92.75 % followed by Doxycycline with 49.27 %.

The detection of metallo–β-lactamases (MBLs) using combined disk test (CDT) showed its presence in 90.56 % (48/53) of the Imipenem resistant isolates, while Cefotaxime resistant isolates of extended-spectrum–β-lactamase (ESBLs), tested by double disk synergy test (DDST), represented 73.84 % (48/64) of the tested isolates.

The carbapenemase-producing strains (CPS) were identified by the carbapenemase screen assay. Of the 69 tested isolates, while Cefotaxime resistant isolates of extended spectrum–lactamase (ESBLs), tested by double disk synergy test (DDST), showed its presence in 90.56 % (48/53) of the Imipenem resistant isolates, while the MBLs represented 73.84 % (48/64).

The detection of metallo–β-lactamases (MBLs) by closed disk test (CDT) showed its presence in 90.56 % (48/53) of the Imipenem resistant isolates, while Cefotaxime resistant isolates of extended-spectrum–β-lactamase (ESBLs), tested by double disk synergy test (DDST), represented 73.84 % (48/64).

This study demonstrated the dissemination of drug-resistant clones of A. baumannii carrying MDR among hospitals in Upper Egypt.

Results:

Most prominent was a novel hit family featuring a pyrazole extended thio urea core structure, termed PET motif. This motif resulted in Cu-dependent and Cu-specific S. aureus inhibition in the nanomolar range, while simultaneously being well-tolerated by eukaryotic cells (in vitro therapeutic index of ~ 30). Mitochondrial toxicity was not observed. In our novel mechanism, which in some instances dramatically enhanced their metabolic stability (T1/2 = 300 min).

Conclusion: We present the PET compounds as a new class of copper–related antibiotics with favorable medicinal characteristics and discuss their mode of action in the context of a potential synergy to Cu-driven innate immunity.

A small RNA involved in regulation of bacterial photosynthesis genes

K. Miller¹, G. Klug²

¹Justus Liebig Universität Gießen, Mikro- und Molekularbiologie, Gießen, Germany
²Kansas State University, Department of Chemistry, Manhattan, KS, USA

The photosynthetic model bacterium Rhodobacter sphaeroides faces photooxidative stress: the bacteriochlorophyll-mediated generation of singlet oxygen (1O2) in the light. This leads to a need of a tight regulation of the formation of photosynthetic complexes in the presence of oxygen. Our group intensively investigated this regulatory network and could identify a small RNA (sRNA), namely PscZ [1], which controls a small subset of photosynthetic genes. Therefore we further focus on other potentially involved sRNAs.

Essential for the development of the two light harvesting complexes (LHCl and LHClII), are the genes encoded in the psf and the puc operons. RNAseq data from these photosynthetic gene clusters indicated the presence of an sRNA, preliminary called RSspufX, directly downstream of the pscZ gene, in the same transcriptional direction as the pscZ gene [2]. The RNAseq data also showed that the abundance of the sRNA is strongly dependent on growth conditions, which could be verified via Northern blot analysis. RSpufXX has a size of around 77 nt and is strongly expressed under phototrophic growth and its expression is induced upon a shift from high to low oxygen conditions. The latter induction seems to be dependent on PrA and FurL, two major regulatory proteins controlling photosynthesis gene expression. An artificial increase in the amount of the sRNA by plasmid driven over-expression led to a reduced pigmentation and LHC amount in the cells, measured via absorption spectra and bacteriochlorophyll extraction. These findings further underline the sRNAs potential role in regulation of photosynthesis genes. Interestingly RSpufXX as well as parts of the psfX mRNA were enriched in an Hfq–coimmunoprecipitation [3]. To test whether RSpufXX binds and influences the pscZ mRNA we use a lacZ-based in vivo reporter system. In addition this system is used to uncover the influence of RSpufXX on a second potential target, bchJ which encodes a subunit of the chlorophyllide reductase and was predicted as a target using the InraRNA webtool.

Overall RSpufXX can be seen as a new RNA player in the control of photosynthesis gene expression, even tough its exact function remains to be elucidated.

in the DNA structure or by other mechanisms. Furthermore, single molecule experiments have revealed that a force of about 7 pN is sufficient to disrupt H-NS complexes, while the elongating RNA polymerase moves with the force of 25 pN. This suggests that an elongating RNA polymerase may be able to dislodge H-NS.

The aim of the project is to study the effect of transcription on H-NS repression. In our experimental system we use a module consisting of a constitutive promoter and conditional transcriptional terminator (AigR), and vary the transcription rate by expressing anti-terminator protein AigN. At classical H-NS repressed locus proU, the increase in transcription into H-NS binding regions reduces repression by H-NS. Similar results were obtained for other H-NS and H-NS/StpA repressed loci, namely yakA and uppY respectively. Further, we modulated the rate of transcription into the H-NS repressed proU locus by using the arabinose inducible Pbad promoter and by varying the concentration of arabinose. An increasing transcription rate could relieve the H-NS repression of proU and increased the expression linearly with respect to the arabinose concentration. Similarly, in the native context, read through from the upstream operon reduced the H-NS repression of the bgl operon.

Taken together, our data suggest that the transcribing RNA polymerase can dislodge H-NS from the DNA. The model is that at high transcription rates H-NS will not be able to rebind and form a repressing complex due to the engagement of RNA polymerase in the H-NS binding region, whereas at a low transcription rate H-NS is able to rebind and form a repression complex.

OTP43 Feedback control of leuO encoding a pleiotropic regulator and H-NS antagonist in Escherichia coli

M. Breddermann, K. Schnetz

University of Cologne, Institute of Genetics, Cologne, Germany

The enterobacterial LeuO protein is as a pleiotropic LysR-type transcriptional regulator and plays an important role in pathogenicity, stress adaptation and the CRISPR/Cas immunity system. Expression of leuO is silenced by the master regulator H-NS. Expression of leuO can be activated by BglJ-RcsB and a double-positive feedback loop regulation. The leuO gene is activated by BglJ-RcsB [2], and LeuO activates expression of bgfJ, encoded within the H-NS repressed yjjQ-bgfJ operon [1]. Activation of leuO by BglJ-RcsB is in addition antagonistically controlled by LeuO [2] suggesting that the double-positive feedback regulation of leuO is tightly controlled. The activation dynamics of the leuO promoter by the antagonistic action of LeuO and BglJ-RcsB were characterized by a leuO promoter fluorescence reporter fusion in dependence of ectopically expressed LeuO and BglJ. The leuO promoter activity was analyzed by flow cytometry which suggests that the antagonistic control of the leuO promoter activity by LeuO and BglJ-RcsB is controlled in a concentration-dependent manner. Furthermore, screening for additional activators of leuO revealed a further regulator which activates a third and a fourth leuO promoter and shows direct DNA-binding suggesting a more complex regulation of leuO expression. The obtained data serve as a basis for a theoretical model of the antagonistic regulation of the leuO promoter. With this model we wish to describe the regulatory elements of the leuO control circuit, which is likely to be important in the response to specific, virulence-related environments.

1. Stratmann, T., Madhusudan, S., & Schnetz, K. Regulation of the yjjQ-bgfJ operon, encoding LuxR-type transcription factors, and the divergent yjjP operator sequence of the rhamnose operon were located at 90-926-935 (2008).

OTP44 Cooperative binding of the transcriptional regulator RhrA to its operator sequence

S. Habersetzer, J. Altenbuchner

University of Stuttgart, Institut für Industrielle Genetik, Stuttgart, Germany

The ubiquitous gram-positive bacterium Bacillus subtilis is mainly found in the soil and in the rhizosphere of plants. For the breakdown of plant cell walls, which consists of complex, heterogeneous polysaccharides, B. subtilis secretes several carbohydrate degrading enzymes into its environment. The resulting mono-, di- and oligosaccharides can be taken up by the cells through specific transport systems for further metabolism. An example is the pectin macromolecule of plants which is composed of linear polygalacturonan and branched rhamnogalacturonan chains. The enzymes for rhamnogalacturonan degradation are encoded by two separate gene clusters. Another transcriptional unit encodes enzymes for the degradation of L-rhamnose. Remarkably, no rhamnose-specific transporter is encoded within the L-rhamnose utilization operon. According to this, B. subtilis grows poorly in minimal medium when rhamnose is added as the sole carbohydrate source. Up to now, the transcriptional regulatory mechanisms of the genes involved in the utilization of rhamnose mono- and oligosaccharides in B. subtilis has been proposed only on the basis of bioinformatical studies. Our focus lies on the regulation of the utilization of the deoxy-hexose sugar L-rhamnose which is a major component of the cell wall of plants and many other organisms. As previously experimentally validated, the second gene of the rhamnose operon, rhrA, encodes for a transcriptional repressor. In this study, we characterize the binding site and properties of the RhrA protein. By deletion analysis, the beginning of the operator sequence of the rhamnose operon was located at about position -60 relative to the transcription start site. In footprint experiments, RhrA-Strap-tag protects a region of 38-47 bp followed by a smaller region of about 22 bp. The major protected stretch comprises a direct repeat motif CAAAATA(C/T)AAAC(A/G)AAA. The operator sequence seems to be bound by monomeric RhrA proteins as indicated by molecular weight determination by GPC. Binding of RhrA to the operator sequence was also affirmed by electrophoretic mobility shift assay leading to the presumption of a cooperative manner of the binding reaction. In addition, by this method, L-rhamnolose 1-phosphate has been demonstrated to be the effector molecule of RhrA.

OTP45 First steps towards understanding the plant growth-promoting actions of Hartmannibacter diazotrophicus

Justus Liebig University, Institute for Applied Microbiology, Giessen, Germany

Justus Liebig University, Institute of Medical Microbiology, Giessen, Germany

Justus Liebig University, Bioinformatics and Systems Biology, Giessen, Germany

The recently described genus and species Hartmannibacter diazotrophicus E19 is part of a research project on halotolerant PGPB isolated from the rhizosphere of Hordeum secalinum and Plantago winteri plants growing in a natural salt marsh in Hesse (1, 3). Strain E19 is able to grow on non-water-soluble PO4 sources, nitrogen free media and showed acetylene-reduction activity; moreover growth on DF medium supplemented with ACC and its respective ACC-deaminase activity was demonstrated in cell suspensions. To test the interaction of strain E19 on barley, seeds of H. vulgare cv. Propino were surface sterilized and inoculated with the bacterium. Non-sterile salt adjusted soil (NaCl 1.75 %) was used for seed germination and 15 days after germination salt concentration was increased to 4.8 % NaCl. Forty-two days grown barley plants inoculated with strain E19 showed significantly increased root (308 %) and shoot (189 %) dry weights, and water content in the root system (378 %) compared to control treatment (E19 dead biomass). Also, root-to-shoot ratio was significantly increased, whereas the root Na+ concentration and root surface sodium uptake in barley plants decreased. Reduction of ethylene emission measured on barley plantlets under salt stress showed positive stress relieving effect of E19 due to its ACC deaminase activity. Roots colonization of E19 under salt stress conditions was revealed with a specifically designed fluorescence in situ hybridization (FISH) probe (2). E19 draft genome sequence consists of a single circular chromosome of 5.4 Mbp. Its genome relationship based on average nucleotide identity (ANI) mean values with available genome sequences shows as closest relative members Pleomorphomonas within unclassified Alphaproteobacteria. E19 genome includes several genes involved in PGP traits including phosphate solubilization, nitrogen fixation, and ACC deaminase production. Improvement in gene annotation is in progress in order to assign gene functional classification, metabolic reconstruction and comparative genome sequence analysis with other PGPB to better understand the bacterium gene content that could be involved in PGP.

OTP46
Characteristics of antibiotic sensitivity *S. aureus* extracted from milk of clinically healthy highly productive animals.
O. Artemieva1, *D. Nikanova*, I. Vinogradova1, E. Gladys1, N. Zinovieva1
1L.K. Ernst Institute of Animal Husbandry, Animal Biotechnology and Molecular Diagnostics, Podol, Russian Federation

Causes significant economic losses to animal husbandry is mastitis (inflammation of the mammary gland), caused by infection with hemolytic streptococci and *staphylococci*. They stand out in the treatment of acute and sub-clinical mastitis (Black R. A. et al., 2014, J. Dairy Sci.). The aim is to monitor the herd of cows for the presence of hemolytic streptococci and *staphylococci*, followed by determination of antibiotic resistance. *Staphylococcus aureus* strains isolated from milk. Milk samples of clinically healthy Holstein cows have been investigated from each animal individually, from 1 to 7 of lactation (n = 345, in2015). The animals were divided into 4 groups: I - streptococci and *S. aureus* were not found; II - only streptococci were found; III - only *S. aureus* were found; IV - streptococci and *S. aureus* were detected. 1.0 mL of sample was added to 9.0 ml of saline broth, cultured for 24-48 hours at t = 38.0 ± 1.0°C under aerobic conditions, followed by transfer of the method debilizing stroke to the surface Baird Parker Agar and Azide Blood Agar «Pronasidas» with defibrinated sheep blood, with the same culture conditions. The species group was determined using set of HiStaph KB004R and coagulation reaction using "rabbit citrate plasma dry". Profile of antibiotic susceptibility of *S. aureus* isolates was determined by the method disk-diffusion in accordance with diameter of growth inhibition zones (mm) in the medium of AGV type. To determine meticillin resistant *staphylococcus* (MRSA) was used test MRSA Alert w/swabs. As a reference strains were used *Staphylococcus aureus* MRSA ATCC 43300 and *Staphylococcus aureus* ATCC 25923. The studied forms of microorganisms in 22.0 % cows were not detected, whereas in 78.0 % cows the presence of hemolytic streptococci and/or *S. aureus* were determined. Contents of *S. aureus* ranged from 3 in the milk cows of group III, and in group IV - from 1.0 to 7.8 log10 CFU/ml. The *S. aureus* isolates were resistance to benzypenicillin (12.7 %), gentamicin (3.8 %), erthyromycin (59.5 %), lincomycin (97.5 %), rifampicin (16.5 %), ciprofloxac, (11.4 %), vancomycin (1.3 %), fusid acid (50.6 %) and novobiocin (26.6 %). One isolate (1.3 %) was resistant to oxacillin. This requires further investigation their genetic structure by using molecular methods.

The research was supported by the Russian Science Foundation, project № 15-16-00020.

OTP47
Gas chromatographic/mass spectrometric approach to the detection of peptidoglycan in Gram-negative bacteria
P. Schumann
Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany

Peptidoglycan (PG) layers in cell walls of Gram-negative bacteria are occasionally very thin and hardly detectable. Due to the lack of suitable detection methods for PG and to the resistance to beta lactam antibiotics targeting the peptidoglycan synthesis, it had been assumed that peptidoglycan is absent in certain Gram-negatives like e.g. in planctomycetes, chlamydiae or rickettsiae. Recent bioinformatic evidence of the presence of enzymes essential for PG synthesis in such organisms challenged these hypotheses. Thereby sensitive analytical approaches for detection of peptidoglycan gained in importance. PG of Gram-negatives is structurally rather uniform with 2 types, A1-

OTP48
Marine metagenomes as a source for novel enzymes involved in pigment biosynthesis.
B. Ledermann, O. Böjä1, N. Frankenberg-Dinkel1
1Technical University Kaiserslautern, Microbiology, Kaiserslautern, Germany
2Technion Israel Institute of Technology, Haifa, Israel

All functional light harvesting bilin chromophores in cyanobacteria are derived from heme. The heme oxygenase (HO) catalyzed cleavage of heme at the α-carbon position yields the first open-chain reaction product biliverdin IXα (BV). BV is further reduced by ferredoxin-dependent bilin reductases (FDBRs) to the specific light-harvesting pigments. During a deep screening of the VirMic dataset, a new family of putative FDBRs (designated PcyX) as well as a new family of HOs (designated HemO) was discovered that each group together as a new branch in a phylogenetic tree. The VirMic dataset [1] includes scaffolds from the "global ocean survey" (GOS) [2] that are considered to be of viral origin but contain microbial gene clusters. In order to determine whether PepX and HemO are functional enzymes, synthetic genes were expressed in *E. coli*. HO and anaerobic FDBR assays with affinity purified protein and the respective substrate established that the enzymes are functional. Furthermore, we identified the specific reaction product of HemO as biliverdin IXα. Also, first results showed that a phage derived PepX reduces BV to phycoerythrobilin (PEB) with 15,16-dihydrobiliverdin (DHBV) as an intermediate. Moreover, a related PepX sequence from *Actinobacterium* reduces BV IXα to a pigment with retention times similar to 3(1E, 2E)-phytochromobilin (PPhB) and/or 18, 18-DHBV. To further characterize the PepX reactions, we are currently working on time-resolved FDBR assays, mutagenesis experiments as well as crystallization studies.

References
of amino acids in the donor cell, possibly due to deregulation of feedback control of amino acid biosynthesis pathway. Altogether, our results show a metabolic coupling between cells via nanotubes which suggests that bacteria may function as interconnected entities rather than single, autonomous units.

STP03

The multi-functional transcriptional activator ComA from Bacillus subtilis has distinct sequence requirements for interacting with DNA

R. Valentina, D. Wolf*, I. Bischel*
University of Heidelberg, ZMBH, Heidelberg, Germany

There are multiple ways how transcription factors regulate gene expression. If a transcription factor is capable of inserting itself into the transcription process in more than one way, and thus effectively acts as a bi- or multi-functional transcription factor, alternative DNA binding sites could have evolved to enable it to carry out each separate function. Here we report that the quorum sensing master regulator ComA from Bacillus subtilis recognises a set of topologically distinct sequence motifs. We provide in vitro (EMSA}s) and in vivo (promoter activity measurements) evidence that the different sites play an important role in facilitating type I and type II promoter activation, respectively, by interacting with different subunits of RNA polymerase. Together our data support a model in which and type II promoter activation, respectively, by interacting with different subunits of RNA polymerase. Together our data support a model in which

STP04

Stress sensing and signal transmission by PspB and PspC in the cytoplasmic membrane of Escherichia coli

E. Heidrich, T. Brüsele
Leibniz University Hannover, Institute of Microbiology, Hannover, Germany

In Escherichia coli the phage shock protein (Psp) system is up-regulated by manifold stresses that harm the cytoplasmic membrane. The expression of the pspABCDE operon and pspC is ε-dependent and up-regulated by PspF, which in turn is negatively regulated by PspA [1]. It is thought that the membrane-integral components PspB and PspC are able to sense membrane stress and transduce the signal to PspA. Despite of various Psp component interaction studies under stress and non-stress conditions, it is still unresolved how exactly the stress signal is sensed and transduced between the Psp components. We used a site-directed mutagenesis approach with a pspD promoter activity read-out to determine the domains of the membrane-bound components PspB and PspC that are involved in signal sensing and transduction in E. coli. According to our data, a specific C-terminal region of PspC is essential for signal transduction from the membrane-bound components PspB and PspC to PspA, resulting in activation of PspF. Most likely, the C-terminal PspC domain adopts a specific PspA-interacting conformation in response to stress sensing at other regions of PspB or PspC.

STP05

Pyruvate – the stimulus for the two-component system YehU/YehT in Escherichia coli

I. Kristoficova, S. Behr, M. Wittig, P. Schmitt-Kopplin, K. Jung
LMU, Microbiology, Munich, Germany

Helmholtz Zentrum, Analytical BioGeoChemistry, Munich, Germany

Two-component systems represent a prevalent bacterial mechanism to respond to changing environmental conditions. In most cases they consist of a membrane-integrated histidine kinase (HK) and a soluble response regulator (RR) that controls target gene expression. In E. coli the HK/RR YehU/YehT system contributes to carbon scavenging before entry into the stationary phase. The system belongs to the LytS/LytTR family and regulates the expression of yjiY, encoding a putative peptide transporter belonging to the CsaA superfamily (1).

Here we investigated the chemical stimulus perceived by the YehU/YehT system. We found that activation of YehU/YehT and expression of yjiY is dependent on nutrient starvation and the extracellular availability of pyruvate. Binding of pyruvate to YehU in right-side-out membrane vesicles was confirmed in vitro by using the differential radial capillary action of ligand assay (DRaCALA). This study also demonstrates that the method of DRaCALA can also be applied to binding analysis of radioactive ligands to proteins integrated in membrane vesicles.

Furthermore, we determined the extra- and intracellular concentration of pyruvate of a growing culture of E. coli using hydrophilic liquid chromatography and observed control with yjiY expression. Taken together, we present evidence that the histidine kinase YehU responds to extracellular pyruvate under nutrient limitation.

STP06

Functional characterization of novel extracytoplasmic function (ECF) sigma factors from Streptomyces venezuelae

Q. Liu, D. Pinto*, T. Mascher*
Ludwig-Maximilians-Universität München, Department Biology I, Munich, Germany

Technische Universität Dresden, Institut für Mikrobiologie, Dresden, Germany

Bacteria populate complex habitats in which extracellular conditions can rapidly change. In order to survive in such environments, bacterial cells need to be able to sense and respond to such changes. A common mechanism to control gene expression is the use of alternative sigma factors, which are the subunit of the RNA polymerase that determines promoter specificity. In addition to the primary sigma factor, most bacteria harbor a number of alternative sigma factors of extracytoplasmic function (ECFs) that redirect the RNA polymerase to alternative promoters. Ongoing comparative genomics efforts in our group have identified numerous novel ECF groups with potentially unique regulatory features (1, 2). ECF42 is one such novel group of ECF sigma factors identified in our previous work. This large and phylogenetically diverse group is distributed over ten bacterial phyla. ECF42 sigma factors are longer than traditional ECF sigma factors due to the presence of a C-terminal extension containing tetratricopeptide repeat (TPR) domains, which are usually involved in mediating protein-protein interactions. Additionally, one or more copies of genes encoding DGPF proteins of unknown function are found in the direct vicinity of those encoding ECF42s. So far, none of the sigma factors belonging to this group has been experimentally analyzed. It is our aim to functionally characterize ECF42 sigma factors in Streptomyces venezuelae. To investigate the biological function of ECF42 sigma factors we have created deletion and overexpression mutants to be subjected to phenotypic screening. Additionally, putative target promoter sequences were investigated in S. venezuelae. ECF42 coding genes were overexpressed from a constitutive promoter and their putative cognate promoters fused to the β-glucuronidase gene. The same sequences were also analyzed in Bacillus subtilis. In this case, ECF42 coding genes were codon optimized for expression in the heterologous host and placed under the control of a xylose inducible promoter. Target promoter activity was monitored through bioluminescence production. Moreover, we have demonstrated interaction between S. venezuelae ECF42 sigma factors and B. subtilis RNA polymerase through pull-down assays. Additionally, bacterial two-hybrid assays performed in Escherichia coli suggest that ECF42 sigma factors do not interact with the cognitive DGPF proteins. In conclusion, our work provides first insights into the function and mechanism behind ECF42 sigma factors activation in S. venezuelae.

STP07

Physiological importance of the YehU/YpdAB nutrient-sensing network in Escherichia coli

C. Vilhena*, S. Brämeyer*, S. Behr*, K. Jung
Ludwig-Maximilians-Universität München, Microbiology, Martinsried, Germany

Varying environmental conditions (e.g., nutrients, pH, ions) force bacteria to constantly sense changes, transmit the information to the interior and
respond accordingly. *Escherichia coli* has 30 two-component systems, and most of them are composed of a membrane-integrated histidine kinase and a cytosolic response regulator. In our laboratory we focus on the two histidine kinase/response regulator systems YehU/YehT and YpdA/YpdB, which are involved in nutrient-sensing. Both systems are activated at the transition to stationary phase, and regulate the expression of *yjY* and *yjX*, respectively, each coding for a nutrient transporter of yet unknown function. An interconnected response between both signalling systems is mediated via the transporters, suggesting the existence of a larger signalling unit [1].

On single cell level we observed heterogeneous expression of *yjY* and *yjX* in LB medium. In strains lacking one of the transporters the heterogeneous response was converted into homogeneous expression. This indicates the importance of feedback regulation to establish heterogeneous behaviour.

Furthermore, we found a significantly higher percentage of persistor cells in mutants lacking both systems, providing first evidence of a connection between the YehU/T and YpdA/B systems and persister cell formation. Overall, it is hypothesized that differences in carbon source availability trigger the formation of subpopulations as part of a bet-hedging strategy.

STP08

GbsR – transcriptional regulator of glycine betaine synthesis in *Bacillus subtilis*

B. Warmbold, S. Ronzhimeier, T. Hoffmann, E. Bremer

Philips-Universität Marburg, Laboratory for Microbiology, Department of Biology, Marburg, Germany

Question: Confronted with hyper osmotic stress, the soil bacterium *Bacillus subtilis* accumulates compatible solutes to maintain cell turgor and viability. Glycine betaine is such a compatible solute and it can be taken up from the environment by the Opu-transporters or synthesized and viability. Glycine betaine is such a compatible solute and it can be taken up from the environment by the Opu-transporters or synthesized from the precursor choline. Oxidation of choline is mediated by the dehydrogenases GbsB and GbsA, whose structural genes are transcribed from the same promoter (Boch et al., 1996, 1997). Upstream of the gbsAB operon the gbsR gene is located which encodes a choline-responsive repressor regulating the gbsAB operon as well as the opuB operon, encoding a specific transporter for choline (Nau-Wagner et al., 2012).

Here we present a characterization of GbsR and its involvement in regulation of both the glycine betaine synthesis pathway and the uptake of the precursor choline by the choline-specific OpuB-transporter in *B. subtilis*.

Methods: We carried out bioinformatic analysis to identify GbsR binding sites upstream of gbsAB and opuB, followed by mutagenesis of putative binding sites and measurement of transcriptional activity using treA-reporter gene fusion. Fluorescence spectroscopy measurements were performed to analyze the choline binding pocket of the GbsR homologue OpuAR from the marine bacterium *Bacillus infantis* NRRL B-14911.

Results: Bioinformatic analysis revealed a palindromic repeat within the in silico predicted GbsR binding site by Leyn et al. (2012). Mutations of this region abolish GbsR-mediated repression as shown by gbsA-trea reporter fusions. Binding of the ligand choline to the GbsR repressor regulates repression of the gbsAB operon. An in silico model of the GBSR protein structure showed four phenylalanines, that are supposed to form a choline binding pocket. We constructed mutants of the GbsR homologue OpuAR of *B. infantis* NRRL B-14911 and determined their binding affinity for choline by fluorescence spectroscopy. With this approach we were able to show that each of the phenylalanine residues is involved in the binding of choline.

Conclusion: Through bioinformatic and mutational studies we identified GbsR binding sites in the gbsA and opuB operons downstream of the transcriptional start site. Hence, the choline-responsive GbsR-repressor genetically acts through a road-block mechanism. Site-directed mutagenesis of the gbsR-related repressor protein OpuAR suggests the location of the binding-site for the inducer choline.

STP09

Screening for effector molecules driving pristinamycin biosynthesis

F. Handel, W. Wohlieben, Y. Mast

Universität Tübingen; Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Tübingen, Germany

The biosynthesis of the streptogramin antibiotic pristinamycin in Streptomyces pristinaespiralis is governed by a complex signaling cascade that involves at least seven different transcriptional regulators (SpbR, PapR1, PapR2, PapR3, PapR4, PapR5, and PapR6)1. Three of them - SpbR, PapR3 and PapR5 - belong to the TetR-like family. SpbR (S. pristinaespiralis butyrolactone-responsive transcriptional repressor) is suggested to be a γ-butyrolactone (GBL) receptor protein, whereas the ligand binding activity of PapR3 and PapR5 is not known so far. TetR-like regulators, derived from antibiotic gene clusters, can either act as ‘real’ GBL receptors or as ‘pseudo’-GBL receptors. ‘Real’ GBL receptors accept GBLs as ligands, whereas ‘pseudo’-GBL receptors bind antibiotics or intermediates thereof. To investigate if SpbR, PapR3 and PapR5 act as ‘real’ or ‘pseudo’-GBL receptors, electromobility shift assays (EMSA) have been performed with SpbR, PapR3 and PapR5 together with their cognate target DNA in the presence of different effectors.

EMSA studies showed that the addition of synthetic GBL (1,4-butyrolactone), as well as the addition of crude extracts from the *S. pristinaespiralis* wildtype or the pristinamycin-deficient mutant *snpA2* prevents the DNA-binding of the TetR-like regulators, whereas the addition of pure pristinamycins does not, suggesting that GBL-like molecules, but not pristinamycin or its intermediates, serve as effectors for the TetR-like regulators. Thus, SpbR, as well as PapR3 and PapR5 act as ‘real’ GBL receptors. In accordance with these data, we found that the addition of synthetic GBL to the *S. pristinaespiralis* culture leads to a significant increase of pristinamycin production, which demonstrates that GBL is an inducer of pristinamycin biosynthesis.

So far the GBL biosynthetic gene(s) is/are not known. Recently, a putative pristinamycin effector biosynthesis gene, *snbU*, has been identified within the pristinamycin gene cluster, which codes for a putative cytochrome P450 monoxygenase2. Interestingly, inactivation of the *snbU* gene led to an increase of pristinamycin biosynthesis, which indicates that SnbU has a regulatory effect on pristinamycin production. Furthermore, EMSA studies showed that culture extracts from the *snbU* mutant could not prevent the above mentioned regulator-DNA binding, suggesting that SnbU is involved in pristinamycin effector biosynthesis.

STP10

Unraveling unknown factors for ClpC-dependent proteolysis during sporulation in *Bacillus subtilis*

M. Birk, A. Elsholz

Max Planck Institute for Terrestrial Microbiology, Ecophysiology, Marburg, Germany

Protein degradation is an important physiological process over all three kingdoms of life, ensuring a functional proteome by removal of damaged or misfolded proteins and as an essential aspect of cell regulation. For regulatory purposes, fully functional molecules such as transcription factors are degraded rapidly, setting a complex regulatory circuit in motion. Hsp100/Clp proteins are ATP-dependent chaperones and are part of AAA+ proteases, which drive the protein degradation in low GC, Gram-positive bacteria such as *Bacillus subtilis*. The Hsp100/Clp protein ClpC is part of a protease complex that mediates degradation of different regulatory proteins. All ClpC activities in *B. subtilis* require adaptors that mediate assembly of the protease complex, recognition of the substrate and unfoldase activity. To this point in time, only two adaptor proteins for ClpC have been identified but previous research gives reason to suspect the existence of at least one more adaptor.

For this project we are focusing on investigating the proteolytic events that mediate the activation of specific regulatory processes during the onset and early stages of sporulation in Gram-positive bacteria. This knowledge will provide information that might enable the manipulation of important physiological processes not only in *B. subtilis* but also in other Gram-positive spore formers.
The stringent response is a starvation stress response which is highly conserved in bacteria. Upon induction, the small alarmone (p)ppGpp is produced and regulates multiple cellular functions. In Escherichia coli, initiation of DNA replication and cell division are blocked by the stringent response. The aim of this work was to analyze the influence of the stringent response on DNA replication and cell division in Vibrio cholerae, the causative agent of the cholera disease. Because of its two chromosomes, V. cholerae is commonly used as a model organism for bacteria with multipartite genomes. In great contrast to E. coli, V. cholerae cells pass through a controlled process with several cell divisions and a reinitiation of DNA replication upon stringent response induction. Flow cytometry analyses of DNA-stained cells revealed that this process consists of two phases. In the first phase, cells finish their ongoing DNA replication and divide. In the second phase, cells initiate the DNA replication again synchronously before dividing into cells with only one complete chromosomes. The amount of cells entering the second phase and the time point of the second phase start was found to be dependent on the stringent response induction level. These findings might indicate a homoeostatic regulation mechanism. Analysis of mutant strains revealed that the stringent response induced division-initiation program was dependent on RelA, one out of three (p)ppGpp synthetases in V. cholerae. Using a Vibrio cholerae strain in which the two chromosomes are fused we found that the division-initiation program was not dependent on chromosome II replication. Further investigations on the cellular program following stringent response induction might help to understand the general mechanisms governing DNA replication of the multipartite genome in Vibrio cholerae.

STP12

Substrate-induced protein acetylation dynamics in Dehalococcoides mccartyi CBDB1

*D. Türkowsky1, F. Greiner-Haas2, U. Lechner2, M. von Bergen1, N. Jehmlich1
Helmholtz Centre for Environmental Research UFZ, Proteomics, Leipzig, Germany

Halogenated organic compounds are among the most widespread groundwater contaminants in industrialized countries. Dehalococcoides mccartyi CBDB1 is an obligate organohalide-respiring anaerobic bacterium which can detoxify a wide range of these compounds. For catalyzing this step CBDB1 possesses as many as 32 rdhA genes, encoding confirmed and putative reductive dehalogenases. It is of great interest to understand the substrate specificity of these enzymes and how they are regulated. Protein lysine acetylation is a dynamic and reversible post-translational modification (PTM) for global regulation which has long been underestimated. It is known that acetylation profiles change depending on carbon source and growth phase. Here we present the proteome and acetylome of CBDB1 grown with 1,2,3-trichlorobenzenes as an electron acceptor and harvested at different growth phases. Lysine-acetylated peptides were enriched by affinity purification, followed by nano-HPLC-MS/MS analysis for lysine acetylation characterization. As a result, we identified the metabolic pathways and protein subcellular localizations which are mainly affected by acetylations. In addition, we compared the acetylation results using different search engines to identify proteins from mass spectra. The results reveal metabolic networks and signal transduction pathways of Dehalococcoides mccartyi CBDB1. The magnitude of acetylation sites and broad range of fundamental cellular processes affected by this post-translational modification suggest its pivotal role in regulating this strict organohalide respiration-dependent life-style.

STP13

Adaption to stationary phase and nutrient limitation via the replication initiator DnaA in C. crescentus and E. coli

*D. Leslie1, C. Heinen1, M. Thüring1, F. Schramm1, C. Aakre2, M. Laub2, K. Jonas3
1Philipps-Universität Marburg, SYNMIKRO, Marburg, Germany
2Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, USA

Chromosome replication is a crucial part of the cell cycle of all organisms and is subject to strict regulation. In almost all bacteria, initiation of chromosome replication requires the conserved protein DnaA. Tight regulation of DnaA is important to coordinate DNA replication with growth rate and to block replication initiation under stress conditions. Previous work in the model bacterium Caulobacter crescentus has shown that DnaA levels are downregulated under different stress conditions. It was recently shown that DnaA degradation by the protease Lon is upregulated in response to proteotoxic stress, resulting in a drop in DnaA levels and cell cycle arrest. We now show that the synthesis of DnaA is adjusted upon entry to stationary phase and in response to nutrient levels, in both C. crescentus and E. coli, coupling replication initiation to growth rate. We measured replication status and DnaA levels by flow cytometry and western blotting upon growth into stationary phase in rich medium, and during carbon exhaustion in minimal medium. In C. crescentus, we observe an elimination of DnaA under both conditions, accompanied by replication arrest. We show that the constitutive degradation of DnaA by Lon remains unchanged, and that a dramatic downregulation of DnaA synthesis is responsible for the decrease in DnaA levels. We also show that the long 5' untranslated region (UTR) of dnaA is required for the downregulation of DnaA synthesis. DnaA levels are higher in rich medium than in minimal medium, indicating a link between nutrient availability and DnaA synthesis via a mechanism involving the 5'-UTR.

In E. coli, we also observe the elimination of DnaA upon entry into stationary phase, accompanied by replication arrest. Our preliminary results suggest that regulation of synthesis is responsible for the decrease in DnaA levels, and that the alarmone (p)ppGpp plays a role in this regulation, in contrast to C. crescentus, where DnaA levels are regulated independently of (p)ppGpp. In further contrast to C. crescentus, in E. coli DnaA is not rapidly degraded. Our results show that precise control of DnaA levels plays an important role in adapting replication and growth to changing environmental conditions, and that in C. crescentus this is achieved by adjusting both translation and proteolysis of DnaA. Although the mechanisms employed by E. coli may be different, the patterns of DnaA regulation and replication arrest achieved appear to be very similar.

STP14

BceRSAB-like systems from Lactobacillus casei: delving into function and regulation.

*A. Revilla-Guarinos1, C. Alcántara2, S. Gebhard3, T. Mascher1, M. Zúñiga2
1Institute of Microbiology, Technische Universität Dresden, General Microbiology, Dresden, Germany
2Institute of Agrochemistry and Food Technology, Valencia, Spain
3University of Bath, Department of Biology and Biochemistry, Claverton Down, Great Britain

Lactobacillus casei is a probiotic lactic acid bacteria exposed to a wide variety of environmental stresses, such as antimicrobial peptides (AMPs). Signal transduction Two Component Systems (TCS) play a major role in bacteria to detect adverse changes in the environmental conditions and to activate specific responses to counteract them. They typically consist of an intramembrane sensor histidine kinase (HK), and a response regulator (RR) which controls the expression of specific genes mediating the specific adaptive response. A special case are BceRS-like TCS since the RR may be different, the patterns of DnaA regulation and replication arrest achieved appear to be very similar.
but how specificity is attained in TCS with a high degree of similarity at the sequence and structural levels remains an unanswered question. In the current study, we focus in two main questions: firstly, if cross-regulation is possible between these highly similar signaling pathways; secondly, what is the function of Orphan ABC. To address these questions we created a collection of single and double mutants deficient in different combinations of Bce-like elements. These mutants were phenotypically characterized in response to AMPs and the expression of the genes of interest was monitored by RT-qPCR after nisin or subtilin challenges. We also performed recombinant expression of RR12 and binding assays (EMSA) to the Bce regulated promoters [1]. Our results show firstly, that BceRS-like TCS are not essential in L. casei BL23. Secondly, that Orphan ABC inactivation increased the resistance to nisin. Thirdly, that cross-regulation between Module09 and Module12 is possible at least at the level of RR-promoter interaction, under the conditions tested. Our results highlight the regulatory complexity within BceRSAB-mediated signal transduction.

STP15
Induction of the heat shock response inhibits proliferative processes in Caenobacter crescentus
F. D. Schramm1, K. Jonas1
1Philips-Universität Marburg, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany

In most organisms the highly conserved DnaK chaperone homologs play a key role in thermal stress adaptation by preventing the accumulation of toxic protein aggregates. In addition to these direct damage-preventing functions, these proteins can also act as negative regulators of the heat shock response (HSR). In various bacteria, DnaK is not only required during heat shock conditions but is essential for proliferation at physiological and low temperatures. In the freshwater bacterium Caenobacter crescentus, depletion of DnaK results in a block of DNA replication initiation and a growth arrest. While our previous work revealed how DnaK affects DNA replication, it remains unclear how it promotes cellular growth under non-stress conditions. Here, we use a combination of genetics and cell biology to elucidate how DnaK function is linked to the regulation of the growth rate at different temperatures. Since DnaK is well known for its global chaperoning function we hypothesized that its loss might induce strong protein aggregation culminating in a growth arrest. However, in vivo aggregation assays revealed that depletion of DnaK at normal growth temperature does not induce a significant increase in the amount of protein aggregates. Instead, we found that induction of the HSR in DnaK-depleted cells is the primary reason for the observed growth inhibition. Reducing the HSR, either by mutating the heat shock sigma factor RpoH, restores growth in the absence of DnaK in a temperature-dependent manner. Interestingly, the growth defect of DnaK-depleted cells can also be compensated by overexpression of the housekeeping sigma factor RpoD suggesting that high levels of RpoD can outcompete RpoH for binding to the RNA polymerase, hence reducing the HSR. We are currently investigating if rpe versus high levels of RpoD can outcompete RpoD and in this way directly inhibit growth processes by sigma competition. Alternatively, we are also examining if strong induction of the HSR by RpoH results in increased degradation of growth-promoting proteins through the upregulation of cellular proteases. In sum, our data provide evidence that in addition to directly protecting the cell against damaged proteins by upregulation of heat shock proteins, induction of the HSR inhibits processes essential for growth. A growth inhibitory role of the HSR might be critical to ensure cellular survival under adverse conditions, when bacteria must rapidly shift gears from a proliferative mode to damage prevention and repair in order to preserve cellular integrity.

STP16
The DxxdQ phosphatase motif of the sensor kinase NreB of Staphylococcus carnosus
A. Kretzschmar1, S. Nikkens1, G. Unden1
1Johannes Gutenberg University, Institute for Microbiology and Wine Research, Mainz, Germany

Question: The anaerobic nitrate respiration of Staphylococcus carnosus is regulated by the two component system NreBC and the nitrate sensor NreA. In the absence of oxygen the sensor kinase NreB is autophosphorylated at a conserved histidine residue (H159). The phosphoryl group is transferred to a conserved aspartate residue of the response regulator NreC which activates the gene expression of the nitrate reductase narG. The activity of NreB is modulated by interaction with NreA. Together they form a nitrate/oxygen sensor complex.[1, 2] NreB contains a DxxdQ motif which is responsible for the phospho-accepting histidine residue. In the nitrate sensor NarX of E. coli this motif is crucial for both the autokinase activity of NarX and the dephosphorylation of the response regulator NarL.[3] It was tested whether the DxxdQ motif regulates NreB activity.

Methods: Variants of NreB with mutated DxxdQ motif were produced by site directed mutagenesis. The variants were tested in an in vivo narG-lip reporter gene assay. In vitro phosphorylation of the variants as well as the phosphotransfer from sensor to response regulator were tested anaerobically with [γ-32P]-ATP and a phosphopimager.

Results: The DxxdQ motif is not involved for their effects on the regulation of the nitrate respiration. While the wild type showed a strong activity under anaerobic growth which was further increased by nitrate, the activity of the variants was strongly influenced. The Q164H variant led to an increased activity under both aerobic and anaerobic conditions independent of nitrate. A wild type NreB was phosphorylated and the phosphoryl group was completely transferred to NreC. Although NreC still was phosphorylated the variant Q164H remained partially phosphorylated indicating that the phosphotransfer is affected.

Conclusion: The results indicate that the DxxdQ motif is involved in the activity of NreB. The Q164H variant strongly affected the regulation of the nitrate respiration due to decreased phosphorylation activity and an incomplete phosphotransfer to NreC.

STP17
Cph2 – a four colour light sensor produces c-di-gmp as a final output signal
V. Angerer1, T. Wallner1, A. Wilde1
1Albert-Ludwigs-Universität Freiburg, Biologie III, Freiburg, Germany

Questions: The cyanobacterium Synechocystis sp. PCC 6803 uses, like many other bacterial species, cyclic di-GMP as a second messenger. Cyanobacteria as well as other phototrophic bacteria encode proteins which contain the c-di-GMP metabolizing domains GGDEF and EAL and link to light sensing domains. One example is the four colour photoreceptor Cph2: it comprises in its whole six domains (GAF-GAF-GBDE-EAL-CBCR-GGDEF) in which domain 5 (CBCR) is a green/blue light sensing domain, that controls the enzymatic activity of the following GGDEF domain (domain 6). The biological function of this CBCR-GGDEF module has successfully been elucidated in c-di-GMP depending phototaxis.[1] The domains 1 and 2 (GAF-GAF) of Cph2 represent a red/ far red light sensing module and have been subject of biochemical research,[2] but the biological function of these two domains is not yet revealed. The red/ far red light sensing by GAF-GAF could on one hand regulate the enzymatic activity of the c-di-GMP metabolizing EAL domain. On the other hand, this red/ far red light could also regulate interactions to other proteins.

Methods: Biochemical enzymatic assays of different Cph2 modules lead to an understanding, how this enzyme integrates different light input signals (red/ far red as well as green/blue) to produce a final c-di-GMP output signal. Phototaxis assays as well as in vivo and in vitro co-purification assays were used to identify possible interaction partners of Cph2.

Results: Upon blue light illumination, domain 6 (GGDEF) enhances the production of c-di-GMP. The EAL domain of Cph2 has been shown to be catalytically active,[1] but a light dependent enzymatic activity still has to be studied. In a yeast two hybrid screen, 11 genes for potential interaction partners were detected.[3] The most significant 6 candidates were genetically inactivated and the constructed mutants were tested for phototaxis under red and far red light. Three candidates showed light-dependent changes in motility responses and were further analysed for possible interactions by in vivo and in vitro co-purification experiments.

Conclusion: Cph2 is a four-colour light sensor. It integrates different light conditions, to give a final c-di-GMP output signal. Interaction partners further module and possibly fine tune this output.

STP18

Coordinated control of heme-homeostasis by the ChrSA and HrrSA two-component systems in Corynebacterium glutamicum

M. Keppel1, E. Hentschel1, T. Gensch1, J. Frunkewitz1

1Forschungszentrum Jülich GmbH, Population Heterogeneity and Signal Transduction, Jülich, Germany
2Forschungszentrum Jülich GmbH, Institute of Complex Systems 4 (ICS-4), Jülich, Germany

Question: Two component systems (TCS) represent a ubiquitous mode bacteria use to sense a variety of different stimuli and respond to environmental conditions. Often bacteria encode up to dozens of different TCS. Therefore maintaining the correct flux of information is crucial for bacterial survival. The Gram-positive soil bacterium *Corynebacterium glutamicum* contains two homologous TCS which are both involved in the regulation of heme homeostasis.

Whereas the HrrSA system is crucial for utilization of heme as an alternative iron source by activating the expression of the heme oxygenase (*hmuO*) under iron limiting conditions, the TCS ChrSA is required to cope with elevated heme levels by activating the expression of a putative heme exporter (*hrrB4*). We are interested in the mechanisms ensuring specificity in signal transduction of these two orthologous systems.

Methods: To study the specificity in signal transduction, growth experiments of the wild type and mutant strains containing specific target gene reporters were conducted. The interaction of the TCS was analyzed using *in vitro* phosphorylation assays, surface plasmon resonance spectroscopy as well as super resolution microscopy.

Results: Activity profiling of the ChrSA and HrrSA target gene reporters and growth experiments with mutant strains revealed that both systems inherit distinct roles in the control of heme homeostasis. Phenotypic analysis of mutant strains as well as *in vitro* phosphorylation assays suggested a high level of cross-talk between the closely related systems. Remarkably, the phosphatase activity appeared to be highly specific for the cognate response regulator [1].

Conclusion: Our results emphasize a close interaction of both TCS in the control of heme homeostasis. While both senor kinases (HrrS and ChrS) exhibit a significant level of cross-phosphorylation towards both response regulators (HrrA and ChrA), their highly specific phosphatase activity supports the key mechanism ensuring specific signal transduction. Future studies aim at a comparative analysis of the protein-protein interface of both systems and the identification of the specificity residues.

References:

STP19

PA24-LuxR solos of *Photobacterium luminescens*: hormone receptors to sense the host?

J. Brehm1, E. Rothmeiser2, S. Brameyer3, R. Heermann2

1Ludwig Maximilians Universität München, Martinsried/Munich, Germany
2Ludwig Maximilians Universität München, Germany
3Ludwig Maximilians Universität Munich, Martinsried, Germany

In nature, bacteria live in close association with other organisms, which means that they need to sense each other and to communicate. The best understood chemical language in Gram-negative bacteria is the communication via N-acylhomoserine lactones (AHLs), often produced as an endogenous signal and is called quorum sensing. The prototypical quorum sensing system consists of an AHL synthase belonging to the *C. glutamicum*. Whereas a constitutive protein level was observed for the sensor kinase HrrS, ChrS expression is strongly induced in response to heme.

Conclusion: Our results emphasize a close interaction of both TCS in the control of heme homeostasis. While both senor kinases (HrrS and ChrS) exhibit a significant level of cross-phosphorylation towards both response regulators (HrrA and ChrA), their highly specific phosphatase activity supports the key mechanism ensuring specific signal transduction. Future studies aim at a comparative analysis of the protein-protein interface of both systems and the identification of the specificity residues.

References:

STP20

AntJ is an essential regulator of anthraquinone biosynthesis in *Photobacterium luminescens*

A. Heinrich1, A. Glaeser2, R. Heermann3, H. Bode1

1Goethe Universität Frankfurt, Institut für Molekularle Biowissenschaften, Frankfurt a. M., Germany
2Ludwig-Maximilians Universität München, Bereich Mikrobiologie, Martinsried, Germany
3Goethe University Frankfurt, Frankfurt am Main, Germany

Photobacterium luminescens are Gram-negative, entomopathogenic bacteria and is a potent secondary metabolite producer [2,3]. The bacteria produce a set of anthraquinones (AQ). The biosynthesis of the AQs in *P. luminescens* was extensively investigated before [4] and is achieved by a type II PKS and modifying enzymes (AntA-I). However the mechanisms and the signal regulating the production of these pigments remained as unexplored as their biological function.

A DNA protein pull down assay coupled with peptide mass fingerprinting was performed in order to identify transcriptional regulators binding to the promoter region of the AQ biosynthesis gene cluster. The role of candidate regulators in the AQ biosynthesis were examined via deletion and overexpression strain. The absence of one of the identified putative transcriptional regulators, AntJ, resulted in a loss of pigmentation, whereas its overproduction increased AQ production. RNA sequencing analysis showed a downregulation of antJ in the antJ deletion strain. We currently perform a YPet reporter assay in order to identify a putative ligand that might bind to the transcriptional regulator to modulate its activity.

Remarkably, *P. luminescens* exists in two different phenotypic forms called primary and secondary that differ in many morphological and phenotypic traits [4]. In primary cells, antJ promoter activity is heterogeneously distributed at the single cell level [3]. Secondary cells are non-pigmented due to al loss of AQ biosynthesis. Overexpression of antJ in secondary cells fully restored pigmentation, which suggests a central role of the novel regulator AntJ in heterogenous regulation of the AQ production. Identification the ligand binding to the transcriptional activator AntJ and therefore serving as signal to trigger the AQ production will help to understand the regulation mechanism of AQ biosynthesis and phenotypic heterogeneity in *P. luminescens*.

References:

STP21

Polyphosphorylation of a Bacillus subtilis spore coat protein by a coat-associated Ser/Thr kinase

C. Duarte de Freitas1, A. Elsholz2

1Max Planck Institute for Terrestrial Microbiology, Ecophysiology, Marburg, Germany
2Max Planck Institute for Terrestrial Microbiology, Ecophysiology, Marburg, Germany

The surface of bacterial spores consists of a multi-protein structure, called coat, with functions of protection and interaction with the immediate environment. CoTb is an abundant component of the spore coat of *Bacillus subtilis*. During the formation of the coat, CoTb protein, of about 46 kDa (CoTb-46), undergoes a post-translational modification, which converts it into a species with an electrophoretic mobility of 66 kDa (CoTb-66). Two other coat proteins, CoTH and CoTG, are necessary for the formation of CoTb-66. CoTb is a morphogenetic protein essential for proper assembly
of the coat, and a structural homologue of Eukaryote-like Ser/Thr kinases. CotB, in turn, shows a C-terminal region with four repeats of a serine/lysin/arginine rich sequence, and two Sm-like domains typically associated with RNA-RNA and RNA-protein interactions, in its N-terminal moiety. We found that CotH undergoes auto-phosphorylation and is insensitive to staurosporine, a broad-spectrum inhibitor. In addition, we show that CotB-46 is phosphorylated by CotH. Therefore, CotH phosphorylates CotB in vitro. We discovered that in vivo the D228Q substitution results in alterations in the composition, structure and functional properties of spots that approach those seen for a cotH deletion mutant. We suggest that during the assembly of the B. subtilis coat CotH phosphorylates CotB in its C-terminal, using CotG as a co-factor.

STP22

The translation elongation factor EF-P – regulatory roles during protein translation

*M. Motz*1,2, F. Qi3, J. Lassak1,2, D. Frishman1,2, K. Jung1,2

1Ludwig-Maximilians Universität München, Department Biologie I, Ber. Mikrobiologie, Martinsried, Germany

2Ludwig-Maximilians-Universität München, Center for Integrated Protein Science Munich, Munich, Germany

3Technische Universität München, Wissenschaftszentrum Weihenstephan, Department of Genome-Oriented Bioinformatics, Freising, Germany

Question: Proline is a poor substrate for the ribosomal peptidyl transferase reaction and distinct XPPX motifs within the nascent peptide chain cause translation arrest. The strength of the stalling effect varies depending on the amino acid up- and downstream of the polyproline cluster. Protein translation is rescued by binding of the bacterial translation elongation factor P (EF-P) to the ribosome, which supports positioning depending on the amino acid up- and downstream of the polyproline cluster. The translation elongation factor EF-P – regulatory roles during protein translation

Methods: To assess the role of XPPX motifs in cotB we constructed a deletion mutant. We suggest that during the assembly of the B. subtilis coat CotH phosphorylates CotB in its C-terminal, using CotG as a co-factor.

Results: Proline is a poor substrate for the ribosomal peptidyl transferase reaction and distinct XPPX motifs within the nascent peptide chain cause translation arrest. The strength of the stalling effect varies depending on the amino acid up- and downstream of the polyproline cluster. Protein translation is rescued by binding of the bacterial translation elongation factor P (EF-P) to the ribosome, which supports positioning depending on the amino acid up- and downstream of the polyproline cluster. The translation elongation factor EF-P – regulatory roles during protein translation

Conclusions: We constructed a deletion mutant. We suggest that during the assembly of the B. subtilis coat CotH phosphorylates CotB in its C-terminal, using CotG as a co-factor.

STP23

The role of the cobamide cofactor in the regulation of the organohalide respiration in *Sulfurospirillum halorespirans*,

*J. Esken*1, T. Schulze-Hessing1, T. Görke1, T. Schubert3, G. Diekert1

1University of Jena, Dept. of Applied and Ecological Microbiology, Jena, Germany

Question: *Sulfurospirillum halorespirans* and its close relative *Sulfurosirreptillum multivorum* are able to conserve energy for growth via organohalide respiration (OHR). The key enzyme in this process is the tetrachloroethene (PCE) reductive dehalogenase (PceA), an iron sulfur protein that harbors a cobamide cofactor (norpseudo-B12) at the active site. Recently, the genome sequences of both organisms became available. The gene encoding PceA is located in close vicinity to a huge gene cluster for cobamide biosynthesis (1). The gene expression of pceA is controlled by cobamide biosynthesis genes. In recent years this idea has been extensively exploited to predict intras- and inter-domain interactions of proteins, with direct coupling analysis (DCA) being one of the most successful methods. Here we used this method to analyze the largest group of extracytoplasmic function (ECF) factors, EF-CF41. In this group the σ factor contains a large C-terminal domain that might function as a fused anti-σ factor [1]. To predict putative residues involved in the interaction between the C-terminal and the σ factor domain, we improved the accuracy of current DCA methods, allowing us to make more reliable predictions even for the limited number (<400) of co-evolved

Results: The gene equipment of *S. halorespirans* essential for OHR displays a high sequence identity compared to *S. multivorum*. In the absence of PceA, *S. halorespirans* showed a long-term down-regulation of the OHR similar to its characterized counterpart. The addition of 5,6-dimethylbenzimidazolol to cultures of *S. halorespirans* reduced the production of nor-B12 by the organism, which has been reported previously for *S. multivorum* (3).

Conclusions: From the data obtained, a participation of the cobamide cofactor in the regulatory network of PCE respiration in *S. halorespirans* was deduced. Currently, investigations are underway to uncover the influence of the type of cobamide cofactor and its intracellular amount on the unusual long-term regulation of the OHR.

sequences available. Our analysis predicts that the C-terminal domain, which shares structural similarity with the widespread NTF-2 like protein family, binds both the DNA-binding domain of o2, as well as the atypically long and conserved linker between the o2 and o4 domains. This suggests that the NTF-2 like C-terminal extension constitutes a novel class of anti-σ factors (we termed ASD-III), which inactivates the o factor by impeding its recognition of the -35 promoter region. Strikingly, the contact predictions in the C-terminal domain can consistently explain previous experiments, in which partial C-terminal truncations lead to the constitutive activation of the o factor [1]. In the future, experiments will be required to further corroborate our computational predictions.

STP26
Cell signaling PII-like proteins in cyanobacteria
*K. Selim1, K. Forchhammer1
Eberhard Karls Universität Tübingen, Organismic Interactions Dept., Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany

PII-like proteins are similar and clearly related to classical PII proteins, but nothing known about their functions, targets and regulatory responses. All cyanobacteria analyzed to date contain a GlnB-type PII homologue genes. About 20 % of sequenced cyanobacterial genomes were found to contain a second clear glnB parologue. In addition to glnB, paralogues, a close examination of available cyanobacterial genomes on Cyanobase revealed further genes with similarity to glnB but lacking PII signature sequences, we termed the putative genes products as PII-like proteins. Thus, it is tempting to speculate that PII-like proteins are involved in regulation of different cellular activities, which differ markedly from classical PII proteins in N metabolism.

Even more, the architectural principle of PII superfamily seems to be apparently widely distributed. The available structural information implies that the PII-like proteins have trimen-structure which are highly similar to the classical PII core architecture. Hence, it would be important to find out to which signals PII-like proteins respond, and which targets they regulate for better understanding of cellular function, metabolic responses, and genetic machinery system of different classes of PII/PII-like proteins [1-3]. To figure out in vivo cellular function of PII-like proteins, we created different knockout/knockdown mutants to characterize cell physiology of PII-like proteins in three cyanobacterial model organisms (Anabaena sp. PCC 7120, Synechococcus elongatus PCC 7942, and Synechocystis sp. PCC 6803). The PII-like recombinant proteins were used for production of polyclonal antibodies to identify subcellular localization of PII-like proteins. Also, the recombinant proteins were titrated against different effectors molecules to determine the sensory properties of PII-like proteins in comparison to central effector metabolites of classical PII proteins (like, 2-OG). To characterize the interacting partners of PII-like proteins, the tagged PII-like proteins were used, followed by mass spectrometry based pulldown assay to identify potential PII-like targets. Finally, it would be interesting to solve the crystal structures of purified PII-like proteins to evaluate the building architecture of PII superfamily.

STP27
The second messenger cyclic di-AMP controls potassium uptake in Corynebacterium glutamicum by binding to the RCK domain of the channel protein CglK
O. Goldbeck1, J. Beer2, R. Krämer2, *G. Seibold1
1Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
2University of Cologne, Institute of Biochemistry, Cologne, Germany

Cyclic di-AMP (c-di-AMP) is a recently discovered nucleotide second messenger found in Gram-positive bacteria, which is involved in the control of many diverse aspects of bacterial physiology such as cell wall metabolism, detection of DNA-damage, potassium uptake, sporeulation, and osmotic stress response. In the non-pathogenic Corynebacterium glutamicum that, besides its high relevance in biotechnology, serves as a model organism for pathogenic species such as M. tuberculosis, c-di-AMP synthesis is catalyzed by the diadenylate cyclase DisA and degradation of c-di-AMP is brought about by the phosphodiesterase PdeA.

Overexpression of DisA as well as inactivation of pdeA severely impaired growth of C. glutamicum strains when cultivated in media requiring potassium uptake. Potassium uptake is mediated in C. glutamicum exclusively by the channel protein CglK, which consists of the full-length CglK protein and a soluble, non-transportable protein harboring only the RCK domain. Binding studies with purified full-length CglK as well as the purified soluble RCK domain showed that c-di-AMP specifically binds to the RCK domain of CglK. To further analyze effects of c-di-AMP on CglK activity a test system in the potassium uptake deficient strain E. coli TK2309 was constructed. E. coli TK2309 (pEKEx2-cglK), which carries cglK for the C. glutamicum potassium channel, is able in difference to the parental strain to grow in potassium deficient, slightly acidic media. E. coli does not possess a gene for a di-adénylate cyclase. Upon heterologous expression of disA from C. glutamicum in E. coli TK2309, intracellular accumulation of up to 1.3 mM c-di-AMP was expressed in the strain E. coli TK2309 (pBad-disA)EKEKEx2-cglK). No growth in potassium deficient medium was observed when expression of disA was induced in E. coli TK2309 (pBad-disA)EKEKEx2-cglK) by addition of arabinose, indicating that c-di-AMP indeed inhibits CgK activity.

We conclude that activity control of the C. glutamicum potassium channel CgK is mediated by binding of c-di-AMP to the RCK domain, leading to a reduced CgK activity in response to high levels of c-di-AMP.

STP28 – withdrawn

STP29
Identification of the cAMP phosphodiesterase CpdA in Corynebacterium glutamicum
*J. Schulte1, M. Baumgart1, M. Bott1
1Forschungszentrum Jülich GmbH, JBG-1: Arbeitsgruppe Stoffwechselregulation und Metabolic Engineering, Jülich, Germany

Question: The second messenger cyclic adenosine monophosphate (cAMP) plays a central role in the regulation of important cellular functions in the Gram-positive soil bacterium Corynebacterium glutamicum. It serves as effector of the global transcriptional regulator GtxR, a member of the Crp family. When complexed with cAMP, GtxR binds to its DNA target sites and controls transcription of over 14% of all genes in this species. We thus participate in the control of several processes such as respiration, central metabolism or transport. Despite the importance of cAMP, numerous questions regarding the regulation of the intracellular cAMP level and the enzymes that synthesize or degrade cAMP remain to be solved. To date, the adenylate cyclase CyaH is the only cAMP synthesizing enzyme that has been described for C. glutamicum. We were especially interested in the degradation of cAMP in this bacterium as this was completely unknown at the beginning of this project.

Methods: Growth experiments were conducted in the Biotecor microcultivation system. cAMP phosphodiesterase activity was measured with a coupled enzyme assay monitoring NADH oxidation. Intracellular cAMP concentrations were measured with a cAMP-specific ELISA. Promoter fusions with the genes encoding an autofluorescent protein were used for analysis of transcriptional regulation.

Results: We describe the identification of CpdA, a corynebacterial cAMP phosphodiesterase (PDE), with a DELTA-BLAST [4] search using sequences of class II PDEs of other bacteria and lower eukaryotes as query. The CAMP-PDE activity of CpdA was demonstrated both in vivo and in vitro. Deletion of the cpdA gene in C. glutamicum resulted in a prolonged lag phase and reduced growth rates on glucose, acetate, citrate, ethanol, or gluconate as carbon sources, while overexpression of cpdA had no significant effect on growth. The intracellular cAMP concentration of the ΔcpdA strain was increased 8-fold compared to the wild type when cultivated on glucose. Expression of the cpdA gene was shown to be positively regulated by GtxR. This effect could be diminished by mutation of a putative GtxR binding site in the cpdA promoter.

Conclusion: With CpdA we identified a key enzyme in the control of the intracellular cAMP level in C. glutamicum and revealed its important role for growth. On top of that we could demonstrate that the expression of CpdA is transcriptionally activated by the cAMP-GtxR complex, thus providing a feedback loop to counteract elevated intracellular cAMP concentrations.

STP30

Silencing of cryptic prophage elements by a nucleoid-associated protein in *Corynebacterium glutamicum*

E. Pfeifer, M. Hännfeld1, O. Popa1, M. Baumgart1, T. Polen1, D. Kohlheyer2, J. Francke1

1 Research Center Jülich GmbH, IBG-1, Population heterogeneity and signal transduction, Jülich, Germany
2 Heinrich-Heine University, Quantitative and Theoretical Biology, Düsseldorf, Germany
3 Research Center Jülich GmbH, IBG-1, Jülich, Germany

Question: DNA of viral origin is a major source for strain-specific differences in bacterial species. The acquisition and transfer of phage elements enables organisms to evolve in quantum leaps by taking advantage of phage-encoded beneficial traits, e.g. for the colonisation of new ecological niches. However, the adaption of foreign DNA into the bacterial genome and its integration into host regulatory networks requires strict regulation. Recently, we identified a small nucleoid-associated protein (NAP) CgpS which is associated to prophage DNA in the genome of *Corynebacterial glutamicum* ATCC 13032. In this study, we set out to analyse the function of CgpS in the control of prophage activity and its impact on the induction of the prophage CGP3, which was previously observed to occur in a small subpopulation (<1 %) even under standard cultivation conditions [1].

Methods: Genome-wide binding profiles of CgpS were analyzed performing affinity purification of CgpSs and sequencing of DNA (ChiP-seq) bound by the purified protein. Target regions were validated by electrophoretic mobility shift assays and transcriptome analysis. Induction of the prophage was monitored using real-time PCR or time-lapse microscopy and flow cytometry of reporter strains.

Results: The CgpS-DNA interaction was characterized by ChiP-Seq experiments and showed a preferential binding of the NAP to AT-rich DNA regions. Whereas CgpS accumulated primarily at the cryptic prophage CGP3 element, further potential target genes were identified within the host genome, reflecting the interconnectedness of phage and host regulatory networks. The localization of CgpS to the CGP3 genome region was further confirmed using fluorescent protein fusions. Remarkably, our studies revealed that cgpS is essential for growth of C. glutamicum ATCC 13032 containing the cryptic prophage CGP3. Inactivation of CgpS was achieved by overproduction of a truncated variant of the NAP led to a strong increase in CGP3 activity which killed the affected cells. Finally, expression of cgpS was shown to complement the phenotype of an *Escherichia coli* hns mutant, emphasizing an analogous role in the silencing of AT-rich, foreign DNA.

Conclusion: In conclusion, our data reveal the crucial function of the nucleoid-associated protein CgpS for the silencing of phage gene expression and illustrate the interconnectedness of phage and host regulatory circuits.

STP31

Protein translation machinery is downregulated during heat stress in *Bacillus subtilis*

*H. Schäfer1, N. Molière1,2, A. Heinz2,3, S. Runde1,2, A. Janczikowski1, B. Vollmer1, J. Feicht1, W. Wohlleben1

1 Justus-Liebig-Universität Gießen, Institut für Mikro- und Molekularbiologie, Gießen, Germany
2 Heinrich-Heine University, Quantitative and Theoretical Biology, Düsseldorf, Germany
3 Research Center Jülich GmbH, IBG-1, Jülich, Germany

Question: Heat shock stress is a major physiological challenge for bacterial cells. Cells must maintain the integrity of their protein synthetic apparatus to ensure that the cellular protein quality control system is not overwhelmed. In our experiments, we also observed a strong down-regulation of genes e.g. for ribosome biogenesis and translation known to be controlled by stringent response. Furthermore in a relA mutant strain, where (p)ppGpp synthesis is elevated and stringent response is turned on, we observed an increased survival to an otherwise lethal heat shock.

According to our current model *B. subtilis* cells respond to heat mediated protein unfolding and aggregation not only by raising the repair capacity (e.g. more (redox) chaperones) but also by decreasing translation involving (p)ppGpp and Spx mediated response to concurrently reduce the load for the cellular protein quality control system. We will present experiments to further elucidate the molecular and regulatory mechanism orchestrating this stress response.

STP32

The photolyase/cryptochrome member CryB of *Rhodobacter sphaeroides* shows photorepair activity in vivo

*A. von Zadow1, G. Klug1,2

1 Justus-Liebig-Universität Gießen, Institut für Mikro- und Molekularbiologie, Gießen, Germany
2 Heinrich-Heine University, Quantitative and Theoretical Biology, Düsseldorf, Germany

The cryptochrome- and photolyase related protein CryB of *R. sphaeroides* was identified as a blue light receptor with signaling and regulating functions, but also shows a contribution to light-dependent photoreactivation after damage by UV-light in vivo, attributed to photolyases. These enzymes specifically recognize and repair defined types of DNA damages, usually two different versions of dimerized neighboring thymine bases.

CryB differs from other members of its family in several aspects, most strikingly concerning the composition of the cofactors. Cryptochromes and photolyases bind two light absorbing chromophores. The photo-redox responsive FAD (flavine adenine dinucleotide) is a conserved cofactor and found in all members of this family, and a second variable cofactor serves as an antenna to absorb additional light energy. Additionally, an iron-sulfur cluster was identified as a third, which is unique for this group of proteins, termed CryPro family [1].

We have conducted amino acid substitution variants of CryB by site-directed mutagensation at relevant cofactor binding residues. These variants have been inserted into a cryB knockout strain of *R. sphaeroides* on a plasmid. The strains were analysed for their ability to survive exposure to UV light with subminimal white light illumination to investigate the light-dependent activity of photolyases. A version which is locked in the oxidized state of FAD is still capable of restoring photoreactivation in ΔcryB (survival rate of 70-80 % in wild type and complementation strains compared to non-stressed cells). Lack of the antenna cofactor DLZ has the same effect, while a double mutant shows an impaired photoreactivation comparable to the cryB knockout strain (20 % survival).

To investigate the mechanism of photorepair, a photolyase-typical active-site histidine was exchanged to alanine which reduced the survival rate significantly. Currently, we are investigating FAD-free variants to elucidate the involvement of the second light-absorbing cofactor and the iron-sulfur cluster in the repair process.

Following co-expression of pka1 with either mreC or pbp2 in E. coli, phosphorylation of MreC and PBP2 by Pka1 was demonstrated and multiple phosphopeptides were identified by LC-MS/MS (2). By purifying all other SSSC proteins in the presence and absence of each eSTPK, we aim to identify the respective kinase and to determine the specific phosphosites of all SSSC proteins. The effect of protein phosphorylation on the interaction of SSSC proteins is studied by bacterial-twin hybrid analyses. Our data suggest that elaborate protein phosphorylation controls activity of the SSSC to ensure proper sporation by suppressing premature cross-wall synthesis.

StP34 Deciphering the function of the redox-sensing system HbpS-SenS-SenR from streptomycetes

"D. Ortiz de Òuré Lucana" 1, T. Buschel 2, J. Kalinowski 1*, N. Hickey 3, A. Tordi 1
1. University of Osnabrueck, Applied Genetics of Microorganisms, Osnabrueck, Germany
2. University of Bielefeld, Bielefeld, Germany
3. University of Trieste, Trieste, Italy
4. University of Hamburg, Hamburg, Germany

We discovered a novel type of redox-sensing system: the three-component system HbpS-SenS-SenR from streptomycetes. It provides the soil bacteria with an efficient defense mechanism against the toxicity of redox-cycling compounds. Structural and biochemical studies showed that the extracellular HbpS inhibits the autophosphorylation of the membrane-embedded sensor kinase SenS under non-stressed conditions; however, on conditions of oxidative stress HbpS activates SenS activity. SenS in turn phosphorylates the response regulator SenR [1].

We crystallized HbpS and solved its 3D crystal structure that revealed an octameric assembly which is required for interaction with SenS [2]. Additional studies revealed that HbpS specifically interacts with ferrous ions as well as with the tetrapyroles heme and cobalamin [3,4]. Recently, we solved the 3D crystal structure of a HbpS-like protein in complex with heme. The crystal structure revealed an unusual his-His heme-coordination by the same histidine residue from adjacent monomers [5].

In order to get insights in to the HbpS-SenS-SenR-mediated transcriptional response, we performed differential RNA sequencing (RNA-Seq) of wild-type Streptomyces coelicolor A3(2) and its hbpS-senS-senR disruption mutant under non-stressing and oxidative-stressing conditions. RNA-Seq allowed the identification of several differentially expressed genes. Interestingly, some of them are involved in sulfur-related reactions and in the synthesis of cobalamin. We additionally isolated the response regulator SenR. Subsequent gel shift experiments showed that SenR interacts with the regulatory regions of the differentially expressed genes. These findings will be discussed in the frame of this presentation.

Since homologs of HbpS-SenS-SenR have been identified in a number of ecologically and medically relevant bacteria, our data serve as an elucidate the role of these homologs.

StP35 Transcriptional and proteomic response of Aspergillus fumigatus to caspofungin

*T. Conrad 1, O. Kniemeyer 1, S. Henkel 2, R. Guthke 3, J. Linde 3
1. Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
2. BioControl Jena GmbH, Jena, Germany

Introduction: Aspergillus fumigatus is one of the most common human pathogenic fungi and causes a wide range of systemic infections. One therapeutic approach is the use of the lipopeptide antifungal drug caspofungin of the group of echinocandins. It specifically targets the fungal cell wall by inhibiting the synthesis of the polysaccharide β-(1,3)-d-glucan [1]. These changed conditions lead to a fungal response like the adaptation of the gene expression and consequently, the protein synthesis.

Objectives: This study aims to detect potential relationships between the transcriptional and proteomic response of A. fumigatus to caspofungin.

Methods: The transcriptional response of the A. fumigatus strain A1163 was measured by RNASeq at 0h, 0.5h, 1h, 4h and 8h after caspofungin treatment. Samples of the proteomic response, taken at 0h, 4h, 8h (synthesised proteins) and at 0h, 24h (secreted proteins) after treatment, were analysed by mass spectrometry. Significantly, differentially regulated mRNA, synthesised and secreted proteins were considered to analyse two potential relationships between the different levels of fungal cell response: The shared response to caspofungin and the shared association with several response pathways.

Results: The comparison of the different cell response levels shows that the overlap of the transcriptional and proteomic data is relatively low. But different pathway analyses demonstrate the association of the significantly, differentially regulated mRNA, synthesised and secreted proteins with shared and caspofungin-associated pathways. Some of these pathways can only be significantly associated by combining both transcriptional and proteomic response.

Conclusion: The combination of different OMICs data can help to identify an overall fungal cell response to caspofungin which partially can not be found by analysing either the transcriptome or proteome alone.

SMP01 Synthetic Biology approach for the production of D-phenylglycine

*Y. Mast 1, N. Osipenko 2, V. Kühler 1
1. Universität Tübingen, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie/Biotechnologie, Tübingen, Germany

Phenylglycine (Phg) is a rare proteinogenic amino acid, which only occurs in some natural compounds, such as the streptogramin antibiotics pristinamycin I (PI) and virginiamycin S or the bicyclic peptide antibiotic dityromycin 1. Sequence analysis of the pristinamycin biosynthetic gene region from Streptomyces pristinaespiralis led to the identification of a set of putative Phg biosynthetic genes (pglA, pglB, pglC, pgdD, and pglE) 1. Successful inactivation of the individual genes resulted in a loss of PI production, whereas production was restored after supplementation with synthetic L-phenylglycine, demonstrating that the pgd genes are responsible for Phg biosynthesis 2.

Here we report on the biochemical characterization of the aminotransferase PgI that catalyzes the final reaction step during Phg biosynthesis, which is the transamination from phenylglyoxylic to L-Phg. With regard to the obtained results we postulate a new Phg biosynthesis pathway.

Industrially more important than L-Phg is the enantiomeric isomer D-Phg: D-Phg plays an important role in the fine chemical industry, where it is used as a precursor for the production of semisynthetic β-lactam antibiotics, the antitumor compound taxol or the artificial sweetener aspartame. On the basis of the L-Phg operon from Aspergillus niger, we constructed an artificial D-Phg operon, which we currently express in different host strains to fermentatively produce D-Phg.

SnMP02
Adapting the SEVA-standard for the needs of Bacillus subtilis vectors with exchangeable integration sites

J. Radeck, D. Meyer, T. Mascher
Technical University Dresden, 408, Mikrobiologie, Dresden, Germany
1Ludwig Maximilians University Munich, Biology, Munich, Germany

Bacillus subtilis has the outstanding genetic property of natural competence paired with highly efficient homologous recombination. But so far, most vectors for genome manipulation integrate into a few characterized loci and are combined with a fixed combination of resistance cassettes and additional features such as reporter genes or multiple cloning sites. To fulfill SynBio needs, scientists started working with standardized, reusable parts, such as the Standard European Vector Architecture (SEVA) for Escherichia coli. We aim at adjusting SEVA building blocks to the needs of B. subtilis by developing a system to easily create personalized vectors in a standardized manner. Parts from our collection can be assembled with integration loci of choice via the One-Pot “Golden Gate” reaction. Each assembly combines i) two homology regions for integration, ii) one resistance cassette, iii) a multiple cloning site that is flanked by terminators, and iv) an E. coli origin of replication.

We designed and created a toolbox for the creation of personalized vectors, featuring 7 Bacillus resistance cassettes (bleo, cat, kan, mls, spec, tet, zeo) attached to a pUC18 multiple cloning site with or without a lacZa for blue-white screening. For replication of the final vector in E. coli, a low (ROP) or high copy number (ColE1) origin of replication can be chosen. All parts can be assembled via one of five type IIIs restriction enzymes (Bsal, BbsI, BtgZI, BsmBI, AarI), depending on the absence of restriction sites in the fragments of choice. Due to its modularity, the E. coli-specific vector parts as well as the insert of choice can be exchanged before or after the vector assembly.

We believe that our adaptation of the SEVA-standard provides a powerful and standardized toolkit for the convenient creation of personalized vectors for B. subtilis.

SnMP03
Sporobeads – the utilization of Bacillus subtilis endospores for protein display

J. Bartels, T. Mascher
Technical University Dresden, Biology, Dresden, Germany

Bacillus subtilis is a soil bacterium that can form metabolically inactive endospores under nutrient limitations. The process of endospore formation is commenced through an asymmetrical cell division, resulting in the formation of a larger mother cell and the smaller forespore. The forespore provides proteins to protect the DNA against environmental factors like UV-light. Moreover, the spore is encased in three protective layers, the cortex, the coat and the crust, which are produced by the mother cell. The cortex is comprised of peptidoglycan, while the coat and crust are made up of at least 70 different proteins, which are also produced by the mother cell.

Here we provide evidence that the spore surface can be utilized to functionalize the spores, by genetically fusing a gene of interest to a crust protein gene. The resulting spore, a so-called Sporobead, displays a protein with a desired function on the surface, similar to commercially available beads used in filters or in the laboratory. The possible applications of our biological beads are very widespread, from enzymatic functions to filter-function using proteins able to bind to wanted (toxic) compounds.

SnMP04
Design and assembly of large DNA sequences for applications in synthetic biology

D. Schindler, S. Milbredt, T. Sperlea, T. Waldminghaus
1LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany

Efficient assembly of large DNA fragments is critical to answer questions in synthetic biology. Often, their sequences are desired to have specific DNA motifs at defined sites but not at others. Other DNA motifs might need to be excluded, as for example restriction sites. Here we present the computer program MARSSeG that generates degenerate DNA sequences that do not contain any occurrence of sequences from a user-defined list of DNA motifs. Furthermore, these sequences can also contain defined segments that will not be changed, which allows for more complex designs. For efficient cloning of designed library sequences we modified vectors of the widely used MoClo system (1). Inclusion of the ccdB gene results in a highly efficient whole-batch cloning. Furthermore, changing the replication origin to oriF6K enabled selective replication of the vectors in Escherichia coli strains that contain the Pir protein to facilitate chromosomal integration in E. coli pir-strains. Using MARSSeG designed sequences and the new vectors we assembled a Fluorescence Repressor Operator System (FROS) array. The periodicity of its DNA sequence allows for the hierarchical assembly from a single primer pair. The FROS system allows visualization of the position and dynamics of genomic loci when integrated into the genome. Indeed, we could use this system to count gene loci based on fluorescence foci in E. coli. The design and assembly pipeline presented here can also be used for the efficient, fast and cheap assembly of other large DNA molecules such as synthetic chromosomes (2, 3).

tip of the loop region in domain I protrudes towards the peptidyl-transferase-center but has to be post-translationally modified with (R)-β-lysine to β-lysyl-lysine to enhance peptide bond formation. Alternatively, β-proteobacteria have evolved an alternative strategy, namely arginine rhamnosylation by a novel type of glycosyltransferase called EarP, indicating a certain degree of freedom in post-translational activation of EF-P. We now aim to identify novel bacterial modification systems as well as construct synthetic EF-P variants which are constitutively active, independent of species-specific posttranslational modifications.

As a first step in the identification of novel naturally occurring post-translational modifications of EF-P, we selected bacterial strains of Enterococcus, Mycobacterium and Helicobacter, which do not have any of the known EF-P modification enzymes. We analyzed the endogenous EF-P proteins by mass spectrometry and tested the functionality of the unmodified proteins in an E. coli reporter strain lacking its own posttranslational modification system. To generate synthetic EF-P variants we used the “Pyrolysinse Amber-Suppression System” to replace the natural β-lysyl-lysine moiety by ε-N-propyl-, ε-N-butyryl-, ε-N-valeryl-, ε-N-crotonyl- and 2TFH-lysine, respectively. Afterwards the resulting synthetically modified EF-Ps were tested for functionality in vivo using a β-galactosidase reporter system.

SnMP07

Synthetic microbial pathway for (R)-benzylsuccinate production

D. Kleinsorge¹, J. Heider²

¹Philippus University Marburg, Microbiology, Marburg, Germany

Some denitrifying, Fe(III) or sulfate reducing bacteria degrade toluene under anaerobic conditions. The first intermediate of the degradation pathway is (R)-benzylsuccinate, an aromatic compound of potential biotechnological interest, e.g. in the production of polymers. We attempted to redesign the metabolism of standard bacteria such as Escherichia coli to establish the production of this intermediate in a synthetic process. We designed a biosynthetic pathway for benzylsuccinate from the fermentation product succinate and exogenous benzoate, using the toluene degradation enzymes in reverse direction, since all of these have been shown to be reversible and active under aerobic or anaerobic conditions.

To enter this synthetic pathway, the precursor benzoate must be transported into the cytosol and activated to benzyol-CoA. This has been established by cloning the genes for a benzoate transporter and for a benzoate-CoA ligase or alternatively a succinyl-CoA/ benzoate-CoA transferase together in an expression vector. This corresponds to a metabolic module for benzyol-CoA generation, which is useful for many other biosynthetic purposes.

The reverse β-oxidation cycle for benzylsuccinate production from benzoyl-CoA and succinyl-CoA was introduced by cloning the bbs-operon (for beta-oxidation of benzyl succinate) from Geobacter metallireducens into a second expression vector. First results on the production of benzylsuccinate and its optimization during different production conditions will be shown. These results establish a general strategy of using enzymes from related degradation pathways “in reverse” to compose novel biosynthetic routes for biotechnological purposes.

SnMP08

Rhodobacter capsulatus – an alternative microbial platform for terpenoid production

K. Troost¹, B. Santiago-Schübel², A. Loeschke¹, K.-E. Jaeger³, T. Drepper¹

¹Heinrich-Heine-Universität Düsseldorf, Institut für molekulare Enzymtechnologie (IMET), Biologie, Jülich, Germany
²Forschungszentrum Jülich, Analytik ZEA-3, Jülich, Germany
³Forschungszentrum Jülich, Biologie, Institut für Bio- und Gewissenschaften IBG-1, Jülich, Germany

Questions: Terpenoids belong to the largest group of natural products, which are characterized by a very high functional and structural variety. Many essential oils containing terpenoids have therapeutic effects, e.g. stimulating the blood flow or exhibiting anti-microbial, anti-fungal, anti-viral, anti-parasitic, anti-inflammatory or anti-cancer activities. Therefore, they are valuable target compounds for the pharmaceutical industry. Since the production of terpenoids by their natural producers is mostly low in not very cost-efficient and convenient, the heterologous production in microorganisms has emerged as a promising alternative. Considering the required precursor supply for the production of terpenoids, it is useful to employ production organisms which are natural terpenoid producers. We aim here to evaluate the suitability of the purple bacterium *Rhodobacter capsulatus*, a facultative phototropic bacterium, capable of naturally synthesizing the tetraterpene carotenoids spheroidene or spheroidenone in high amounts, therefore it provides the precursors geranyl- (GPP), farnesyl- (FPP) and geranylgeranyl-pyrophosphate (GGPP) through the DXP- (1-deoxy-D-xylulose-5-phosphate) pathway.

Methods: Here, we report on the optimization of the production of sesquiterpenes in *R. capsulatus* exemplarily with the valencene-synthese (oCNSV) from *Calitropis nooatakinos*. Production of valencene was comparatively evaluated using the expression vectors pRhohHi-2 (weak promoter *Pace*, constitutive expression), pRhohHi-2 (weak promoter *Pace*, inducer: fructose), pRhohHi-2 (strong promoter *Pace*, inducer: fructose), and pRhoHi5H-2 (Pace, very strong promoter, induction: NH₄⁺ limitation).

Moreover, co-expression of DXP-pathway-limiting enzyme IspA was tested. Phototrophically grown cultures were overlayed with n-dodecane to entrap valencene and enabled straightforward sampling for GC-MS analysis.

Results: We could show that the *Pace*-expression system is the best choice for effective valencene production and that IspA co-expression significantly improves product formation, in that way the supply of precursors GPP and FPP is increased.

Conclusion: Due to its specific metabolic capacity, *R. capsulatus* appears to be an especially suitable production host for sesquiterpenoid production. The comparative analysis demonstrated that the promoter strength of the expression system as well as the genetic background of the isoprenoid precursor biosynthesis play important roles for efficient product formation in *R. capsulatus*.

SnMP09

P. putida for plastic monomer utilization

W.-J. Li¹, N. Wierckx¹, L. M. Blank¹

¹Institute of Applied Microbiology, Aachen, Germany

All over the world plastic is used and will end up as waste, either on land or in the ocean. These plastics (mainly fossil-based) are mostly not biodegradable on a practical timescale. Poly- (ethylene terephthalate) (PET) is wide spread with an annual production of over 28 million tons per year. Although its recycling is very efficient, currently less than 30 % of all PET is recycled in Europe. Also Polyurethane (PU), in its many forms, is used extensively with an annual production of around 12 million tons per year. Due to the fact that many PU forms are not thermoplastic, this polymer is hardly recycled at all. We propose to use plastic waste as a novel substrate for biotechnology. In order to use PET and PU as substrates these polymers first have to be hydrolyzed, resulting in monomers such as adipic acid (AA), 1, 4-butanediole (BDO), terephthalic acid and diisocyanates. Ethylene glycol (EG) is also a major component of all PET. Due to its specific metabolic capacity, *R. capsulatus* appears to be one of the first biosafety strains, and has the GRAS status (Generally Regarded As Safe). First tests could show its tolerance towards AA, BDO and EG.

The metabolism of EG in *P. putida* JRS7 is reported (Muckschel, et al., 2012) starting with the conversion of EG to glyoxylate which is regulated by the activating regulator AcmR. Further metabolism of glycolate proceeds through three parallel pathways: 1) coupling to succinate via the reverse reaction of isocitrate lyase (AceA), 2) forming malate with acetyl CoA via the malate synthase (GlcB), and 3) conversion of two EG molecules to tartaric semialdehyde by tartaric semialdehyde synthase (Gcl). The first two pathways only yield a net conversion of EG to two CO₂ with concomitant generation of energy equivalents. Although *P. putida* KT2440 possesses the genes encoding all of these enzymes, it is unable to grow on EG as sole carbon source. Therefore, the expression of the gcl, glcB and aceA will be tuned in order to balance the distribution of carbon into the three possible pathways. Alternative pathways will also be discussed.
SnMP10
Strain engineering for enhanced rhamnolipid formation in recombinant P. putida

*A. Gernert1, T. Tiso2, L. M. Blank1
1RWTH Aachen, Institute for Applied Microbiology, Aachen, Germany

Rhamnolipids are promising biosurfactants for various applications. For instance their tensio-active properties can be exploited when added to cleaning agents or in bioremediation. In nature rhamnolipids are mainly produced by the opportunistic pathogen Pseudomonas aeruginosa, which is applied in fermentation processes to gain the product with plant oils as sole energy and carbon source. However, this evokes burdens like difficult downstream processing and safety arrangements.

The recombinant production of rhamnolipids in Pseudomonas putida KT2440 in which all substrates have been replaced by glucose could be proved to be a safe and competent alternative [Wittgens et al., 2011]. Additionally, this host is a GRAS organism which is fully sequenced and the metabolic network is well understood. We thus introduced the relevant genes for rhamnolipid formation into strain P. putida KT2440 and into an engineered derivative for enhanced heterologous gene expression [Martínez-García et al., 2014] encoded on a plasmid and integrated into the genome. We also engineered P. putida for enhanced precursor supply and decreased by-product formation.

We obtained mutant strains of P. putida KT2440 with constitutive expression of the genes relevant for rhamnolipid formation. It could be shown that product titers can be raised by optimized gene expression in combination with strain engineering. The chromosomal integration of only one copy of the expression cassette yields titers competitive to those with plasmid encoded copies.

The approach to produce rhamnolipids in a system consisting of an expression cassette carrying the relevant genes in a non-pathogenic host turned out to be promising for further modifications. P. putida as a bacterial production workhorse can be further engineered towards product formation and thus exploited for other difficult products.

SnMP11
Development of novel orthogonal genetic circuits based on Extracytoplasmic function (ECF) σ factors

*S. Vecchione1, M. Mauri1, G. Fritz1
1LOEW Center for Synthetic Microbiology, Marburg, Germany

The rational design of synthetic circuits is often restricted by cross-reactions between circuit components and physiological processes within the heterologous host. In addition, to date most synthetic biology applications rely on a limited set of building blocks consisting of a handful of transcriptional regulators. Our aim is to overcome these restrictions by building synthetic circuits based on Extracytoplasmic function (ECF) σ factors. ECFs are the smallest, simplest and most abundant alternative σ’s that specifically recognize orthogonal promoter sequences. For the modular assembly of synthetic ECF circuits in Escherichia coli, we generated a toolbox of ECFs, their cognate promoters and anti-σ factors, as well as constitutive and inducible promoters, reporter genes and terminators. After a quantitative evaluation of simple ECF switches under different growth conditions, we used a computational modeling approach to predict the function of more complex ECF circuits. As a first benchmark, we show preliminary results on the rational design and construction of an invertible timer circuit, which sequentially activates a series of target genes with a defined time delay. Such a circuit could prove useful for biotechnological applications, in which the yield from biosynthetic pathways often heavily relies on a proper timing hierarchy among the expression of individual pathway components.

SnMP12
Implementation of an efficient synthetic carbon fixation cycle in vitro and in vivo

*M. Carrillo1, T. Schwander1, L. Schada von Borzymowski1,2, T. J. Erb1
1Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
2ETH Zurich, Institute of Microbiology, Zurich, Switzerland

Question: Increasing CO2 emissions requires society to come up with ways of reducing net CO2 emission via CO2 fixation. Synthetic biology allows the creation of novel pathways for CO2 fixation which are advantageous to those present in nature. We propose cyclic synthetic CO2 fixation pathways which take advantage of the efficient principle of reductive CO2 fixation, while providing a constant flux of precursors to the central carbon metabolism of selected host organisms. In a first step, the in vitro reconstitution and characterization of these synthetic cycles, termed CETCH pathway, will validate its feasibility. The in vitro characterization of this synthetic CO2 fixation pathway is then followed by its in vivo implementation into the alphaproteobacterial model organism Methylobacterium extorquens.

Methods: Following purification and characterization of all relevant proteins, the complete CETCH cycle was reconstituted in an in vitro platform. Subsequently, cycle intermediates and products were analyzed by liquid chromatography-mass spectrometry. Enzyme activity assays and 13C isotope labeling were used to confirm expression and functionality of this pathway in vivo.

Results: Our proposed cycle comprised of twelve purified enzymes was successfully reconstituted in vitro. In addition, cofactor regeneration systems were established for in vitro characterization of the pathway. Heterologous expression of the majority of proteins in M. extorquens was confirmed and their activity was demonstrated by enzyme assays.

Conclusions: Reconstitution of artificial CO2 fixation pathways in vitro is an important breakthrough. This platform allows continuous optimization of the pathway with regard to protein stoichiometry, side-product formation, and cofactor balancing. In vivo implementation into M. extorquens is ongoing and is expected to yield a synthetic autotrophic organism.

SnMP13
Mechanistic versatility of Corynebacteria type III polyketide synthases

*S. Giri1,2, A. Parveez3, M. Kumari2, G. Giri2, P. Saxena2
1Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Jena, Germany
2South Asian University, Faculty of Life Sciences and Biotechnology, New Delhi, India

Investigation of the dynamic bacterial metabolome and associated pathways is currently the biggest challenge in understanding microbial physiology. Microbial genome sequencing projects in the past two decades have revealed an unprecedented variety of metabolic, cellular capabilities. In recent years, advances in development of molecular tools have provided deeper insights into the metabolic pathways for fine-tuned, multifaceted polyketide machinery in bacterial systems. The complex cell wall of members of Corynebacteria is partly generated by the diversity of lipids that have been attributed to virulence. The first decade after genome sequence revealed biosynthetic pathways and novel proteins like polyketide synthases (PKSs) to be involved in production of virulent lipids and long chain phenolic lipids across several bacterial species reveals a new evolutionary conserved process in microbial physiology. Long chain phenolic lipids (alkylresorcinols and alkylpyrones) replace membrane phospholipids in dormant Azotobacter cells and confer antibiotic resistance in Streptomyces. Alkylphloroglucinols are crucial signaling molecules essential for differentiation and development of Dicyostelium molds. Our biochemical, mutational and structural studies provide evidence for an unanticipated potential of these proteins to cyclise a common biosynthetic intermediate to generate chemically and structurally distinct metabolic entities utilizing a single catalytic site and limited pool of precursor molecules. Our study provides novel insights into the functional characteristics of type III PKSs and revealed interesting clues to the mechanistic programming in these proteins and the possible role of small lipid molecules in Corynebacteria physiology.
Synthetic biology aims at applying rigorous engineering principles to biology. However, even in simple bacterial cells the function of synthetic genetic circuits often depends on their genetic and physiological context, thereby challenging this rational design approach. One major origin of context-dependence derives from sharing the transcription and translation machinery with the host. Here, we address the problem of how to preserve the functionality of a heterologous circuit based on Extracytoplasmic Function (ECF) sigma factors. Since these alternative sigma factors compete for a finite pool of RNA polymerases within the cell, we computationally predict an ‘orthogonality threshold’ for transcription parameters, beyond which the heterologous circuits affect endogenous transcription and vice versa. Preliminary experimental data support these predictions and confirm a regime in which different ECF sigma factors can be used simultaneously without affecting the host. In doing so, our study guides the rational design of more complex synthetic circuits consisting of multiple, well-characterized biological parts.

Methods:

E. coli K12 mutants deficient in a variety of enzymes are engineered for carbon degradation. We investigated the impact of these additional components, such as metabolic burden (MB) and resource requirements for a heterologous burden and consequently estimated if and to what extent inserted genes can be expressed. We screened the engineered *E. coli* mutants with different promoters, in order to find a constitutively active one. In the end we chose two promoters for our expression from these promoters should only be restricted by the available transcriptional and translational resources. Additionally, we introduced a second plasmid that provides a controllable load. The used pSEVA system allows resistance cassettes and origins of replication in a highly modular way.

Conclusion:

Restored growth features by FSA A129S expression of MT2 and GL3 (deficient in PkA, PkB and G6PDH) were created by markerless gene deletion [6]. The strains were characterized and used for analysis of cells overexpressing FSA wildtype (WT) gene or its variant A129S.

Results:

Both strains grew on D-fructose but not on D-glucose. Also no growth was found for MT2 on D-mannitol (C-source entering the EMP at or above the level of fructose 6-phosphate (F6P)) [1]. Similarly, removal of the phosphoglucone isomerase (PGI) resulted in impaired growth on sugars entering the cell at the level of glucose 6-phosphate (G6P) [2] while a knock out of the G6P-dehydrogenase gene results [3]. A native F6P-Aldolase (FSA) of *E. coli* K12 with unknown physiological function cleaves F6P to dihydroxyacetone (DHA) and glyceraldehyde 3-phosphate and could thus create a glycolytic bypass for carbon degradation [4,5]. We investigate a possible glycolytic shunt using F6P-Aldolases.

Methods:

E. coli L1110 triple mutants MT2 (lacking PkA, PkB and PGI) and GL3 (deficient in PkA, PkB and G6PDH) were created by markerless gene deletion [6]. The strains were characterized and used for analysis of cells overexpressing FSA wildtype (WT) gene or its variant A129S.

Results:

Both strains grew on D-fructose but not on D-glucose. Also no growth was found for MT2 on D-mannitol (C-source entering the EMP at the level of F6P). The growth defects of GL3 in D-glucose and MT2 in D-mannitol could partly be restored by expression of the plasmid FSA variant A129S (AS) but not by the WT gene. FSA A129S overexpression and DHA formation were confirmed by protein and HPLC analysis. By long-term cultivation the generation time of MT2AS could significantly be reduced. 2D-gel analysis indicated a strong FSA A129S overexpression to cause the advance. Whereas MT2 - when grown on rich media with added bile salts - showed drastically reduced cell counts (4 orders of magnitude). The effect of bile salts on MT2 suggests a lack of sedoheptulose 7-phosphate formation, which is needed for the EPS layer.

Conclusion:

Restored growth features by FSA A129S expression of MT2 in mannitol and GL3 in glucose strongly indicate that the glycolytic shunt was functional. We propose that F6P was accumulated by MT2 and GL3 when grown on mannitol and glucose respectively. Viability was restored in the A129S strains.

5. Pueppke et al. (2003), PLoS ONE 8:66462
7. *Escherichia coli* K12 mutants deficient in
8. We have created a systematic approach for understanding the metabolic burden of *E. coli* regarding cellular resources. This system enables us to systematically analyze genes in respect to their replicative, transcriptional, and translational burden. Finally, with our system it is possible to investigate the impact of additional components, such as antibiotics and inducers.
SmP02

Transcriptome analysis of Gluconobacter oxydans 621H by RNAseq
A. Kranz1, M. Bott2, T. Polen1

1Research Center Jülich GmbH, Regulatory switches and synthetic biology, Jülich, Germany
2Research Center Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany

Question: The ability to incompletely oxidize a variety of carbohydrates in the periplasm enable the use of the acetic acid bacterium *Gluconobacter oxydans* for several industrial applications. Unfortunately, a broader use is limited by a low biomass yield. Besides the periplasmic oxidation of substrates resulting in low carbon source availability for the cytoplasmic metabolism, a non-functional Embden-Meyerhof pathway and an incomplete citrate cycle also prevent a higher biomass production. Here we applied RNA sequencing to characterize the transcriptome of *G. oxydans 621H* and to identify weakly expressed genes.

Methods: For whole transcriptome analysis from different growth conditions, *G. oxydans* cells were grown in complex medium with mannitol or glucose under non-stress and selected stress conditions. Total RNA was isolated, depleted of rRNA and subjected to a strand-specific library preparation followed by sequencing (MiSeq, Illumina). Data analysis was performed using CLC Genomics Workbench.

Results: Analysis of the RNA sequencing data from *G. oxydans 621H* revealed expression of about 98 % of all annotated genes under the conditions tested. Manual inspection of the FPKM expression values to the central carbon metabolism of *G. oxydans 621H* revealed moderate to high expression of genes encoding glycolytic enzymes (FPKM 110-733), somewhat higher FPKM values of genes encoding enzymes involved in the pentose phosphate pathway (FPKM 236-1109), and relatively low FPKM values for genes of the Entner-Doudoroff pathway (FPKM 64-91). Lowest expression values were observed for several genes of the citrate cycle (FPKM 34-406). RNA sequencing data also suggest an organization of 967 genes (38 %) in 364 operons. Furthermore, about 325 antisense transcripts (13 %) and about 100 sRNAs were detected.

Conclusions: The application of RNA sequencing revealed global insights into the transcriptome of *G. oxydans 621H* under different conditions. The data support further understanding of regulation and metabolism in *G. oxydans 621H*, indicate potential bottlenecks in the metabolism and support metabolic engineering approaches.

SmP03

A transcriptome meta-analysis proposes a novel biological role of the antifungal protein AnAFP in *Aspergillus niger*
S. Jung1, P. Schäpe1, N. Paige1, B. M. Nitsche1, V. Meyer1

1Berlin University of Technology - Institute of Biotechnology, Department Applied and Molecular Microbiology, Berlin, Germany

Question: Although *Aspergillus (A.) niger* is used since decades in industrial biotechnology for the production of organic acids and proteins, it largely depicts a black box and we are far from understanding how most of the internal cellular processes work on the molecular level. However, the availability of the genome sequence assembly of the model organism *A. niger* has made it now feasible to shed light into this black box. Our interest in AnAFP is due to the fact that the growth-inhibitory effect of the protein and its homologs from other filamentous *Ascomycetes* seems to be restricted to fungi. No detrimental effects have been observed against bacterial, plant and mammalian systems, making this group of proteins interesting for application in red, green and yellow biotechnology.

Methods: We have recently established a database that stores 377 high-throughput microarray data for *A. niger*. The database includes 158 different cultivation conditions related to carbon source and carbon availability, nitrogen metabolism, conditions related to stress, temporal and spatial stages during its aerial life cycle and many more. We have performed a transcriptome-meta analysis of this database, which enabled us to zoom into the gene expression networks and physiological processes under which AnAFP is expressed.

Results: The corresponding transcriptome meta-analysis of *A. niger* suggests a novel prominent biological role of AnAFP. Remarkably, anafp gene expression is apparently regulated in a non-defense manner. Instead, upon carbon starvation, anafp is strongly upregulated and its expression profile resembles that of genes involved in nutrient mobilization and with a predicted role for autophagy. In addition, anafp expression strongly increases when the mycelium becomes committed to sexual development. Compared to the wild type, its expression is more than two- to tenfold upregulated in both a ΔavrA or ΔahlB background, respectively. As the ΔahlB mutant depicts an autolytic phenotype, we propose AnAFP has a function during the aerial life cycle of *A. niger* and is somehow linked to autophagic processes during normal development.

Conclusion: Our in-house transcriptomics database depicts a valuable tool which enabled us to zoom into the gene expression networks and physiological processes of *A. niger*. Further analysis of this database will definitely help to increase our knowledge of the complex regulation of *A. niger*’s gene network.

SmP04

An optimized bioinformatic workflow for metaproteomics of biogas plants
D. Benndorf1, B. Becher1, F. Kohrs1, R. Heyer1, E. Rapp2, A. Schlüter3, A. Szyrba3, U. Reichl1,2

1Otto von Guericke University, Bioprocess Engineering, Magdeburg, Germany
2Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
3Bielefeld University, CellTec, Bielefeld, Germany

Question: Metaproteomics provides insights into microbial communities on the functional as well as on the taxonomic level. Identification of proteins with mass spectrometry depends on adequate sequence databases. However, publicly available databases such as UniProtKB/SwissProt or UniProtKB/TREMBL do not represent the genetic information in microbial communities very well. Therefore, metagenomes are increasingly used as sequence databases for protein identification in metaproteomics. Combining metagenomes of similar biocenoses for improved identification, however, can also lead to an increasing false discovery rate eliminating potential significant protein hits.

Methods: Metaproteomes of industrial-scale biogas plants were searched with the recently published software MetaProteinAnalyzer1 against UniProtKB/SwissProt as well as against single or combined metagenome databases. The search results were compared regarding the number of identified proteins and the redundancy of sequence data.

Results: The use of metagenome databases generally increased the identification of spectra, peptides and proteins representing the major taxonomies and metabolic pathways in biogas plants1. Compared to the use of UniProtKB/SwissProt two- to three-fold increase in the identification of the spectra was achieved when the respective metagenome was used. Searches against foreign metagenomes also showed improved identifications. However, searches against combined metagenomes did not improve the number of identifications. The reason was the increased redundancy of the combined databases causing increased numbers of false positive hits. Two strategies seem to be useful: (i) searching against single metagenomes and subsequent combination of results and (ii) removing redundancies from database before searching.

Conclusion: In summary, improvement in mass spectrometry allows the measurement and identification from nearly all environmental samples. Sequenced metagenomes are valuable alternatives to public databases. In order to fully exploit the potential of metaproteomics in analysis of microbial communities, the bioinformatic workflow has to be adapted to the special requirements of metaproteomics.

SmP05

Spatial organization of the bacterial transcription and translation machinery in fast growing *E. coli* under drug treatment.
B. Tkuvordy1, U. Endesfelder

1Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

In fast growing bacterial cells, all processes such as transcription, translation, DNA replication and segregation occur in parallel in one single cellular compartment. The organization of these machineries and their coordination among each other matching all processes remains largely unclear (Xie Annu Rev Biophys 2008, Gahlmann Nat Rev Microbiol 2013, Stracy FEBS Letters 2014, Huang Curr Opin Microbiol 2015).

In recent years, structural as well as dynamical single molecule localization microscopy studies on DNA, RNA polymerase and ribosomes revealed characteristic sub-cellular distributions. In *E. coli*, DNA can form heterogeneous nucleoid structures (Spath JSB 2014, Spath MAF 2015), RNA polymerases may cluster, especially on the nucleoid surface (Endesfelder Biophys J 2013, Bakshi Biophys J 2013, Stracy PNAS 2015),
and, in fast growth, transcribe mainly rRNA and further growth-promoting genes (Bremer J Mol Biol 1996). Active polyomes localize to the cellular boundary (Bakshi Mol Microbiol 2012 and 2014). Those distributions are disturbed in the presence of different drugs or by starvation (Zinn S et al J Struct Biol 2002, Cabrera J Bacteriol 2009, English PNAS 2011, Endesfelder Biophys J 2013, Nonejue PNAS 2013, Bakshi Mol Microbiol 2014, Stracy PNAS 2015). For example, the well-characterized antibiotic rifampicin halts the transcription of DNA in the initiation step by permanently binding to the β-subunit of the RNA polymerase (Campbell Cell 2001) or chlorophenolimp stomach prote synthesis by binding to 50S ribosomal subunit (Wissmann J Bacteriol 1954). Both treatments cause significant changes in sub-cellular organization of the processes on a short and long period time scale and also change protein expression. In this work we quantitatively describe these changes when reacting to different drugs that influence the processes of transcription and translation.

SmMP06

A systems biology approach to studying sulfur metabolism in the halokaliphilic chemolithoautotrophic sulfur-oxidizing bacterium *Thioalkalivibrio thiocyanoxidans* ARh 2

T. Berben, D. Sorokin*, G. Muyzer

1University of Amsterdam, Aquatic Microbiology, Amsterdam, Netherlands

2Delft University of Technology, Environmental Biotechnology, Delft, Russian Federation

3Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russian Federation

Soda lakes are characterized by their extremely high pH and moderate to high salinity. Carbonates are the dominant anions in solution, leading to a uniquely stable sodium carbonate/bicarbonate system, which has a maximum buffering capacity at pH 9.5-10. Despite these extreme conditions, soda lakes harbor a rich biodiversity that drives active biogeochemical cycles, of which the sulfur cycle is one of the most active. One of the dominant groups of sulfur oxidizers inhabiting soda lakes worldwide is *Thioalkalivibrio*, a genus of high salt-tolerant, alkaliophile, chemolithoautotrophic *Gamma proteobacteria*. They are capable of oxidizing a variety of inorganic sulfur compounds, such as sulfide, polysulfides, thiosulfate, elemental sulfur and tetrathionate. Some strains also have the ability to use thiocyanate (NCS-) as electron-donor, sulfur and nitrogen source. Comparative analysis of a large set of *Thioalkalivibrio* genomes sequenced within the Community Science Program of the DOE’s Joint Genome Institute has raised additional questions regarding the biochemistry of sulfur oxidation in this group. In the absence of the sulfur dehydrogenase SoxCD, the rDSR pathway is the only known alternative to oxidize the zero-valent sulfur atom to sulfite, but most of the sequenced genomes of *Thioalkalivibrio*, lack the dsr gene cluster as well as soxCD. Here we present the results of transcriptomic analysis of *Thioalkalivibrio thiocyanoxidans* ARh 2 grown under controlled conditions in thiosulfate- or thioate-limited chemostat cultures. Preliminary analysis indicates a small number of genes that are differentially expressed between thioate and thiosulfate cultures. The strongest change is observed for a small cluster of genes encoding a hypothetical protein, copper resistance proteins and a tat-family transporter. Additionally, on the basis of knowledge from genomes and bacterial physiology, we plan to model the metabolism of and interactions between soda lake organisms. Answering open questions regarding the microbial sulfur cycle brings us closer to a complete understanding of the role of sulfur bacteria in soda lakes and on the application of these organisms in the sustainable treatment of sulfide- and cyanide-containing waste streams.

SmMP08

Broadening the application range of compartmental eukaryotic metabolic models for cases of unknown cellular localization of amino acid synthesis pathways

M. Lehnert, B. E. Ebert*, L. M. Blank

1Institute of Applied Microbiology, Aachen, Germany

The rapidly growing field of fluxomics has proven to be invaluable for the physiological characterization of microbial systems as well as the design of rational metabolic engineering approaches. While recent advances in availability and applicability of genetic tools for non-*Saccharomyces* yeasts raise high hopes regarding industrial potentials of such yeasts, respective fluxomics data is scarce and has so far rarely aided in this development. The compartmentation of eukaryotic systems is the main issue adding model complexity and models usually require precise definition of pathway localizations, which may be unknown and are tedious to investigate. A small scale model for 13C-based metabolic flux analysis of central yeast carbon metabolism was developed, which is universally valid and does not depend on localization information regarding amino acid biosynthesis. The feature of variability in compartmental origin of traced metabolites allows for the application of the model to yeasts with uncertain genomic and transcriptional background. The model was shown to find the same solution for resolvable fluxes in an undefined localization setting and in a setting with constraints based on curated or computationally predicted localization information for a *S. cerevisiae* and a *Hansenula polymorpha* dataset, respectively, while finding false solutions with false settings. This indicates the potentially adverse effect of assuming *Saccharomyces*-like constraints, as well as the validity of discarding those constraints for a small scale metabolic model. The model was specifically designed to investigate the intracellular metabolism of various wild-type yeasts under various stress conditions but is expected to be a useful basis for modelling other eukaryotic systems as well.

SmMP09

Impact of intermediate toxicity on the regulation of fungal metabolic pathways

J. Ewald, M. Bort!, C. Kaleta

1Technical University Munich, Munich, Germany

Question: *Dinoroseobacter shibae* is a member of the Roseobacter clade and belongs to the aerobic anoxygenic phototrophic bacteria (AAoP). AAoPs are using light in the presence of oxygen but without producing oxygen to synthesize organic matter. Therefore, they are using phosphenodone and bacteriochlorophyll a (Bchl) as main light harvesting pigments [1]. *D. shibae* serves as our model organism to study the bacteriochlorophyll a (Bchl) biosynthesis. Changing light and oxygen conditions result in different expression patterns of photosynthetic genes [2,3]. Interestingly, bacteriochlorophyll a is synthesized in the dark and gets rapidly degraded under high light conditions. Thus, we raised the question, how the bacteriochlorophyll biosynthesis in *D. shibae* is regulated by light and which genes are involved.

Methods: We used our *D. shibae* transposon library and established a high-throughput screening [4]. Transposon mutants were grown on 96 micro well plates and we used in vivo UV/Vis spectroscopy to identify mutants with an altered absorption spectra compared to the wildtype strain. In addition, we screened for the accumulation of the Bchl biosynthesis intermediate magnesium-protoporphyrin IX monomethoxyster (MPE) which is fluorescing under blue light.

Results: We identified gene mutants encoding enzymes of almost every step of the Bchl biosynthesis. Moreover, we could identify homologs of the photosynthetic gene regulators PsSR and PsPa. In *Rhodobacter sphaeroides* both regulators are known as repressors of photosynthetic genes in the presence of oxygen [5]. Since in *D. shibae* Bchl is synthesized in the presence of oxygen, the function of these regulators in *D. shibae* is unknown yet. Moreover, mutants in clpX and clpP genes, encoding proteases, showed altered absorption spectra, indicating a role in bacteriochlorophyll biosynthesis.

Conclusion: These mutants will be investigated by transcriptional and proteome analyses to define the bacteriochlorophyll biosynthesis regulation by the photosynthetic gene regulators and the connections of yet unknown protagonists.

approach of dynamic optimization we were able to uncover time-resolved optimality principles behind the regulatory strategies controlling metabolic pathways [1, 2]. In the present study, we focus on the impact of toxic intermediates on the regulatory strategies controlling metabolic pathways. We found that toxic intermediates are controlled by a tight regulation of upstream enzymes preventing their accumulation. Consequently, this changes the position of the mainly regulated enzyme, also called key enzyme. These findings can explain a sparse regulation by key enzymes at various positions of a pathway and not mainly at the first and last position, as it was observed previously. These results were validated in a large scale data set from prokaryotes with known genome and metabolic structure and latest results for *Saccharomyces cerevisiae* show that these principles are transferable to fungi. Further, our results provide new opportunities for antifungal drugs by targeting highly regulated enzymes and introducing a self-produced and accumulated toxic intermediate.

Aakre, C. STP13
Aadollahi, R. BFP10
Abdel-Hameed, A. IBP24
Abdelwahab Hassain, M. IBP30
Abdullah, M. MPV-FG03
Abou, G. IBP08
Abel, B. BDP01
Abels, C. BTV12
Abelmann, K. EMV04, CMP52
Abeni, U. IBV08
Abeuchi, J-U. IBT22
Adams, M. NPV13, NPV16
Adelso, O. NPV02
Adolfo, Y. OTP47
Adrian, L. OTP37
Aebi, M. OTP24
Aebi, M. STV05
Achare, R. OTP60
Achter, R. OTP01
Achtelik, B. OTP01
Achter, R. IBV09
Achter, R. IBP03
Achter, R. IBP12, AEP15
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
Achter, R. IBP40, IBP46, IBP50
Achter, R. IBP01
Achter, R. IBP40
Achter, R. IBP28, IBP44, IBP51, IBP52,
AUTHOR INDEX

Gerrits, R. MCP32

Groth, M. IBP26

Grossart, H.-P. MCV13, EMP68

Groß, U. MEP08

Günther, D. BTP50

Gsell Salazar, M. IBV04, IBP39

Geyer, K. FBV03, NPP13

Ghanem, N. MTIP14

Ghazel, R. BTP86

Giacomelli, G. BTP86

Gideon, G. BMV06

Giedt, H.-A. BTP04

Giebler, J. FBV04

Gier, T. FBV09

Giersberg, M. BMV07

Gillard, M. CMV03

Gisiner, J.-B. IBP26

Gimikiewicz, C. BTP91

Gir, G. SnMP13

Gir, S. SnMP13

Gisch, N. IBV16

Glaeser, E. OTP46

Glaeser, S. STP20

Glaeser, S. MCP65

Glaeser, S. P. MCV20, BEFP15, IBP16, EMP37, MCP71, MCP72, MCP73

Glass, N. L. FBV402, AEIP17

Gildesditch, D. BTP14

Gleiche, J. FBV11, FBV43

Gledeke, J. EMP01

Goessweiner-Mohr, N. IBP26

Goethe, R. OTP33

Gohlike, H. IBP45

Göyt, V. NPP05

Gola, S. MPV-FG07, MPV04

Gold, V. BMV07, CMV05

Goldbacher, O. OTP35, STP27

Gönnemann, A. IBP10

Götz, F. MPV-FG02

Götze, S. MCP09, BTP41, MCP05

Govers, F. ISV04

Götz, E. BTP12

Grace Leo Vaz, A. FBV03

Gräf, M. A. SPF01

Graf, D. BTP80

Graf, K. IBV18, IBP32

Graintisiotis, M. BTP01

Graf, C. AEIP04

Greim, S. BTP01

Grein, S. BTP07

Grein, F. BTP00, NPP27

Grein, Haas, F. BTP12, BTP16

Gressler, M. NPP04

Greule, A. BTP13

Grijpma, A. BTP92

Grima, L. MCP01

Gröbel, C. BTP28

Groth, C. MTIP07

Groenewold, M. MTIP13

Grimmel, H. NPP23

Groninga, A. BTP09

Gronow, S. MEIP08

Groth, H. BTP06

Groth, H. MCP13

Grossart, H.-P. MCP13

Groß, K. MCV92

Grunholzen, S. MCP12

Grotelen, K. MCP56

Grotel, K. IBP26

Guhrer, S. OTP05, OTP06
Personalia aus der Mikrobiologie 2015

Habilitationen

Christian Riedel habilitierte sich am 27. Mai 2015 an der Universität Ulm (Genomic and Molecular Analysis of Bifidobacteria-Host Interactions).

Ruf angenommen

Hannes Link von der ETH Zürich übernahm am 1. Januar 2015 die Position als Gruppenleiter der Emmy-Noether-Gruppe „Dynamic control of metabolic networks“ am Max-Planck-Institut für terrestrische Mikrobiologie in Marburg (Japan).

Tanja Schneider von der Universität Bonn übernahm am 4. Februar 2015 die W2-Professur für den Lehrstuhl für Pharmazeutische Mikrobiologie an der Universität Bonn.

Thorsten Mascher von der Universität München übernahm am 1. April 2015 die W3-Professur für Allgemeine Mikrobiologie an der Technischen Universität Dresden.

Dina Grothmann von der Universität Braunschweig übernahm am 1. April 2015 die W2-Professur für den Lehrstuhl für Mikrobiologie an der Universität Regensburg.

Matthias Brock von der Universität Jena übernahm am 1. April 2015 die Assistenzprofessur für Fungal Biology and Genetics an der University of Nottingham.

Guntram Gräßl von der Universität Kiel, Institut für Experimentelle Medizin sowie dem Forschungscentrum Borstel übernahm am 1. April 2015 die W2-Professur für Medizinische Mikrobiomikosforschung am Institut für Medizinische Mikrobiologie und Krankenhaushygiene der Medizinischen Hochschule Hannover.

Takashi Fujishiro vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg übernahm am 1. April 2015 die Assistentprofessur für die “Graduate School of Science and Engineering” an der Saitama University (Japan).

Alexander Elsholz von der Harvard University übernahm am 1. Juni 2015 die Position als Gruppenleiter der Forschungsgruppe „Post-translational control of bacterial cell differentiation“ am Max-Planck-Institut für terrestrische Mikrobiologie, Marburg.

Kai Papenfort von der Princeton University, USA, übernahm am 1. September 2015 die W2-Professur für Mikrobiologie an der Ludwig-Maximilians-Universität München.

Andriy Luzhetskyy vom Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) übernahm am 1. Oktober 2015 die W3-Professur für den Lehrstuhl Pharmazeutische Biotechnologie an der Universität des Saarlandes.

Haïk Antelmann von der Universität Greifswald übernahm am 1. Oktober 2015 die W3-Professur für Mikrobiologie an der Freien Universität Berlin.

Marc Dumont vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg übernahm am 1. Oktober 2015 eine Dozentenstelle an der Universität in Southampton (UK).

Martin Thanhbichler von der Universität Marburg übernahm am 1. Oktober 2015 den Ruf als Max Planck Fellow der Gruppe „Bacterial cell biology“ am Max-Planck-Institut für terrestrische Mikrobiologie, Marburg.

Knut Drescher vom Max-Planck-Institut, Marburg übernahm am 14. Oktober 2015 die W2-Professur für Biophysik an der Universität Marburg.

Pensionierungen

Gerold Barth vom Institut für Mikrobiologie an der Technischen Universität Dresden wurde am 31. März 2015 emeritiert.

Helmut König vom Institut für Mikrobiologie und Infektionsmedizin (IMIT), Mikrobielle Genetik an der Universität Jena wurde am 15. September 2015 pensioniert.

Friedrich Götz vom Interfakultäten Institut für Mikrobiologie und Infektionsmedizin (IMIT), Mikrobielle Genetik an der Universität Tübingen wurde am 1. Oktober 2015 als Seniorprofessor emeritiert.

Wissenschaftliche Preise

Ulrike Endesfelder vom Max-Planck-Institut für terrestrische Mikrobiologie Marburg erhielt in 2015 die Auszeichnung “Elected Member of the Young Academy der Deutschen Akademie der Wissenschaften Leopoldina”.

Alexander Grüninger (FZ Jülich), Isabel Kolinka (LMU München), Daniela Münch (Universität Bonn) und Alexander Probst (Universität Regensburg) erhielten am 2. März 2015 in Marburg die Promotionspreise der DAAD.

Cynthia Sharma von der Universität Würzburg erhielt am 5. Mai 2015 den Heinz Maier-Leibnitz-Preis der DFG.

Rudolf K. Thauer vom Max-Planck-Institut für terrestrische Mikrobiologie Marburg erhielt am 11. Juni 2015 den André-Lwoff-Award of the Federation of European Microbiology Societies für seine herausragenden Verdienste um die Mikrobiologie in Europa.

Promotionen 2015

RWTH Aachen
Yulei Zhao: The molecular basis of symptom formation in Sporosarium reilianum
Betreuer: Jan Schirawski

Alana Poloni: Investigation of host specificity mechanisms of Sporosarium reilianum in maize and sorghum
Betreuer: Jan Schirawski

Elena Geiser: Itaconic Acid Production by Ustilago maydis
Betreuer: Lars M. Blank

Bernd Leuchte: Mikrobiologische Kontamination von Heizöl - Ursachen und Auswirkungen auf Brennstoff und Tank
Betreuer: Lars M. Blank

Humboldt-Universität Berlin
Franziska Kirsch: Analyse der Substratbindestelle, der Stichometrie und der Transportfunktion von S-Einheiten bakterieller ECF-Transporter
Betreuer: Thomas Eitinger

Yvonne Kohlmann: Charakterisierung des Proteoms von Ralstonia eutropha H16 unter lithotrophen und anaeroben Bedingungen
Betreuerin: Bärbel Friedrich

Freie Universität Berlin
Carmen Bednorz: Influence of Feed Supplements on the Porcine Intestinal Escherichia coli Microbiota
Betreuer: Lothar Wieler, Rupert Mutzel

Mara Wittig: hBD-2 and hBD-3 are induced in S. pneumoniae
Betreuer: Lothar Wieler, Rupert Mutzel

Hanna Berger: The regulatory network adjusting light-harvesting in the model green alga Chlamydomonas reinhardtii
Betreuer: Olaf Kruse

Marius Herbst: Genome reduction of Corynebacterium glutamicum and its impact on L-lysine production
Betreuer: Volker Wendisch

Jade Vold Korgaard Jensen: Metabolic engineering of Corynebacterium glutamicum for production of glutamate derivatives
Betreuer: Volker Wendisch

Robert Kulis-Horn: Untersuchung der L-Histidinbiosynthese in Corynebacterium glutamicum ATCC 13032 zur Erzeugung eines L-Histidinproduzenten
Betreuer: Jörn Kalinowski

Lennart Leßmeier: Metabolic engineering of Corynebacterium glutamicum toward the utilization of methanol
Betreuer: Volker Wendisch

Christian Matano: Alternative carbon sources for Corynebacterium glutamicum: chitin and its derivatives
Betreuer: Volker Wendisch

Quynh Anh Nguyen: Metabolic engineering for improving putrescine production in C. glutamicum
Betreuer: Volker Wendisch

Armin Neshat: Transcriptome Analysis of Industrially Relevant Bacteria by Next-Generation Sequencing
Betreuer: Jörn Kalinowski

Vimac Nolla Ardevol: Anaerobic digestion of the microalgae Spirulina at alkaline conditions (pH 10; 2.0 M Na+) – Biogas production and metagenome analysis
Betreuer: Olaf Kruse

Johannes Pfeifenschneider: Metabolic engineering of Bacillus methanolicus and Corynebacterium glutamicum for the production of cadaverine from methanol
Betreuer: Volker Wendisch

Katharina Pfeifer: Entwicklung der Transkriptomessequenzierung und Anwendung zur Analyse des Transkriptoms von Corynebacterium glutamicum
Betreuer: Jörn Kalinowski

Daniel Siebert: Genome reduction of Corynebacterium glutamicum: biotechnological applications in context of peptidase deficiency and production of 1,2-propanediol and 1-propanol
Betreuer: Volker Wendisch

Frederik Walter: Etablierung einer LC-ESI-MS-Plattform und Analyse der Biosynthese von t-Aarginin und γ-Glutamyl-Dipeptiden in Corynebacterium glutamicum
Betreuer: Karsten Niehaus

Sergej Wendler: Comprehensive proteome analysis of Actinoplanes spp. SE50/110, the producer of the medically important secondary metabolite acarbose
Betreuer: Alfred Pühler

Universität Bochum
Kordula Becker: Funktionelle Genomanalysen zur Regulation von Morphogenese und Sekundärmetabolismus in dem industriellen Penicillin-Produzenten Penicillium chrysogenum
Betreuer: Ulrich Kück

Anna Beier: Die STRIPAK-assoziierte katalytische Untereinheit 1 der Proteinphosphatase 2A reguliert die sexuelle Entwicklung des Hyphenpilzes Sordaria macrospora
Betreuer: Ulrich Kück

Tim Alexander Dahlmann: Vergleichende Genom- und Transcriptanalysen zum Nachweis chromosomaler Rekombinationen und kleiner RNAs im Penicillin-Produzenten Penicillium chrysogenum
Betreuer: Ulrich Kück

Olga Reischneider: Spießosomähnliche Komplexe in Chloroplasten der Grünalge Chlamydomonas reinhardtii
Betreuer: Ulrich Kück

Eva Katharina Steffens: Entwicklung biologi scher und technologischer Verfahren zur Charakterisierung und Phänotypierung des anaeroben Radical SAM Proteins from Bacillus megaterium as biocatalysts for the synthesis of biologically active compounds
Betreuer: Dieter Jahn, Michael Steiert

Julia Schwach: Funktion und Struktur der Phycobiliproteinlasi nen aus Prochlorococcus marinus SS120und dem Cyanophagen P-HM1
Betreuerin: Nicole Frankenberger-Dinkel

Universität Bonn
Kevin Denkman: Biochemische, strukturelle und kinetische Charakterisierung von lichtoptischen c-Typ Cytochroms Thiosul fatehydrogenase
Betreuerin: Christine Dahl

Anna Müller: Mechanistic studies of new inhibitors of Gram-positi ve cell envelope biosynthetic pathways
Betreuer: Hans-Georg Sahli

Stefanie Claudia Berger: Energy conservation in aceticlastic methanogenic archaea and human gut archaeon Methano massiliicoccus luminyensis
Betreuer: Uwe Deppenmeier

Jessica Zeiser: Charakterisierung von PQO-abhängigen Dehydrogenasen aus Spingomonas wittichii
Betreuer: Uwe Deppenmeier

Technische Universität Braunschweig
José Manuel Borrero de Acuña: Membrane-associated higher-ordered protein mega-complexes for denitrification and motility in Pseudomonas aeruginosa
Betreuer: Dieter Jahn, Kenneth Timmis

Tobias Knutti: Natürlich Kompetenz und Proteinen in Bacillus megaterium – Grundlagen und biotechnologische Anwendungen
Betreuer: Dieter Jahn, Michael Steiert

Melanie Kühner: Kristallisation des anaeroben Radical SAM Proteins SKF aus Bacillus subtilis
Betreuer: Gunhild Layer, Gunhild Layer

Constanze Finger: Rekombinante Proteinproduktion, Codonusage und tRNA Coproduktion in Bacillus megaterium sowie Studien zu Protein-Protein-Interaktionen
Betreuer: Dieter Jahn, Gunhild Layer
Franziska Schuster: Underlying principles of bistability in the expression of the pivotal virulence regulator RovA of Yersinia pseudotuberculosis and its role for virulence
Betreuerin: Petra Dersch

DSMZ/TU Braunschweig
Anne Fiebig: Genomic and phenotypic characterization of members of the Roseobacter clade (Rhodobacteraceae)
Betreuer: Hans-Peter Klenk, Markus Göker

Palani Kannan Kandavel: Inferior organism and character evolution from functional genome features
Betreuer: Hans-Peter Klenk, Markus Göker

DSMZ/Jomo Kenyatta University, Nairobi, Kenya
Julia K. Akhwale: Isolation and characterization of novel bacteria and bacteriophages from the halokaline lake elmenteita
Betreuer: Hans-Peter Klenk, Hana-di Boga

Universität Bremen/mpi für Marine Mikrobiologie Bremen
Gerhard Jessen: Ecosystem response to hypoxia: what can marine benthos tell us?
Betreuer: Antje Boetius

Judith Zimmermann: Diversity, specificity and evolutionary history of marine invertebrate symbioses and functions of the sulphur-oxidizing symbionts
Betreuerin: Nicole Dubilier

Marina Zure: Biogeography of Rhodopirellula in European coastal sediments
Betreuer: Jens Harder

Judith Lucas: Spatiotemporal dynamic of the bacterial community in the German Bight
Betreuer: Rudolf Amann

Marion Helen Stagars: Ecophysiology of key sulfate-reducing bacteria involved in anaerobic hydrocarbon degradation at marine gas and oil seeps
Betreuer: Rudolf Amann

Jimena Barrero Canosa: Systematic optimization of the detection of single genes in microorganism by fluorescence in situ hybridization (Gene FISH)
Betreuer: Rudolf Amann

Robert Marmulla: The linalool metabolism in Castellaniellena degraffans 65Phen and Thauera linaloolentis 47Lol
Betreuer: Jens Harder

Judith M. Klatt: Cyanobacteria and hydrogen sulfide: Insights into an (ancient) love-hate relationship
Betreuer: Friedrich Widdel

Viola Krukenberg: Novel insights into the physiology and genomics of thermostable anaerobic methane-oxidizing consortia
Betreuerin: Antje Boetius

Jacobs Universität Bremen/mpi für Marine Mikrobiologie Bremen
Julia Schnetzer: On the feasibility to engage heterogeneous communities in data gathering, charring and enrichment
Betreuer: Frank Oliver Glöckner

Joost Waldmann: Reliable taxonomic classification of metagenome fragments from varying marine bacterial communities
Betreuer: Frank Oliver Glöckner

Technische Universität Darmstadt
Michael Martin Rudolph: Entwicklungs- und Anwendung synthetischer RNA-Schalter zur Regulation der Genexpression
Betreuerin: Beatrice Süß

Florian Groher: Kontrolle des prä-mRNA-Splittings durch synthetische Riboswitches
Betreuerin: Beatrice Süß

Nona Heueis: Charakterisierung kleiner, nicht-kodierender RNAs in Streptomyces coelicolor
Betreuerin: Beatrice Süß

Christine Spohr: Etablierung einer 3R-Alternativmethode für die Chargenprüfung von bovinem Tuberkulin unter Berücksichtigung mykobakterieller Lipidanteigene im Mearschweinchenmodell.
Betreuer: Ger van Zandbergen, Jörg Simon

Lucia Carrillo: Application of high-resolution membrane capacitance measurements in the study of exoyctosis and endocytosis in Saccharomyces cerevisiae
Betreuer: Adam Berti

Technische Universität Dortmund
Christian Dusny: Microfluidics enable quantitative physiology of individual microorganisms in controlled extracellular environments
Betreuer: Andreas Schmid

Technische Universität Dresden
Nicolie Matschiavelli: Analyse der Formiat-Bildung in Methano-sarcina acetivorans
Betreuer: Michael Rother

Christoph Loderer: Strukturelle Determinanten der Stereoselektivität und Substratspezifität Zink-abhängiger Alkoholdehydrogenasen
Betreuerin: Marion Ansgore-Schumacher

Liane Flor: Untersuchungen zur Biosynthese von chlorierten Sekundärmetaboliten aus Aster tataricus, Talaromyces islandicus und Streptomyces albogriseolus
Betreuer: Karl-Heinz van Pée

Universität Düsseldorf
Marc Swidergall: Mechanismen der Msb2-vermittelten Virulenz des humanpathogenen Pilzes Candida albicans
Betreuer: Joachim Ernst

Thorsten Langner: Charakterisierung der chinotyliotischen Maschinerie aus Ustilago maydis
Betreuer: Michael Feldbrügge

Universität Düsseldorf/ Forschungszentrum Jülich
Philana van Summern-Wesenhagen: Metabolic engineering of Escherichia coli for the production of plant phenylpropanoid derived compounds
Betreuer: Michael Bott

Eva Hentschel: Interaction of the two-component systems HrrSA and ChrSa in Corynebacterium glutamicum
Betreuer: Julia Frunzke

Xenia Schuplezow: Strukturelle und funktionelle Untersuchungen zur Kupfer-Hömöostase in Corynebacterium glutamicum
Betreuer: Michael Bott

Universität Duisburg-Essen
Julia Christin Verheyen: Sulfolobus acidocaldarius & Sulfolobus solfataricus: Exploitation of thermoacidiphilic Archaebae for biotechnological applications
Betreuerin: Bettina Siebers

Universität Erlangen-Nürnberg
Camila Azevedo Antunes de Oliveira: Characterization of the multi-functional virulence factor DIP0733 among other pathogenicity properties of Corynebacterium diptheriae
Betreuer: Andreas Burkovski

Judith Lind: Role of different secreted or translocated effector molecules of the gastric pathogen Helicobacter pylori – Studies on different pathogenicity factors leading to immune system activation
Betreuer: Steffen Backert

Universität Frankfurt am Main
Alexander Farwick: Engineering of D-xylose transport in Saccharomyces cerevisiae
Betreuer: Eckhard Boles

Sophie Korn: Functional analysis of the lactic acid immunity protein SpaL from Bacillus subtilis and NisL from Lactococcus lactis
Betreuer: Karl-Dieter Entian

Kai Schuchmann: A hydrogen-dependent CO2 reductase: enzyme properties, applications and implications for the energy metabolism of the acetogenic bacterium Acetobacterium woodii
Betreuer: Volker Müller

Friederike Nollmann: Characterization and Synthesis of selected secondary metabolites produced by Xenorhabdus and Photorhabdus
Betreuer: Helge B. Bode

Anna Proschak: Identification and characterization of secondary metabolites and biosynthesis pathways from Xenorhabdus and Acinetobacter
Betreuer: Helge B. Bode
Tilman Ahrendt: Structure and function of selected metabolites from Myxococcus and Legionella
Betreuer: Helge B. Bode

Universität Freiburg
Sebastian Estelmann: Unge-öhnlliche Elektroentranfer-
prozesse im Aroma-
tenabbau
Betreuer: Matthias Boll

Universität Gießen
Fazal Adnan: Protein- and RNA-
based regulation of the photooxi-
dative stress response in Rhodo-
bacter sphaeroides
Betreuerin: Gabriele Klug

Bernhard Remes: Regulatory links between iron metabolism and oxidative stress response in Rhodobacter sphaeroides
Betreuer: Gabriele Klug

Bernd Christoph Lochbühler: The potential of yeast proteins to substitute for traditional fining agents – technological and sen-
sory aspects
Betreuerin: Sylvia Schnell

Universität Göttingen
Stefan Frey: The STRIPAK complex and its role in fruiting-body development of the filamentous fungus Sordaria macrospora
Betreuerin: Stefanie Pöggeler

Stephanie Großhennig: Novel virulence determinants in Myco-
plasma pneumoniae: contribution of transport systems and H$_2$S pro-
duction to viability and hemolysis
Betreuer: Jörg Stülke

Jan Gerwig: Control of biofilm for-
mation in Bacillus subtilis
Betreuer: Jörg Stülke

Lorena Stannek: Control of gluta-
tate homeostasis in the Gram-
positive model organism Bacillus subtilis
Betreuer: Fabian M. Commichau

Universität Greifswald
Andreas Bäumgen: Untersuchungen zur enzymatischen Fixie-
rung von CO$_2$
Betreuer: Uwe Bornscheuer

Mechthild Gall: Biotransforma-
tion von Flavonoiden
Betreuer: Uwe Bornscheuer

Fabian Steffen-Munsberg: Struc-
ture- and sequence-function rela-
tionships in (S)-amine transami-
nases and related enzymes
Betreuer: Uwe Bornscheuer

Christian Peters: Kopplung von Oxidereduktasen in syntheti-
schen Enzymkaskaden
Betreuer: Uwe Bornscheuer

Sandy Schmidt: An artificial enzyme cascade for the biocata-
lytic synthesis of polymer building blocks
Betreuer: Uwe Bornscheuer

Janett Müller: Untersuchungen zur Aeryltransferaseaktivität der Lipase A aus Candida antarctica
Betreuer: Uwe Bornscheuer

Hannes Kohls: Biocatalytic synthesis of amino alcohols
Betreuer: Uwe Bornscheuer, Matthias Höhne

Müller, Marret: Charakterisie-
run des alka
dischen Schock Prote-
ins Asp23 in Staphylococcus aureus
Betreuer: Michael Becker

Bonn, Florian: Analyse der Anti-
biotikastress-Antwort von Staph-
phylococcus aureus
Betreuerin: Dörte Becher

Gerlach, Torsten: Entwicklung neuer Testsysteme zur Erfassung östrogener und androgener Wir-
kungen im Rahmen der Umwelt-
analytik
Betreuer: Rüdiger Bode

Chamas, Alexandre: Development of novel Surface Plasmon Resonance-based biosensors with purified recombinant human HER-2 and progesterone recep-
tor produced in two different yeast species
Betreuer: Rüdiger Bode

Rauter, Marion: Herstellung rekombinanter Alkoholdehydo-
genasen in der Hefe Arxula aden-
ninivorans und ihre Verwendung für die Synthese enantiomeren-
reiner Alkohole
Betreuer: Frieder Schauer

Mohammed Redha Abdullah: Functional and structural charac-
terization of DacB and PccL, lipoproteins contributing to pneumo-
coccal pathogenesis
Betreuer: Sven Hammerschmidt

Universität Hamburg
Janine Maimanakos: Vorkom-
men, Verbreitung und biochemi-
sche Charakterisierung bakte-
rieller Arylmalonat-Decarboxyla-
sen
Betreuer: Wolfgang Streit

Julia Jürgensen: Identification of an unusual GTase from a non-cul-
tivated microorganism and the construction of an improved E. coli strain harboring the rpoD gene from C. cellulolyticum for metagenome searches
Betreuer: Wolfgang Streit

Hanae Henke: The Staphylococ-
cus epidermidis biofilm matrix:
functional components, molecu-
lar interactions and targeted enzy-
matic disruption
Betreuer: Wolfgang Streit & Holger Rohde

Rong Gao: Genome-wide RNA-seq analysis of quorum sensing-
dependent regulons in the plant-
associated Burkholderia glumae stain PG1
Betreuer: Wolfgang Streit

Medizinische Hochschule Hannover
Wiebke Behrens: Charakteriza-
tion of mechanisms mediating energy taxis of Helicobacter pylo-
r in vitro and in vivo
Betreuerin: Christine Josenhans

Juliane Mohr: Characterizing the metabolism of Campylobacter and its influence on host interaction
Betreuer: Dirk Hofreuter

Christian Schulz: The influence of regulatory proteins on the physiology and virulence of Strep-
tococcus pneumoniae
Betreuer: Sven Hammerschmidt

Universität Halle-
Wittenberg
Nicole Wiesemann: Mecha-
низmus der Goldresistenz in Cupriavidus metallidurans
Betreuer: Dietrich H. Nies

Martin Herzberg: Die Rolle des Zink-Transports ZupT in der Zinkhombostase von Cupriavidus metallidurans
Betreuer: Dietrich H. Nies

Universität Jena
Elke-Martina Jung: Cell signaling in pheromone response and fun-
gal development in Schizophy-
lum commune
Betreuerin: Erika Kothe

Dominik Sammer: Molecular characterization of hydrophobins from the ectomycorrhizal fungus Tricholoma vaccinum
Betreuerin: Erika Kothe

Annekatrin Voit: Chemotaxis bei Schwermetall-toleranten, fila-
mentösen Bakterien und Pilzen
Betreuerin: Erika Kothe

Catarina Henke: Ectomycorri-
zial signaling: The role of indole-
3-acetic acid and dehydrogena-
ses in the basidiomycete Tricho-
Ioma vaccinum
Betreuerin: Erika Kothe

Anita Mac Nelly: Die Rolle von Cobamid-haltigen reduktiven Dehalogenasen aus Desulfitobacterium spp. beim Abbau von chlortierten Arylmetaboliten aus dem Weißfäulepilz Hypholoma fasciculare
Betreuerin: Gabriele Diekert

Felix Mingo: The role of Desulfito-
bacterium spp. in the global network of O-demethylation in soil
Betreuerin: Gabriele Diekert

Claudia Torow: Active suppress-
ion of intestinal CD4+ TCRx+T lymphocyte maturation during the postnatal period
Betreuer: Mathias Hornf

Hanne Vorwerk: Analysis of the nutritional and metabolic requi-
ments that contribute to the growth of the bacterial pathogens Campylobacter jejuni and Cam-
pylobacter coli
Betreuer: Dirk Hofreuter

Universität Heidelberg
Vihang Vivek Ghalsasi: Engi-
eering bacteria to disperse bac-
terial biofilms
Betreuer: Victor Sourjik

Alvaro Banderas: Population-
parameter sensing in the mating system of Saccaromyces cerevi-
siae
Betreuer: Victor Sourjik

Universität Jena
Elke-Martina Jung: Cell signaling in pheromone response and fun-
gal development in Schizophy-
lum commune
Betreuerin: Erika Kothe

Dominik Sammer: Molecular characterization of hydrophobins from the ectomycorrhizal fungus Tricholoma vaccinum
Betreuerin: Erika Kothe

Annekatrin Voit: Chemotaxis bei Schwermetall-toleranten, fila-
mentösen Bakterien und Pilzen
Betreuerin: Erika Kothe

Catarina Henke: Ectomycorri-
zial signaling: The role of indole-
3-acetic acid and dehydrogena-
ses in the basidiomycete Tricho-
Ioma vaccinum
Betreuerin: Erika Kothe

Anita Mac Nelly: Die Rolle von Cobamid-haltigen reduktiven Dehalogenasen aus Desulfitobacterium spp. beim Abbau von chlortierten Arylmetaboliten aus dem Weißfäulepilz Hypholoma fasciculare
Betreuerin: Gabriele Diekert

Felix Mingo: The role of Desulfito-
bacterium spp. in the global network of O-demethylation in soil
Betreuerin: Gabriele Diekert
Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut/Universität Jena

Robert Altawasser: Gene regulatory network inference in human pathogenic fungi
Betreuer: Reinhard Guthke

Claara Baldin: Tor dependent regulatory circuits and regulation of melanin biosynthesis in Aspergillus fumigatus
Betreuer: Axel Brakhage

Michael Biermann: Rare amino acid related physiological stress response in recombinant Escherichia coli fermentation
Betreuer: Uwe Horn

Pranatchareeya Chankhamjon: Chemical and biochemical analysis of mycotoxin biosynthesis in Streptomyces rapamycinicus
Betreuer: Hauke Harms

 Istok Gottschalk: Microbial anti-angiogenetic defense systems in ulcerative colitis
Betreuer: Rolf Schacht

Jakob Franke: Genome mining-based identification and study of natural products from the human pathogen Burkholderia mallei group
Betreuer: Christian Hertweck

Sebastian Gries: Characterization of the complete genome of the human pathogen Neisseria meningitidis
Betreuer: Frank Kühl

Jana Funk: Biochemical characterization and localization of the Enolase-Allergen humanpathogen Pilze
Betreuer: Uwe Horn

Markus Gressler: Production and identification of insecticidal fractions of microbial BTEX degraders in the aquifer of Leuna
Betreuer: Regine Hakenbeck

Claudia König: Activation of the still Fumicycin-Clusters in Aspergillus fumigatus durch Propionsäure in NawaRo-Biogasanlagen
Betreuer: Hans Peter Saluz

Ines Leonhardt: Titration of quorum-sensing molecules and their effect on the production of surfactin in Bacillus subtilis
Betreuer: Oliver Kurzai

Yuliya Mokhova: Quantitative assay of the production of surfactin in Bacillus subtilis
Betreuer: Axel Brakhage

Vera Pätz: Mechanism of the Wirtadaption of Aspergillus fumigatus
Betreuer: Christian Hertweck

TU Kaiserslautern

Abderrahim Madhoun: Vergleichende Genomanalyse von Streptococcus pneumoniae, S. mitis und S. oralis: Oberflächenproteine und comCDE-Operon
Betreuerin: Denise Berthold

Marina Meiers: Genetische Analyse von Resistenzdeterminanten in Streptococcus pneumoniae
Betreuer: Reinhold Brückner

Universität Karlsruhe, KIT

Stefan Rauscher: Untersuchung der Rolle von Vfa Phosphorylierung in der Lichtantwort und des dauernden Wachstums in Aspergillus nidulans
Betreuer: Uwe Horn

Andreas Herr: Steigerung der Penicillin- und Riboflavinproduktion in Aspergillus nidulans durch Translokation von Biosynthesegenzymen
Betreuer: Reinhard Fischer

Julian Benjamin Röhrig: Untersuchung des Einflusses von Phosphorylierung und VipA auf lichtabhängige Prozesse in Aspergillus nidulans
Betreuer: Reinhard Fischer

Kristin Seither: Untersuchung der Regulation von Sekundärmetaboliten in Alternaria alternata
Betreuer: Reinhard Fischer

Nicole Bühler: Funktionelle Analyse von Steroltransportsystemen in dem filamentösen Pilz Aspergillus nidulans
Betreuer: Norio Takeshita/Reinhard Fischer

Anna R. Bergs: Activity und Regulation der Toxinbiosynthese in Aspergillus nidulans
Betreuer: Norio Takeshita/Reinhard Fischer

Raphael Manck: Untersuchung der Rolle von MigA während der Mitose und des polaren Wachstums in Aspergillus nidulans
Betreuer: Reinhard Fischer

Nathalie Grün: Untersuchung des Mikrotubuli-abhängigen Vesikelsystems und des Tubulin-Detyrosinierungsprozesses in Aspergillus nidulans
Betreuer: Reinhard Fischer

Johannes Kügler: Charakterisierung der stereospezifischen Diketopiperazinbiosynthese und der Detyrosinierung in Aspergillus nidulans
Betreuer: Reinhard Fischer

Judith Willenbacher: Evaluation of different process strategies for the production of Surfactin
Betreuer: Christoph Syldatk

Universität Mainz

Friederike Bremer: Druck- and stable isotope fingerprinting in the biotechnology of the combinatorial chemistry
Betreuer: Axel Brakhage

Jinyi Qin: Fundamentals of electro-bioremediation: Electrokinetic effects on microbial deposition and bioavailability in water unsaturated environments
Betreuer: Hauke Harms

Franziska Bühlig: Functional properties of lager brewing yeast cells in industrial repitching processes
Betreuer: Hauke Harms

Zuopeng Lv: Assessment of the methanogenesis in biogas production with the combination of molecular biological techniques and stable isotope fingerprinting
Betreuer: Hauke Harms

Universität Leipzig/Helmholtz Zentrum für Umweltforschung-UFZ

Sebastian Stasik: Der Schwefelkreislauf in Absetzbecken der kanadischen Olindustrie
Betreuer: Hauke Harms

Michael Jahn: Characterization of population heterogeneity in a model biotechnological process using Pseudomonas putida
Betreuer: Hauke Harms

Susan Schamfuß: Role of mycelia for PAH mobilization and bioavailability in water unsaturated environments
Betreuer: Hauke Harms

Karolin Fischer: Characterisation of microbial BTEX degraders in the aquifer of Leuna
Betreuer: Hauke Harms

Franziska Bühlig: Functional properties of lager brewing yeast cells in industrial repitching processes
Betreuer: Hauke Harms

Zuopeng Lv: Assessment of the methanogenesis in biogas production with the combination of molecular biological techniques and stable isotope fingerprinting
Betreuer: Hauke Harms

Universität Mainz

Stephan Ahlert: Propioniasäure-abbau in NawaRo-Biogasanlagen
Betreuer: Helmut König

Iris Buckel: Beschreibung von mykotoxischen Dioxolanonen als konstitutive Virulenzfaktoren und Etablierung eines Transformations-Systems der zielgerichteten Mutagenese in Guignardia bidwellii
Betreuer: Eckhard Thines
Eva Christ: Understanding of stuck fermentations: investigations on the relationship between the microbial diversity and chemical composition of must
Betreuer: Helmut König

Katharina Cibis: Isolierung von Essigsäure-, Propionsäure- und Buttersäure-bildende Bakterien aus Biogasanlagen
Betreuer: Helmut König

Tobias May: Mikrobielle Prozesskontrolle in Biogasanlagen durch Monitoring der Kohlenstoff-Isotopenverhältnisse im Gasbe-reich
Betreuer: Helmut König

Julia Reuß: Entwicklung eines biologischen Verfahrens zur Reduktion des Methanschlupfes von Gasaufbereitungsanlagen mittels Einsatz methanotropher Mikroorganismen
Betreuer: Helmut König

Magdalena Zuchowska: Bedeutung von alulen Varianten des Hexose-Transporters Hxk1p und der Hexokinase Hxk2p für die Aufnahme von kompakten Osmolyten und die Evolution der Hexokinase Hxk1p und der Hexose-Transporter Hxt3p und Hxt6p
Betreuer: Peter Frenzel

Universität Marburg
Stefanie Ronzheimer: GbsR-Typ Regulatoren: Charakterisierung einer neuen MarR-Typ Regulator Familie von transkriptionellen Repressoren
Betreuer: Erhard Bremer

Sebastian Broy: Das marine Dithymethylsulfiniopropionat als protektives Osmolyt und die Evolution verwandter ABC Transpor-ter für die Aufnahme von kompakten Soluten
Betreuer: Erhard Bremer

Max-Planck-Institut für terrestrische Mikro-biologie/Universität Marburg
Lucas Binnenkade: Molecular control of extracellular DNA release and degradation in She-wanella oneidensis MR-1 biofilms – the role of phases and nuclea-ses
Betreuer: Kai Thormann

Franziska Brandt: Methanogene-sis in phytotelmata: Microbial communities and methane cycling in bromeliad tanks and leaf axils of oil palms
Betreuer: Ralf Conrad

Björn Breidenbach: Rice plants, drainage and crop rotation influence the methanogenic community in rice field soil
Betreuer: Ralf Conrad

Kristof Brenzinger: Impact of changes in environmental parameters (pH and elevated CO2) on soil microbial communities involved in N-cycling
Betreuerin: Gesche Braker

Carsten Dietrich: Ecological and evolutionary drivers of microbial community structure in termite guts
Betreuer: Andreas Brune

Srivatsa Dwarkanath: Characterization of a minimal Type I CRISPR-Cas system found in She-wanella putrefaciens CN-32
Betreuer: Lennart Randau

Stefanie Gerbig: Novel deep branching Cu-containing membrane bound monooxygenase: distribution and function
Betreuer: Peter Frenzel

Kristina Lang: Diversity, ultra-structure, and comparative genomics of Methanoplasmatales, the seventh order of methanogens
Betreuer: Andreas Brune

Vikram Naik: The Ustilago may-dis MAP kinase signaling pathway: Identification of MAP kinase targets by phospho-peptide enrichment
Betreuerin: Regine Kahmann

Stephan Poppe: Host specializa-tion in the fungal plant pathogen Zymoseptoria tritici
Betreuerin: Eva Stukenbrock

Amey Redkar: Functional Char-acterization of an Organ Specific Effector See1 of Ustilagio may-dis
Betreuer: Gunther Doehlemann

Gabriel Schweizer: Virulence in smut fungi: Insights from evolution-ary comparative genomics
Betreuerin: Regine Kahmann

Hao Zheng: Genome evolution of endomicrobia: From free-living bacteria to intracellular symbionts of termite gut flagellates
Betreuer: Andreas Brune

Judith Zöphel: Characterization of a Type I-B CRISPR-Cas system in Clostridium thermocellum
Betreuer: Lennart Randau

Technische Universität München
Lea Fellner: Functional characte-riorization of overlapping genes in the food-borne pathogen Esche-richia coli 0157:H7
Betreuer: Siegfried Scherer

Mandy Starke: Regulation and Freisetzung des insektiziden Kom-plexes in Yersinia enterocollitica
Betreuer: Thilo Fuchs

Andrea Rütschle: Quantifizie-rung, Lokalisation und Export des emetischen Toxins Cereulid aus humanpathogenen Bacillus ce-reus
Betreuer: Siegfried Scherer

Juliane Schnabel: Identification of factors affecting the high pres-sure tolerance of Clostridium botulinum Type E endospores
Betreuer: Rudi F. Vogel

Zhen Peng: Insights in translo-cation through the intestinal bar-rier and mechanism of persistan-ce in the intestinal tract of Enter-ococcus faecalis OG1RF
Betreuer: Rudi F. Vogel

Carola Kern: Identification and ecotopy of beverage spoilling bateria by MALDI-TOF Mass Spectrometry
Betreuer: Rudi F. Vogel

Justyna Lesiak: Investigation of Xylose and Arabinose Metabolism in Clostridium acetobutylicum ATCC 824 and Clostridium saccharolyticum NCP 262
Betreuer: Wolfgang Liebl

Daniel Hönicke: Charakterisie-rung von Mutanten im Lösungs-mittelstoffwechsel von Clostri-dium acetobutylicum
Betreuer: Wolfgang Liebl

Markus Michael Mientus: Auf-fundung und Charakterisierung (hemi-)cellulolytischer Enzyme aus thermophilen mikrobiellen Gemeinschaften
Betreuer: Wolfgang Liebl

Ludwig-Maximilians-Universität München
Boris Sieger: Studies on polar cell wall growth and antibiotic susceptibility of Corynebacterium glutamicum
Betreuer: Marc Bramkamp

Juri Bach: Molecular view on the spatiotemporal organization of Bacillus subtilis subcellular compart-ments
Betreuer: Marc Bramkamp

Prachi Sawant: Functional char-acterization and mutational ana-lysis of a bacterial dynamin-like protein DynA
Betreuer: Marc Bramkamp

Frank Bürmann: Architecture of SMC-kleisin complexes
Betreuer: Stephan Gruber/Marc Bramkamp

Sophie Brameyer: Cell-cell communication via LuxR solios in Photobacterium species
Betreuer: Ralf Heermann

Betreuerin: Kirsten Jung

Elaine Rabener: Biofilm formation of the quorum sensing model organism Vibro harvey i
Betreuerin: Kirsten Jung

Ilaria Visco: Breaking symmetry: reconstitution of polarization events in model membranes
Betreuerin: Kirsten Jung

Sarah Denise Borg: Functionalization of bacterial magnetite nanoparticles by genetic engineering and encapsulation with inorganic coatings
Betreuer: Dirk Schüler

Felix Popp: Molecular and beha-vioral analysis of magneto-aerotaxis in Magnetospirillum gryphiswaldense
Betreuer: Dirk Schüler

Helmholtz-Zentrum München/TU München
Clemens M. P. Karwautz: Micro-bial Biofilms in Groundwater Eco-systems
Betreuer: Tillmann Lüders
Janina S. Kölschbach: Identifikation von naphthalene carboxylase subunits of the sulfate-reducing enrichment culture N47
Betreuer: Rainer U. Mecklenstock

Universität Münster
Sven Thierbach: Mechanic studies on a cofactor-less dioxygenase with alpha/beta-hydrolase fold, and comparison with a functionally related dioxygenase of the cupin family
Betreuerin: Susanne Fetzner

Alene Kast: Yeast virus-like elements – investigations on ribotoxins and the involvement of self-immunity in autoselection
Betreuer: Friedhelm Meinhardt

Dimitrios Nianios: Metal specificity and catalytic mechanism of quercetinase QueD from Streptomyces sp. strain FLA, a flavonol 2,4 dioxygenase active with nickel and cobalt
Betreuerin: Susanne Fetzner

Christine Müller: Identification of enzymes converting alkylquinolone-type secondary metabolites
Betreuerin: Susanne Fetzner

Universität Oldenburg
Imke Büsing: Physiological and molecular characterizations of genetic mutants of the anaerobic aromatic compound degrader Aromatoleum aromaticum Ebn1
Betreuer: Ralf Rabus

Maja Soora: Role of light in the survival of Dinoroseobacter shibae during starvation
Betreuer: Heribert Cyponka

Heidi Wichmann: Effects of the natural products tropodithic acid and dimethylsulphonic-proponate on representative cells of the central nervous system and Caenorhabditis elegans
Betreuer: Meinhard Simon

Universität Osnabrück
Britta Barlag: Characterization of Salmonella Pathogenicity Island 4
Betreuer: Michael Hensel

Patrick Hörnscemeoyer: Protein Dynamics Within the Cpx Two-Component System
Betreuerin: Sabine Hunke

Universität Regensburg
Lydia Kreuter: Isolierung, Charakterisierung und Lokalisation der ATP Synthasen der archaeellen Genera Ignicoccus und Nanarchaeum
Betreuer: Reinhard Rachel

Universität Rostock
Regina Arlt: Oxidativer Stress! Was nun? Ein Einblick in die molekularen Abwehrmechanismen von Streptococcus pyogenes gegen oxidative Aggressoren und antimikrobielle Peptide
Betreuer: Bernd Kreikemeyer

Daniela Wetzl: SspA, ein essentiellles kleines säurelösliches Sporenprotein (SASP) für das Keimen der Sporen von Clostridium acetobutylicum
Betreuer: Ralf-Jörg Fischer

Universität des Saarlandes
Marie-Luise Kaiser: A sec61-1 mutant defective in 19S regulatory particle binding
Betreuerin: Karin Römisch

Lena Etzbach: Exploring the biosynthetic potential of Cystobacter fuscus – Characterization of new structures and studies on their biosynthesis
Betreuer: Rolf Müller

Katja Gemperlein: Biosynthesis and heterologous production of polyunsaturated fatty acids from myxobacteria
Betreuer: Rolf Müller

Stefan Müller: Studies towards secondary metabolism formation in Myxocacteria: Elucidation of biosynthetic pathways and yield optimization
Betreuer: Rolf Müller

Suvd Nadmid: Isolation and characterization of novel natural compounds from Myxobacteria
Betreuer: Rolf Müller

Katharina Rex: Natural compounds as pathoblockers of streptococcal infections
Betreuer: Rolf Müller

Hilda Sucipto: Synthetic biotechnology to engineer myxopyronin production
Betreuer: Rolf Müller

Universität Stuttgart
Juliane Stahmer: Studie zur Entwicklung eines neuen Biokatalysators zur Darstellung von vivilnen Aminoalkoholen
Betreuer: Bernhard Hauer

Christopher Geinitz: Studien zur Substratspezifität der Linalool Dehydratase-Isomerase mit dem Fokus auf der Dehydratisierung von tertiären Alkoholen
Betreuer: Bernhard Hauer

Sebastian Löw: Biokatalyse chemisch betrachtet: Fallstudien aus der technischen und aus der Labor-Synthese
Betreuer: Bernhard Hauer

Mina Lalli: Hervorbringung von 19S-Regulatoren der Lösungsmittelextraktor für das Keimen der Sporen von Clostridium acetobutylicum
Betreuer: Bernhard Hauer

Sandra Notonier: Development of highly efficient CYP153A-catalysed terminal hydroxylation of fatty acids
Betreuer: Bernhard Hauer

Constantin Vogel: Systematic Analysis of the Sequence-Structure-Function Relationships of Thiamine Diphosphate-dependent Enzymes
Betreuer: Bernhard Hauer

Tobias Kulschewski: Modellierung der Candida antarctica Lipase B unter nicht-naturlichen Bedingungen
Betreuer: Bernhard Hauer

Lucasz Griman: Strategies for rational protein engineering of cytochrome P450 monooxygenases systems
Betreuer: Bernhard Hauer

Silvia Fademrecht: Systematische Analyse von familienspezifischen Proteinidentitäten für biotechnologische Anwendung
Betreuer: Bernhard Hauer

Universität Tübingen
Robertetta Pozzi: Investigation of NAI-107 immunity in the lantibiotic producer Microbispora ATCC PTA.5024
Betreuer: Wolfgang Wohlleben

Katharina Walter: Stickstoff-Metabolismus und sein Einfluss auf die NAI-107 Produktion in Microbispora sp. ATCC PTA-5024
Betreuer: Wolfgang Wohlleben

Bettina Nägele: Charakterisierung der Zellwandhydrolyase YocH aus Bacillus subtilis und Untersuchungen zur Rolle im Zellwachstum
Betreuer: Christoph Mayer

Ali Çoşkun: Characterization of a Δnth mutant in Staphylococcus carnosus TM300 and a ΔPll-like mutant in Staphylococcus aureus
Betreuer: Friedrich Götz

Dogan Doruk Demircioglu: Investigation on immune sensing of Staphylococcus aureus in allergic and inflammatory bowel diseases
Betreuer: Friedrich Götz

Sonja Mayer: Characterization of the membrane potential generating system Mps in Staphylococcus aureus
Betreuer: Friedrich Götz

Lukas Mechler: Investigation of the metabolism of daptomycin generated persister and the non-classical protein excretion in Staphylococcus aureus
Betreuer: Friedrich Götz

Minh Thu Nguyen: Role of Staphylococcus aureus Lipoproteins in immune response and invasion
Betreuer: Friedrich Götz

Christopher Schuster: Investigating the Roles of Toxin-Antitoxin Systems in Staphylococci
Betreuer: Friedrich Götz

Universität Ulm
Stefanie Karolina Flitsch: Identifikation und Charakterisierung von Regulatoren der Lösungsmittelführung in Clostridium acetobutylicum
Betreuer: Peter Dürre

Christina Gabris: Analysis of hydrolysis, acidogenesis, and methane oxidation in biogas reactors
Betreuer: Peter Dürre

Verena Grimm: Analysis of host colonization by bifidobacteria in murine model systems
Betreuer: Christian Riedel

BIOspektrum | Tagungsbänderv 2016
Annika Hedwig Öbwald: Tumor-targeting with anaerobic bacteria in three-dimensional tumor spheroids in vitro Betreuer: Peter Dürre/Christian Riedel

Anne Sedlaj: Effects of bacterial infections, in particular Listeria monocytogenes, on primary human macrophage subpopulations Betreuer: Christian Riedel

Adnan Shah: Transcriptional organisation and regulation of genes encoding carbonic anhydrases in Corynebacterium glutamicum Betreuer: Bernhard Eikmanns

Christina Westermann: Analysis of potential host-colonization factors in Bifidobacterium bifidum S17 Betreuer: Christian Riedel

Valeria Tschiginew: Betreuer: Thomas Rudel

Helicobacter pylori and Mycobacterium bovis BCG Mycobacterium tuberculosis

Prema Subbaraya: Regulation of C-Quellenverwertung in Mycobacterium tuberculosis and Mycobacterium bovis BCG Betreuer: Bernhard Eikmanns

Annette Barbara Huber: Chlamydial deubiquitinase Chla-DUB1 as regulator of host cell apoptosis and new target for anti-chlamydial therapy Betreuer: Thomas Rudel

Prema Subbaraya: Die Rolle der humanen Rezeptor-Tyrosinkinase EphrinA2 (EphA2) in der Chlamydia trachomatis Infektion Betreuer: Thomas Rudel

Ann-Cathrin Nicole Winkler: Identification of human host cell factors involved in Staphylococcus aureus 6850 infection Betreuer: Thomas Rudel

Magdalena Urszula Grosz: Identification of phagosomal escape relevant factors in Staphylococcus aureus infection Betreuer: Thomas Rudel

Alexander Westermann: Dual RNA-seq of pathogen and host Betreuer: Jörg Vogel

Sandy Ramona Pernitzsch: Functional characterization of the abundant and conserved small regulatory RNA RepG in Helicobacter pylori Betreuerin: Cynthia Sharma

Babett Oesterreich: Preclinical development of an immunotherapy against antibiotic-resistant Staphylococcus aureus Betreuer: Knut Ohlsen

ETH Zürich

Raoul Rosenthal: Expanding the chemistry of nicotinamide dinucleotides Betreuer: Tobias Erb, Julia Vorholt

Impressum:

Verantwortlich für den Inhalt:
Prof. Dr. Axel Breitlage
Friedrich Schiller University Jena
Institute of Microbiology
Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute – Beutenbergstraße 11a
07745 Jena (DE)
axel.breitlage@hknl-hki.de

Conference Organisation and Industrial Exhibition
Conventus Congressmanagement & Marketing GmbH
Alexandra Vogel
Carl-Pulfrich-Straße 1
07745 Jena (DE)
Tel.: +49 (0)3641 31 16-361
vaam-kongress@conventus.de
www.vaam-kongress.de

Redaktion:
Dr. Christine Schneiβer
Redaktion BIOSpektrum
Springer Spektrum | Springer-Verlag GmbH
Tiergartenstraße 17
49121 Heidelberg (DE)
Tel.: +49 (0)6221 – 487 8043
Fax: +49 (0)6221 – 487 68043
christine.schneieder@springer.com
biospektrum@springer.com

Verlag:
Springer Spektrum | Springer-Verlag GmbH
Tiergartenstraße 17
49121 Heidelberg (DE)
Tel.: +49 (0)6221 – 487 8043
Fax: +49 (0)6221 – 487 68043
www.springer-spektrum.de

Geschäftsführer:
Dierk Haark, Martin Mox, Peter Hendriks

Anzeigen:
Top-ad Bernd Beutel
Schlossträßchen 10
4944 Fünfheim (DE)
Tel.: +49 (0)6221-290 92 0
Fax: +49 (0)6221-290 92 20
info@top-ad-online.de

Satz:
TypoDesign Hecker GmbH
Strabander Ring 13
49181 Leimen (DE)
Tel.: +49 (0)6242-8276-20
Fax: +49 (0)6242-8276-20
info@typodesign-hecker.de

Abo-Service:
Springer Customer Service Center GmbH
Haberstraße 7
69126 Heidelberg (DE)
Tel.: +49 (0)6221-345 – 4229
Fax: +49 (0)6221-345 – 4229
subscriptions@springer.com

Druck:
PHOENIX PRINT GmbH, Würzburg
© Springer-Verlag 2016
Fernstudium Biologie | Chemie
für Bio- und Chemielaboranten, TA’s sowie verwandte Lehrberufe

Ihr Weg zum Bachelor

Sie haben eine Ausbildung zum BTA, CTA, MTA, PTA o. ä. gemacht und möchten einen Schritt weiter kommen, aber Ihren Beruf nicht aufgeben? Dann sind unsere Fernstudiengänge Biologie und Chemie genau der richtige Weg für Sie!

Informieren Sie sich jetzt unter springer-campus.de
Time for change.

Sind Sie bereit für die neue Art der DNA-Aufreinigung?

Entdecken Sie DNA-Aufreinigung im neuen Gewand – effektiver und umweltschonender:

Optimiertes Design der Monarch Miniprep Columns

- Einfach zu kennzeichnen auf ergonomisch platzierten Schriftfeldern
- Einzigartiges, konisches Design eliminiert Puffer-Verschleppungseffekte und erlaubt die Elution in nur 30 μl
- Dünnwandiges Design für geringen Kunststoffverbrauch
- DNA-Bindekapazität bis 20 μg
- Säulchenspitze kompatibel mit gängigen Vakuum-Kollektoren

Bestellen Sie Ihr Testmuster: NEBMonarch.de